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Using the properties of determinants, the exact expressions for integrals of functions of the 
type exp[ 1]Ar, + (1]Br,)'] and their moments, where 1] and r, are Grassman generators with N 
components are derived. 

I. INTRODUCTION 

The quantum description of particles with semi-integer 
spin through path integrals is carried out by using anticom
muting c numbers,l the same as occurs in supersymmetric 
quantum mechanics.2 

The studies of quantum behavior of the theories through 
path integrals have been severely restricted by the fact that 
we are able to calculate only Gaussian integrals. This restric
tion imposes the introduction of auxiliary fields in the path 
integral formulation when we want to study models involv
ing a four fermion-point interaction (e.g., Thirring modeV 
Gross-Neveu model,4 etc.). 

The aim of this article is to show how to calculate Grass
man integrals of exponentials of powers beyond the quadrat
ic one. We make no restriction on the dimension of the 
Grassman algebra. We will not consider explicitly the case 
where the matrices are the discrete version of continuous 
space-time derivatives. 

In Sec. II we make a brief review of the Grassman 
algebra integral properties. In Sec. III we show a systematic 
way to calculate integrals of functions of the type 
exp [ - 1]Ar, - (1]Br,)'], where 1] and r, are generators of 
Grassman algebra with N components, and t'<N. We also 
get the moments of these integrals. Finally, in Sec. IV, we 
discuss the results. 

II. BRIEF REVIEW OF INTEGRALS IN GRASSMAN 
ALGEBRA 

To make a brief review, we consider a Grassman algebra 
of dimension 2. Let 1] and r, be the generators of the algebra. 
Therefore, 

(la) 

and 

(lb) 

As a consequence of the anticommutation (lb) we have 
1]2 = 0 and r,2 = O. 

The integrals of the generators are defined as 

I d1]'1 = 0, Idr,'I=O, (2a) 

I d1] 1] = 1, I dr, r, = 1, (2b) 

I d1] r, = 0, and I dr, 1] = 0, (2c) 

and, if we write the most general element of this algebra, 
g(1],r,) =gOO+glO1]+gotr,+gll1]r" where gijEC, i,j 

=0,1, then, 

I d1]g(1],r,) =glO +gl\r, (3a) 

and 

I dr,g(1],r,) =gOt -gt] 1]. (3b) 

To write down the results of the integrals (3a) and (3b) you 
need to bring 1] close to d1] and r, close to dr" respectively. 

It is a well-known result],2 that 

I dr, d1] e - Q'YJ'" = - a. (4) 

This result is easily extended to the case of 2N -dimen
sional algebra and amounts to 

I ;V] dr,; ;V] d1]j e - "Illy"'} = ( - I)N det A, 

where aij are the elements of matrix A. 

III. EXACT RESULTS OF INTEGRALS INVOLVING 
EXPONENTIAL FUNCTIONS 

(5) 

Let us consider a Grassman algebra with dimension 2N, 
whose generators are {1]], ... ,1]N;r,t, ... ,r,N} and who satisfy 
analogous anticommutation relations such as (la) and 
( Ib). 

We want to calculate the integral, 

12 = I ;VJ dr,; d'TJ; exp{ - [1]Ar, + (1]Br,)2]), (6) 

where 1]Ar,=1];aijr,j and a;jEC are the elements of matrix A, 
and 1]Br,=1];bijr,j' where bijEC are the elements of matrix B. 

Using the anticommutation relations (lb) we have, 
N 

e-'YJA",= 2: 
m=O 

( _1)m 

m! 

[N12) ( _ 1)" 
=2: 

N 

2: 
n=O n! i l • j. = 1 

N 

2: 
" j. = 1 

;mJ ... =] 
, 

(7a) 

(7b) 

where [N 12] means the biggest integer smaller or equal to 
N/2. 
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The terms that can contribute to (6) are the ones that 
we get from the multiplication of (7a) by (7b) where we 
have N pairs of generators 'TJ i fiJ, 

exp{ - ['TJAfi + ('TJBfi)2]) 

= L 
m=O.I •.... N 
n = O.I •...• [N 12] 

m+2n=N 

(_l)n+m 

n!m! 

Xbim + ,.Jm+' "'biN.JN'TJi, fiJ, "''TJim fiJm" ''TJiNfijN , (8) 

However, the only integrals that give nonzero contribution 
to 12 are 

(9) 

and all the integrands that are permutations from the basic 
configuration 'TJlfil' 00 'TJNfiN , Any configuration that has 
more than one generator 'TJi and/or fij gives a null result. 

From (8) we notice that if one permutes the position of 
any two elements aij there is no change in the sign of the 
element, as well as if one permutes the position of any two 
elements bij' Therefore, we have m!(2n)! identical elements 
in (8), and it call be rewritten as 

L 
m=O.I •...• N 
n=O.I •...• [N12] 
m+2n=N 

(2n)1 
X ( - 1)(NI2)(N-I)'TJ1'TJ2" ''TJN --' L u(q,'TJ) 

n! a(q.1/) 

N 

X" a 'OOa b .. 'b ~ q(l ).j, q(m).jm q(m + I).jm +, q(N).PN 
j, = I 

( 10) 

where u(q,'TJ) are the inequivalent permutations of'TJi, "''TJiN 
to get the basic configurations 'TJ1'TJ2' OO'TJN' We should pay 
attention to the fact that for a given configuration the indices 
are chosen such that ii" 'im are in increasing order, We have 
u(q,p) = 1( -1) ifthe permutation is even (odd), 

Let u(p, fi) be the permutation of the configuration 
fij , "'fijN that becomes the basic configuration filfi2" 'fiN' 

As before, u(p, fi) = 1 ( - 1) if the permutation is even 
(odd). The sum overjl" -jN in expression (10) can be writ
ten as, 

L u(p,fi)aq(l).p(I)" 'aq(m),p(m) 
a(p.1j) 

X bq(m + IJ,p(m + I) , , . bq(N).p(N) filfi2' .. fiN 

==det Oq 7j17j2' . '7jN' (11 ) 

where Eq. (11) used the definition and properties of the 
determinant of any matrix.5 From the definition ( 11) we see 
that the lines of matrix 0 q are gotten from the lines of matri
ces A and B, The order that the lines appear in Oq depends 
on the permutation q = (q( 1 ) ,q( 2) , ... ,q(N». 

Therefore, 12 can be finally written as, 
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12 = L (2n)1 
(_l)n+m --' L u(q,'TJ)detOq. 

n! a(q.1/) m=O.I ..... N 
n = O.I .... ,[N 12] 

m+2n=N 
(12) 

The only restriction to expression (12) is that N;,2, 
Let us consider the special cases N = 2 and N = 3 of the 

general expression (12): 

(i) N = 2: 

12 = detA - 2 det B, (13) 

For dimension 2,12 gives a null result if det A = 2 det B, 

(ii) N = 3: 

all al 2 aJ3 all 

12 = - det a21 a22 a23 + 2 det b21 
a31 a32 a33 b31 b32 b33 

bll bl2 bJ3 bll bl2 bJ3 
a22 a23 + 2 det b21 b22 b23 

b32 b33 a31 a32 a33 

(14) 

It is very easy to extend the result (12) for integrals 11'> 
where tis a positive integer, that is, 

(15) 

where 2N is the number of generators of the Grassman alge
bra and N;,t. 

Proceeding in an analogous way as for the case 12, we get 

1/= L 
m=O.I ..... N 
n=O.I ..... [Nlt) 
m+ nf=N 

( _l)n+m (t'h)! 

n! 

X L u(q,'TJ)det Oq, 
a(q.1/) 

(16) 

where [N / t] is the biggest integer smaller or equal to N / t, 
u(q,'TJ) has the same definition as the one given previously, 
and Oq is such that 

L u(p,7j )aq(l ).p(l) , . 'aq(m),p(m) 
a(p.1j) 

X bq(m + IJ.p(m + I) , • 'bq(N).P(N) = det Oq, (17) 

and now we have t, n elements bij in (17). 
Finally, we want to derive the moments of integral If, 

that is, 

Gt.,n,m)('TJ,7j) 

== J i61 d7ji d'TJi 'TJ
m

7j"exp{ - ['TJA7j + ('TJB7j)'1}, 

(18) 

where 'TJm=='TJ'{"'TJ'{'2" ''TJ~N, mj = 0 or 1; and, 7j"==7j~'" '7j';:, 
ni = 0 or 1. We will assume from now on that 11,/2" .. ,/c and 
J1,J2, ... ,Jc are the indices of the generators whose powers mi 

and ni , respectively, are not zero, In this case the integrand 
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of (18) becomes, 

1]mrr exp{ - [1]A1j + (1]B1j) ']} 

= r ( _ 1)'+ r( _ 1 )c(c- 1)/2 
-'----'--.....:....-.....:....---a· ... ·a· . ".s! ',d, I,,}, 

r=O.I •.... N 
s=O.I •...• (NII] 
r+sl'+c=N 

Xbir + I.jr+ I" ·bir+sl.jr+sI1]/,1jJ, •• '1]/c TJJc1]i, 

X1jj," ·1]ir+sl,TJjr+.'I· (19) 

We want to rewrite (19) in such a way that it resembles 
expression (11). For doing this, we use 

1]/,1jJ, '''1]/c1jJc 

iN' jN= 1 

X 1]ir+ sl+ I 1jjr+ sl+ I •• '1]iN 1jjN' 

and define the following matrix elements: 

c. . = l}/ . .l}J . , 
"+$/+ 1.1,+31+ I ."1'+51+ 1 IJ,+sl+ 1 

C· . = l}/ . • l}J .• 
'NllN ",IN ctJN 

Making use of the previous results, we get 

G~n.m)(1],1j) = r (- l)s+r (IS)! 
r=O.I •...• N s! 
s = O.I •...• (N II] 
r+sl'+c=N 

(20) 

(21) 

X ( - 1)c(c-I)/2 r u(q,1])det Oq, 

u(q;'1l 
(22) 

with u(q,1]) as previously defined, and 
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det Oq == r u(p,1j)aq(l).p(1)·· 'aq(r),p(r) 
u(p,1) 

Xbq(r+ I).p(r+ I)" ·bq(r+st').p(r+st') 

X Cq(r+st'+ I),p(r+st'+ I)" 'Cq(N),p(N) • 

IV. CONCLUSIONS 

(23) 

We have shown how to derive in a simple way the inte
grals of exponential functions of the type (1]B1j) 1'. These 
integrals can be written as a sum of determinants of matrices, 
and these matrices are composed of lines of matrix A and B. 
Only when N is even does det B contribute to the final result. 
These features can be seen from the examples N = 2 and 
N=3. 

The extension to the case where we have a differential 
operator is under study. It is still necessary to write the re
sults (12), (16), and (22) in more manageable form for 
physical applications. 
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In a previous paper, the absolute minima for Landau potentials were computed for the 
irre<;lucible representations ofSO(3) or 0(3) of spin up to four. Here, this analysis is extended 
to the case of spin five and six. Some novel properties of the extrema are pointed out. 

I. INTRODUCTION 

A couple of years ago, an analysis of the minimization of 
SO (3) invariant Landau potentials was reported 1 for irredu
cible representations of integer spin up to s = 4 and the re
sults were discussed in relation with Michel's conjecture. 2 In 
this article we extend the analysis of Ref. 1 to the case s = 5 
and partially to the case s = 6. Our purpose is to stress sever
al new features that appear for s> 4. The method used and 
the notations and conventions are those of Ref. 1. For the 
subgroups of 0(3) we have adopted the notation of Schon
flies. 

II. THE CASE s=5 
Among all invariants constructed from the symmetric 

traceless tensor Sabcde (a,b, ... = 1,2,3) corresponding to the 
spin 5 (dimension 11) irreducible representation of SO (3), 
only two, chosen to be 

Q = SabcdeSabcde , 

K = SabcdpSabcdqSijklpSijklq , 

(la) 

(lb) 

are polynomially independent and of degree less than four. 
The most general Landau potential invariant under SO (3 ) 
then reads 

v = 2J-lQ + qQ 2 + kK . (2) 

It is in fact invariant under 0 (3). A fixed vector S can be 
invariant under any of the following subgroups of SO( 3) 
(see Refs. 2 and 3 for the notations): 

SO(3), Coo, D s, Cs, D 4 , C4 , D 3, C3, D 2 , C2 , 1, (3) 

among which Coo, Ds, D 4 , and D3 are maximal subgroups. 
The stability group of S then consists of one of the groups 
above eventually extended by a reflexion Z2 of determinant 
-1. 

The search of the extremal configurations of V, i.e., of 
the solutions of the 11 equations 

av =0 
as ' (4) 

has been carried out for all the nontrivial subgroups of 
SO(3) appearing in the list (3). Table I collects the canoni
cal directions Sg of the solutions ofEq. (4) that are invariant 
under a subgroup g. These directions are obtained by choos
ing some axes of symmetry of the group g along the coordi
nate axes: the x axis as the principal axis of any symmetry 
group Cn or Dn. In the caseDn , one extra C2 axis is along the 
y axis. All the solutions are generated by applying rotations 
on these particular configurations. The other components of 

Sg can be obtained from the ones given in the table by using 
either the symmetry or the tracelessness of the tensor. 

'" Remarkably enough, the directions Sg (normalized 
arbitrarily) are independent of the parameters of the poten
tial (i.e., ofJ-l, q, and k). Therefore, all the relevant informa
tion is contained into the ratio 

_ 2 '" .a(g) = (Q IK)(Sg) . (5) 

Indeed, denoting the extremum as 

Sg =,.tSg, (6) 

the virial theorem (a A V = 0) can be used to fix the factor ,.t 

'" ,.t2= -J-l/(Q'L(g», L(g)=q+kla(g), (7) 
'" '" where Q, the length of S, is also given in Table I. The extre-

mal value of the potential then reads 

V(Sg) = -J-l2IL(g). (8) 

In order to satisfy the asymptotic condition ofthe poten
tial (i.e., that Vbe increasing when S goes to infinity in all 
directions), it is necessary for all quantities L (g) to be posi
tive; in other words, we have to limit our analysis to the 
regions delimited by 

q + k 13 > 0, if k > 0, (9a) 

(9b) 

We have checked numerically that these conditions are also 
sufficient. 

One observes that (i) for every g in Table I, the value of 
a (g) is fixed (C3 is not allowed as an extremum). 

(ii) For every g=j=D2 (II), all the components of S(g) 
are fixed univokely with the axes of symmetry of g. As a 
consequence, the set of extrema invariant under g 
(g=j=D2 (II» assemble into one orbit that is three dimension
al except for the case Coo for which it is two dimensional. 

The configurations invariant under D 2(II) are of differ
ent nature since the Eqs. (4) do not fix the relative values of 
all components of S. Let 

ba =S123aa (no sum over a) , 

b I + b2 + b3 = 0 . 

The arbitrary normalization is 

bf +b~ +b~ =2, 

with the restriction 

bf=j=b~=j=b~=j=bf . 

(10) 

(11 ) 

(12) 

(13) 

The union of the corresponding three-dimensional orbits 
forms a four-dimensional manifold, a strata. 
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TABLE 1. The values of the independent components of the extremal directions SQbcde (g) (abcde = 22233, ... ) are given in canonical position for all possible 
SO(1) subgroups [s~. SO(3)] in the case s = 5. (The C, subgroup is nexerextremal.) The symmetry axes ofgare described in the text. The table contains 
also Q (the length ofS) , a [defined in Eq. (5)] and the stability groupofS [sgr.O (3)] [as stability group of 0(3), see Ref. 3 for notations]. For D2 (/I) one 
has b ; # b ~ # b ~ # b ; . The cases have been classified with increasing values of a. 

sgr. SO(3) D, C~ D. D2 (/) 

22233 1 0 0 
22333 0 0 0 
11333 0 0 0 
11133 0 -4 0 
11122 0 -4 0 
11222 0 0 0 
12233 0 1 0 
11233 0 0 0 
11223 0 0 0 
12223 0 0 1 
12333 0 0 -I 

Q 16 504 40 

a 2 11 1J 
sgr.0(3) D'h Coot. D'd 

The triple degeneracy of a(g) for g = Cs, C4 , C2 or for 
g = D2 (l), D2 (lI), D4 is intriguing. We will see similar fea
tures in the next section. 

As it was the case for s = 3 (Ref. 1), the absolute mini
mum for the s = 5 potential is always a discrete subgroup of 
SO(3). It is the group Ds (maximal subgroup) in the case 
k < 0; and, on the same footing, either Cs or C4 or C2 when 
k> 0; none of these being maximal. The above statements 
were checked numerically for numerous values of q and k. 
The numerical analysis confirms also that the conditions (9) 
are indeed necessary and sufficient. 

For completeness we have also given in Table I the sta
bility group of the configuration as a subgroup of 0 (3) the 
true stability group of the potential (the notations for groups 
are those of Ref. 3). 

Finally let us stress that the configurations of stability 
group reduced to the identity were not solved analytically 
but that they never appeared as minima of the potential in 
our detailed numerical minimizations for numerous values 
of the parameters. 

III. THE CASE s=6 

There exists in this case four (polynomially) indepen
dent invariants of degree ..;4 that can be constructed from 
the six indices (symmetric and traceless) tensor Sabcdef cor
responding to the spin 6 irreducible representation of SOC 3) 
(dimension 13): a quadratic one Q, a cubic one P, and two 

, quartic ones K and K •. They can be chosen as follows: 

Q = Sabcde~abcdef' 
P = Sabcde~abcghiSdefghi , 

K = SabcdepSabcdeqSijklmpSijklmq , 

K. = SabcdpqSabcdrsSijklprSijklqs • 

The most general Landau potential reads 

V= 2J.lQ+ qQ2 + pP+ kK + k.K1, 

(14) 

(15) 

but we will consider only the case p = O. A fixed vector Scan 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

40 

lJ 
D 2d 

D2(/I) D, C, C. C2 

0 1 0 0 0 
0 0 ±,fff 0 0 
0 0 0 0 0 
0 0 -4 -4 6 
0 0 -4 -4 6 
0 4 0 0 0 
0 0 1 1 9 
0 -4 0 0 0 
0 0 0 0 0 

b2 0 0 ±,fff ±,fff 
b, 0 0 +,fff ±,fff 
40 720 840 1344 8037 

lJ Wf 3 3 3 

D2 D'h C", C.v C2v 

be invariant under a rich variety of subgroups ofSO(3) (in
variance under parity is in this case trivial as is the invariance 
under S-+ - S): 

SO(3),D"" ,Y,0,T,D6,Ds,D4,D3,D2,C3,C2,1 . (16) 

For the first time, the three groups Y, 0, T (the symmetry 
groups, respectively of the icosahedron, of the cube, and of 
the tetrahedron) appear as possible stability groups of the 
tensor S. For technical reasons, we solved Eq. (4) for config
urations invariant under g running from D", to D 4 in the list 
( 16); in all other cases the equations are really cumbersome. 
However, by a numerical exploration of the absolute minima 
of ( 15) for various values of the parameters, we failed to find 
any minimal configuration giving a value lower than the 
ones obtained analytically. 

As in the previous case, the canonical directions, Sg, of 
extrema invariant under a group g are collected in Table II. 
For convenience, we define the parameters da and r so that 

S\.2233 = - 2r, (17a) 

S\\\122 =r+d'3' S222233 =r+d\, 

S3333\\ =r+d2 • (17b) 

The other components of S are obtainable from the ones 
displayed in the table by exploiting the properties of symme
try and of traceless ness of the tensor. The conventions for the 
axes of Cn and Dn are the same as previously; the group Yis 
oriented so that the coordinate axis ox is a symmetry axis of 
order 5 and oy of order 2. For the cube 0 (resp. the thedrahe
dron T), the three axes of order 4 (resp. 2) were chosen as 
the coordinate axes. 

Apart from the case D 6 (II) the set of extremal configu
rations invariant under g forms a unique orbit characterized 
by the two ratios 

a(g) = (Q 2IK)(Sg), {3(g) = (Q 2IK\)(Sg), (18) 

also ~ven in Table II. The normalization A. (i.e., such that 
S=A.S) is given by 
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TABLE II. The values of the independent components of the extremal directions S(g) are given for the main subgroups of50(3) in the case s = 6. The 
symmetry axesofg are described in the text. The notation is the same as in Table I, a and pare defined in Eq. (18). For D6 (lI) the details are given in Eqs. 
(23)-(27). 

sgr.50(3) D~ Y 0 

222223 0 0 0 
233333 0 0 0 
133333 0 -7 0 
111113 0 0 0 
111112 0 0 0 
122222 0 0 0 
222333 0 0 0 
111333 0 0 0 
111222 0 0 0 

d , 0 0 0 
d2 -7 -7 0 
d3 7 7 0 
r I I I 

Q 3696 8400 462 
a W 3 3 

P 1089 5 ill J33 

sgr.0(3) Droh Yh Oh 

1 2 _ - J.l _ k kl 
/l, - >< , L(g)=q+-- +--. 

Q'L(g) . a(g) {3(g) 
(19) 

The extremal value of the potential reads again 

V(Sg) = -J.l2IL(g). (20) 

Of course, we should impose the positivity of the quartic part 
of V in general and in particular for all the invariant direc
tions of S. 

It can be checked analytically that the positive region is 
bounded by the planes L(g) = 0 corresponding to g = Y,O, 
and oneoftheD6 , namely, D6 (1). Defining the variables PI' 
P2, andP3 by 

PI = q + kl2 + k l/2, 

P2 = q + k 13 + k/5, 

P3 = q + k 13 + 1 55kl/726 , 

the three conditions 

P;>O, 

(2Ia) 

(2Ib) 

guarantee the positivity of all the L(g) of Table II. For com
pleteness let us give the inverse of the transformation 

__ 2P _ 1305P2 1 452P3 

q- I 49 + 49 ' 

k = 6P 6240P2 _ 6534P3 

1+ 49 49' 
(22) 

kl = _ 3630P2 + 3630P3 • 

49 49 
For all the g in Table II except the second D6, D6 (II), it 

is easy to show that the planes L (g), once written in terms of 
the variables PI' P2 and P3 have positive coefficients which 
proves the result. For D6 (1I) also the conditions (21) are 
sufficient for the positivity but the proof is more subtle and 
will be discussed shortly. For the configurations invariant 
under D 3, D 2 , C3 , C2 , and I, we have not been able to prove 
analytically that the conditions (21) are sufficient. However 
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T 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
I 
I 
0 

90 
3 

11 
Th 

D4 Ds D6 (l) D6 (lI) 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 1 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 d , 

±I 0 0 -7 
±I 0 0 7 

I 0 0 I 

528 96 32 see 
242 2 Eqs. -gr 

WJs6 18 2 (23)-(27) ,-

D4h DSd DOh D6h 

a detailed numerical exploration of arbitrary directions indi
cates that these conditions are indeed necessary and suffi
cient. 

The solutions invariant under the subgroup D6 are pecu
liar in many respects, one observes in the table that they 
assemble into the following two different categories: 

(i) a first one completely analog to the cases discussed 
above; we call it D 6 (1), 

(ii) a second one, say D6 (II), more complicated in view 
of the fact that the extremal directions and the ratios a and {3 
depend explicitly on the parameters q, k, and k l • 

FIG. I. The space of the variables P" P2 , P3 defined in (21) is cut by the 
plane P, + P2 + P, = I. Inside the triangle T, T2 T, the positivity conditions 
(21 ) are satisfied. Within this triangle, the hatched region where M of (27) 
is negative lies between the straight line BDF [where the denominator of 
(27) is zero) and the ellipse T,ADG [where the numerator of (27) is zero). 
The ellipse is tangent to BDFat Dand to T2 T., atA. This region of negative 
M is entirely within the unallowed region (24) for D.(lI) bounded 
by the straight lines CDH and ADE. The coordinates of the 
points are T, = (1,0,0), T2 = (0,1,0), 1'., = (0,0,1), A = (O,ffi,i'\'i), 
B= (O,M.,m.), C= (O,illPs¥.), D= q,W, E= (ill,O,~), 
F= (~,O,~), G= (~,O,~),H= (tw.,O,*~). 
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y 

~~------------------~~ 

FIG. 2. In the variables PI' P2, P3 defined in (21) cut by the plane 
PI + P2 + P3 = I, the regions of the parameters for which the absolute min
imum are D.(/) , Oand Yare, respectively, the triangle (T2 T3D), CT.,TID), 
and (T, T2D). The coordinates of Ti and D are given in Fig. 1. On the line 

DTI the absolute minima coincide not only for Oand Ybut also for D.(lI). 
At the point D the four minima of Y,O,D.(l) and D.(lI) all coincide. 

Indeed, in case (ii) the component d I defined above 
[Eq. (17)} is such that (remember d3 = - d2 = 7 and 
r = 1) 

di = 49[ (27k + 46k l )/(18k + 31k l )] , (23) 

and obviously the solution does not exist in the region delim
ited by 

-27 kl -18 
46<k<~. (24) 

Here we write only the values of Q and of V that read 

Q= 16(231 +2di), 

V(D6 (/I» = - p21M, 

M= + 648k 2 + 1523kkl + 706k i 
q 2(972k + 1667k l ) 

(25) 

(26) 

(27) 

The condition M> 0 (necessary for asymptotic positi
vity) does not affect the region defined in Eq. (21). Indeed, 
once written in terms of the variables Pi' the numerator and 
denominator of M [see Eq. (27)] represent, respectively, an 
elliptical cone and a plane. The plane is tangent to the cone 
exactly on the diagonal line PI = P2 = P3• Within region 
(21), the subregion (hatched on Fig. 1) between the cone 
and the plane is the only region where M is negative. This 
region is entirely inside the region defined by the two planes 
(24) (which again cross exactly on the diagonal line ) where 
D 6(/I) is not defined and thus harmless. The statements are 
summarized in Fig. 1 drawn in the plane PI + P2 + P3 = 1. 
Hence the result. 

Direct comparison between the different values (20) 
and (26) allows the classification of the solutions corre
sponding to the absolute minimum for D 6 (l) , 0, and Yas a 
function of the parameters Pi and hence by (22) of the pa
rameters q, k, and k\ of the potential. The plot of the regions 
is particularly simple in the variables Pi as can be seen in Fig. 
2. 
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TABLE III. The table contains all the possible stability groups for the p0-

tentials containing even powers of the field S and for I <s< 6. 

Spin 

I 
2 
3 
4 
5 
6 

Stability group in O( 3) 

0(2) 
Accidental symmetry 0(5) 

D'h Td 
D4h Oh 
DSh C 5 •. ,C4 •. ,Ch 

Dbh 0. Y. 

As can be checked analytically, D6 (lI) occurs as an ab
solute minimum only on the line DTI of Fig. 2 where it coin
cides with Y and 0 leading to a triple degeneracy of the 
minimum. The point D, where in fact k = k I = 0, is even 
more singular as all the four minima coincide. 

To end our analysis, we have explored numerically the 
region of positivity (21) and computed the absolute mini
mum for many arbitrary choices of the parameters. We have 
done this very systematically. In all instances the minimiza
tion program has produced the potential corresponding to 
one of the three predicted analytically in Fig. 2. Hence we 
feel that we can safely conclude, though an analytical proof 
is still lacking, that all the other possible stability groups do 
not produce absolute minima. 

IV. CONCLUSIONS 

The investigation reported here might seem very partic
ular, since we specialize only in two representations and in
complete, since the complexity of the equations does not al
low for a full classification of the extrema of the potentials 
considered. However, there are several points that should be 
stressed because they could playa role in more general inves
tigations about Landau potentials. 

First, the observation that the manifold of certain ex
trema (for instance of set of D2 invariant solutions in the case 
s = 5) can be a strata, not only an orbit. 

Second, the existence of extremal configurations invar
iant under completely different subgroups and correspond
ing to identical values of the potential. 

Third, the explicit construction of two quite different 
orbits of extrema invariant under the same subgroup of 
SO(3). 

If we specialize into the stability groups of the absolute 
minima of the potentials, we see for s = 4, 5, 6 that they are 
not necessarily maximal subgroups in SO(3) or 0(3). For 
the cases of potentials involving only even powers of the 
fields, the results are summarized in Table III. The full sta
bility groups are given [i.e., as part of 0(3), seethe notations 
in Ref. 3] and one can observe some regularity from these 
few cases. 

Iy. Brihaye and J. Nuyts, J. Math. Phys. 28, 1901 (1987). 
2L. Michel, in Regards sur la Physique Contemporaine (CNRS, Paris, 
1980). 

3L. Michel, Rev. Mod. Phys. 52, 638 (\980). 
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The general form of the matrices that transform an irreducible corepresentation (coirrep) into 
an equivalent one, where both representations are assumed to be in the form proposed by 
Wigner, is analyzed for the three types of coirreps. In addition, the relation of these 
transformations to inner automorphisms of the corresponding group algebras is clarified. 

I. INTRODUCTION 

Recently, a method has been presented that system
atizes and simplifies the calculation of reducing matrices, 1.2 

especially Clebsch-Gordan3 and subduction matrices.4 The 
scheme proposed in Refs. 1-4 is based on a group of opera
tions that transform irreducible representations (irreps), or 
corepresentations (coirreps), within certain sets and makes 
explicit use of the similarity transformations involved. In an 
extension of this work to isoscalar matrices5 it became clear 
that a more detailed knowledge of the similarity transforma
tions for coirreps (inherent ambiguity, possible standard 
forms, etc.) was needed. Since such an analysis does not 
seem to exist in literature, it is given in the present paper. 

Corepresentations are matrix representations of ("mag
netic") groups G(H) that possess subgroups H of index 2. 
The multiplication law of these matrices reads 

(1) 

where the matrices A (g) are related to the matrices A accord
ing to the following rule: 

A (g) = {A, 
A *, 

for gEll, 
for geG"\H. 

(2) 

In quantum mechanical problems, the matrices D( h), hEll, 
and D(a), aEG "\H, represent linear and antilinear opera
tors, respectively; accordingly the corresponding group ele
ments are often denoted as "unitary" and "antiunitary." It 
was Wigner6 who first observed that every coirrep of a mag
netic group G(H) belongs to one of three classes. The type of 
a given coirrep is uniquely determined by the algebraic struc
ture of the corresponding group algebra or its commutator 
algebra (see Ref. 7 and Sec. II below). Wigner6 also pro
posed for each of the three types a form of the matrices that 
emphasizes the distinction between unitary and anti unitary 
elements. Every coirrep can be transformed into such a "ca
nonical" formS and this form is always chosen in applica
tions of the theory (see, e.g., Ref. 9). The three forms are 
given in the following list, where hEll, aEG "\H, r is a unitary 
irrep of H, A T is the transpose of A, and 0' is the null matrix 
of dimension! dim D: 

type I: D(h) = r(h), D(a) = Zeal, 

Z(a- I ) = Zeal T, 

Z(a , )r(h)*Z(a1 )* = r(a ,ha1 )· 

(
r(h) 0') 

type II: D(h) = 0' r(h) , 

( 
0' 

D(a) = _ Zeal 
Zeal) 

0' , 

( 
0' 

D(a) = r(a
o
- la}* 

r(aao}) 
0' . 

(3) 

(4) 

(5) 

In coirreps of types I and II all antiunitary elements have the 
the same status because matrices Zeal with the desired 
properties have to be found for all aEG "\H. For coirreps of 
type III, on the other hand, the element a(), selected from 
G "\H by a convention, plays a special role since it fixes the 
form of the matrices D(a). 

In the following, we discuss the general form of similar
ity transformations D(g) .... StD(g)S(g) induced by unitary 
matrices S. To this end we introduce in Sec. II the group 
algebras ofthe coirreps, i.e., we consider not only the matri
ces D(g) but also complex linear combinations of these ma
trices. The structure of these algebras and their commutator 
algebras has been clarified by Dyson in a fundamental paper7 
but there all relations were derived in terms of real matrices 
of larger dimension. In Sec. II, we reformulate these results 
in terms of complex matrices as they occur in quantum me
chanical problems. In Sec. III, similarity transformations 
are discussed as automorphisms of the group algebra and 
related to the inner automorphisms ofthis algebra. The con
clusions from this discussion are summarized in Sec. IV. 

II. COMPLEX GROUP ALGEBRAS 

We consider a fixed coirrep D of some compact group 
G(H) and assume that it has one of the canonical forms (3)-

1304 J. Math. Phys. 31 (6), June 1990 0022-2488/90/061304-06$03.00 © 1990 American Institute of Physics 1304 



                                                                                                                                    

(5). Starting from this we define three sets of matrices: 

M lin = set of complex linear combinations of the matrices 

D(h), hEll, (6) 

Manti = set of complex linear combinations of the matrices 

D(a), aEG \.H, 

Mcom = commutator algebra of D. 

(7) 

(8) 

The matrices in the third set are characterized by the follow
ing relation: 

TEM com {TA =AT, 
¢:> TB=BT*, for all BEM"nti. 

(9) 

Note that (9) and the canonicalform of the matrices AEMlin 

and BEMdn1i fix the canonical form of the matrices TEAI'°m 
given in Eqs. (23), (27), and (30) below, and vice versa. 
The sets Mlin and Mdnli are vector spaces over c{j (field of 
complex numbers), whereas Mom is a vector space over Yl 
(field of real numbers). Moreover 

AEMlin,BEM lin =::>ABEMlin, 

AEMlin,BEManli=::>ABEManli, 

AEMan1i,BEM lin =::>AB *EManli, 

AEManIi,BEMal1li=::>AB *EMlin. 

(10) 

The set underlying the definition of the group algebra A con
sists of all ordered pairs (A,B), AEM lin, BEManli. 

Next, we define the relations needed for A to become an 
algebra. Addition is defined by 

(A,B) + (C,D) = (A + B,C + D) 

and multiplication by 

(11 ) 

(A,B)(C,D) = (AC+BD*,AD+BC*). (12) 

Addition is associative and commutative, mulitplication is 
associative, and the distributive law holds. The real multi
ples of elements of A are defined by 

r(A,B) = (rA,rB), for all rEYl; (13) 

this entails 

(A,B) [r( C,D)] = [r(A,B)]( C,D) = r[ (A,B)( C,D)]. 
(14) 

Because of (11) and (12) A is a ring; because of (11) and 
(13) Aisa vector space over Yl; and because of (11 )-( 14) A 
is an algebra over Yl. 

The involution (A,B) -+ (A,B)#, where 

(A,B)# = (A t,B T) (15) 

is an antiautomorphism of A (order of products reversed). 
This antiautomorphism can be used to prove that A is semi
simple. That A is even a simple algebra follows from the 
irreducibility of the coirrep D. 

According to Wedeerbum's structure theorem lO every 
simple algebra A that is a finite-dimensional vector space 
over Yl is isomorphic to a full matrix algebra over a skew
field Y which contains Yl as a subfield. That is, every ele
ment (A,B) ofthe group algebra A may be uniquely related 
to a finite matrix with elements taken from a skewfield Y. 
The skewfield is fixed by the type of D and isomorphic to its 
commutator algebra, 
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Y~MCllm. (16) 

The dimension of the matrices depends both on the type of 
the coirrep D and on its dimension: 

n = dim D. (17) 

A full matrix algebra over a field Y ( ~ Yl) has a natural 
basis from which all elements may be obtained by forming 
linear combinations over Yl. It consists of "matrix units" 
Es,t, that are matrices with the element I in position s, t, and 0 
elsewhere, and a few "number units" chosen in such a way 
that each number in Y may be represented as a real linear 
combination of these selected numbers (e.g., a + ibE~ ). Al
though this choice of a basis is the most obvious one, there 
exist infinitely many equivalent ones: the matrix units Es,t 
may be transformed with a fixed nonsingular matrix and 
the number units may be chosen differently [e,g., 
a + ( - i) bE~ ]. Because fo the isomorphism, the group al
gebra A must possess similar bases. Each of them consists of 
"matrix units" ex,y satisfying 

e.~,. = ey .x ' 

and "number units" f" that satisfy 

(18) 

(19) 

fo = e = I e u = (E,O) (I-element of A), (20) 

f;, = - e and f;; = - (, for 0-#0. (21) 

Moreover, 

(22) 

Before giving one basis for each of the three classes we 
want to recall the corresponding structure theorem for ordi
nary representations. There the matrix basis consists of the 
matrices mentioned before (one element equal to I, the other 
ones equal to 0) and the dimension of these matrices coin
cides with that of the irrep. That these matrices may be rep
resented as complex linear combinations of the matrices 
D(g), gEG, follows from the orthogonality relations for ir
reps.8 The field Y from which the matrix elements are taken 
is always ~ if the set underlying the definition of the group 
algebra consists of the complex linear combinations of the 
matrices D(g). This holds true irrespectively of the algebraic 
type of the irrep that refers to the smallest extension of Yl 
over which the irrep is absolutely irreducible.6

•
7

•
11 

In the following list, the matrices Es,t are matrix units of 
the irrep r contained in the correp D. The primed matrices 
occurring for types II and III coirreps are submatrices of 
dimension dim r = n12. 

Type I: Y = Yl, dimension over Yl = 4n2
, 

s,t = 1, ... ,n: es.t = (Es,t.O) , 

(23) 

(24) 

e1,l = (~ E,~ E). e 1,2 = ( - ~ E,~ E), (25) 

e2,1 = (~ E,~ E). e2,2 = (~ E, - ~ E). (26) 

That the elements (26) can be obtained by forming suitable 
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complex linear combinations of the matrices D( h) and D( a) 
can be seen as follows. Choose (O,D(a», where a is an arbi
trary but fixed element in G \H. Since r is an irrep of H, 
(X,O)EAfor all complex matrices X. Let XI = D(a) -I; then 
(D(a)-',O)(O,D(a» = (O,E)EA. The elements (26) arelin
ear combinations of this element and (X2,0) = (E,O). 

Type II: Y = !!2, dimension over f!)( = n2
, 

CEMc"m~c= ( 
aE' 

-b*E' 
bE') 
a*E' 

, a,bE~, (27) 

s,t= 1, ... ,nI2: e'.1 = (E;.I EllE;'"O) , (28) 

f, = i = (iE,O), 

( 
0' 

f, =J' = (O,J) , whereJ = 
- -E' 

E') 
0' , (29) 

f3 = k = (O,iJ) = ij. 

The existence of the element jEA follows from similar argu
ments as the existence of the element (O,E) for type I coir
reps. 

Type III: Y = ~,dimension over f!}( = 2n2, 

(30) 

T= (
0' 

E' 
E') EM ,,".i 
0' , (31) 

n 
s,t= 1, ... ,-: esl.l l = (E;.I Ell 0',0), 

2 
es l,l2 = (O,T [0' EllE:.,]), 

(32) 
e,2.,1 = (O,T [E:., Ell 0' p, 

fl = i = (iE' Ell ( - i)E',O). (33) 

Existence of the elements esl,/l and e s2,/2 follows from the 
fact that the two irreps of H contained in DlH are inequiva
lent.8 This implies that all complex matrices of the form 
A' EllB' belong to Mlin. If we multiply r(ao-

2
) EllE'EM lin 

with the matrix D(ao)EManti [cf. Eq. (5)] we obtain the 
matrix T, Eq. (31 h this guarantees the existence of the units 
esl ,/2 and es2,/I • 

In the following discussion, the general form of the ele
ments of A is of importance. Which matrices A and B can 
occur in an element (A,B)EA follows from the canonical 
form of the coirrep, Eqs. (3)-(5), and is most easily seen 
from the bases given above. While for type I coirreps all pairs 
of complex matrices are admitted one finds for the other two 
types the following restrictions (A ' etc. are arbitrary com
plex matrices of dimension n/2) : 

(
A' 

type II: (A,B)EA~A = 0' 0') ( 0' 
A' ,B= -B' 

(
A' 

type III: (A,B)EA~A = 0,1 0') (0' 
A; ,B= B; 

B') 
0' . 

(34) 

B;). 
0' 

(35) 

As the set of complex matrices of dimension m has dimen-
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sion 2m 2 over f!)(, the dimension of A over f!}( listed above is 
also evident from the form of the matrices A and B that are 
admitted in the elements (A,B)EA. 

Before we start to discuss automorphisms of A, especial
ly those induced by similarity transformations, we introduce 
two subalgebras of A that are needed in this discussion. The 
first subalgebra is 

Alill = {(A,O) IAEMlin}, (36) 

and the corresponding decomposition of A reads 

A = Alin + Alinb, b = (O,B), B nonsingular. (37) 

A possible choice of coset representatives is the following: 

type I: Bo = E, 

type II: Bo = J, 

type III: Bo = T. 

(38) 

(39) 

(40) 

For types I and II coirreps, A lin is isomorphic to a full com
plex matrix algebra, its dimension over C-tf being n2 (type I) 
or (nI2)2 (type II). For type III coirreps Alin is isomorphic 
to a direct sum of two complex matrix algebras, each of di
mension (nI2)2, as is evident from (35). 

The second subalgebra of A is 

zlin = center of Alin, 

types I and II: zlin = {(cE,O) ICEC-tf}, 

type III: zlin = {(c,E' Ell c2E',0) ICI,C2E~}. 

III. AUTOMORPHISMS AND SIMILARITY 
TRANSFORMATIONS 

(41 ) 

(42) 

(43) 

An automorphism of the group algebra is a bijective 
mapping a: A -+ A that satisfies the following relations 
(s,t, ... EA, ref!}(): 

a(s + t) = as + at, a(s,t) = asat, 

a(rs) = ras, a(s#) = (as)#' 
(44) 

The mapping (A,B) -+ (A *,B *) is easily seen to be an auto
morphism [cf. Eqs. (11 )-( 15) ]. Other examples of auto
morphisms are the inner automorphisms induced by norm
preserving elements u. These are elements of A that satisfy 

u#u =uu# = e; 

the corresponding automorphism is 

aus = u#su. 

(45) 

(46) 

Because ofWedderbum's theorem, automorphisms of A are 
uniquely related to automorphisms of a full matrix algebra 
over a (skew)field .7~f!)(; this topic has been discussed in 
full detail in Ref. 11. 

In this paper, we are interested in automorphisms pre
serving the canonical form of the elements of A. These are 
those automorphisms that satisfy the following relation 
(note the implication): 

(47) 

Although zlin is invariant this does not imply that the ele
ments of this subalgebra have to be invariant under the auto
morphisms (47). In fact there exists one nontrivial transfor
mation for coirreps of types I and II, and three of them for 
coirreps of type III: 
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(a) a(iE,O) = (iE,O), 
types I and II: (b) 

a(iE,O) = ( - iE,O); 

type III: 

(48) 

(a) aCE' ~O',O) = (E' ~O',O), a(iE,O) = (iE,O), 

(b) aCE' ~O',O) = (0' ~E',O), a(iE,O) = (iE,O), 

(c) aCE' ~O',O) = (E' ~O',O), a(iE,O) = ( - iE,O), 

(d) aCE' ~O',O) = (0' ~E',O), a(iE,O) = ( - iE,O). 

If one requires, in addition to (47), also that 

a(iE,O) = (iE,O), 

(49) 

(50) 

the second half of the possibilities listed above is ruled out. 
An example of an automorphism that satisfies (47) but not 
(50) isan inner automorphism induced bybo [cf. Eqs. (37)
(40)]. On the other hand, all inner automorphisms induced 
by elements uEAlin satisfy both (47) and (50). 

There exists a second class ofautomorphisms for which 
both relations (47) and (50) hold true. Let S be a unitary 
matrix of dimension n ( = dim D) with the following prop
erties: 

AEM lin ==;,S tASEM lin, 
(51) 

BEM anti ==;, S t BS *EM anti. 

The mapping D(g) --..8tD(g)s<g) is then called a similarity 
transformation which preserves the (Wigner) canonicalform 
of the coirrep D. It is extended to an automorphism of A by 
the following relation: 

as(A,B) = (StAS,StBS*). (52) 

The mapping S-+as is not invertible because 

as, =as,<::::~SI =S2C with C(unitary)EM com
• (53) 

This shows that the whole ambiguity of a similarity transfor
mation is contained in the unitary elements of the commuta
tor algebra. 

The inner automorphisms induced by elements of Alin 
and the automorphisms induced by similarity transforma
tions both belong to a class of automorphisms characterized 
by Eqs. (47) and (50). These automorphisms form a sub
group aut of Aut, the group of all automorphisms of A. In the 
following, it will be shown how each aEaut may be related to 
an inner automorphism au, uEAlin. As asEaut for all simi
larity transformations S these results also show to what ex
tent a general similarity transformation S, that preserves the 
characteristic block structure of the coirrep, may be replaced 
by an equivalent similarity transformation UEMlin. 

A. Irreducible corepresentations of type I 

Let aEaut; then aes.tEAlin and these elements satisfy the 
same relations as the elements es,t given in Eq. (25). As has 
been shown in Sees. 4 and 6 B of Ref. 11 it is possible to 
construct, starting from the elements es.t and aes.t' an ele
ment iiEAlin such that 

-# -aes.t = u es.t u. (54) 

Under the automorphism a the real algebra A spanned 
by the four elements eu.,.. is mapped onto the algebra aA that 
consists of all elements of A that commute with all elements 
(54). Both quadruples aeU •T and ii#eu.,..ii form a basis of 
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of this algebra. It is therefore again possible to find an ele
ment uEaA such that 

(55) 

Since UEaA this element has to be a real linear combination 
of the elements a(E,O), a (iE,O) , a(O,E), and a(O,iE) [cf. 
Eqs. (26)]. We also know that 

ii#(iE,O)ii = (iE,O) = a(iE,O) = n#[a(iE,O) ]u. (56) 

The first of these equations follows from iiEAlin and the mul
tiplication law (12); the second holds by definition (aEaut); 
and the third one follows from (55). It is easily verified that 
all elements uEaA which commute with a(iE,O) have to be 
of the form a(cE,O) = (cE,O) (CE'6') and are therefore also 
elements of Ali". 

Given an automorphism aEaut it is therefore always 
possible to find an element iin = uEAlin such that a = au. 
Since the matrix U in u = (U,O) is a similarity transforma
tion that is unique up to the sign, the element u is also fixed 
by a up to a sign. 

B. Irreducible corepresentations of type" 

For aEaut the units es•t = (E ;.t ~ E ;",0) are mapped 
...... ...... 

ontothenewu~tsaes.t = (E;.t ~E;."O). Knowing the ma-
trices E ;.t and E;", one can construct a matrix U' such that 

E ...... ' - U·tE' U' s.t - s.t· (57) 

Set u = (U' ~ U',Q)i t~en uEAlin and aes•t = u#es.tu. 
The elements i, j, k, defined by 
':- #. 
1- U Is.tU, etc., (58) 

commute with the elements (57) and lie therefore in the 
subalgebra aQ formed by the real linear combinations of e, 
ai, aj, ak. Since the elements 1, j, k satisfy the same relations 
as the elements ai, aj, ak, and aQ ~ f!2 there exists an ele
ment qEaQ such that 

q#eq =e, 

q#jq= aj, 

q#lq = ai, 

q#kq= ak. 
(59) 

Now i = i, as follows from (29) and (12), and ai = i be
cause aEaut. Accordingly, q has to be of the form 

q = (cE,O), CECC,lcl = 1. (60) 

Including this phase factor in the matrix U we see that for 
every automorphism aEaut there exist an element uEAlin 
such that a = au. As the matrix UEM lin induces a similarity 
transformation it is unique up to right-multiplication with 
unitary matrices in M lin n M CI1Ill. Since this set consists of the 
matrices ± E the matrix U is uniquely determined by the 
automorphism a up to a sign. 

c. Irreducible corepresentations of type III 

According to (49), each automorphism aEaut belongs 
to one of two classes depending on the transformation of the 
elements e l,e2EAli", 

e, = (E' ~O',O), e2 = (0' ~E',O). (61) 

Since 

(62) 
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the transformation law of the elements (61) is uniquely re
lated to that of i. Under an automorphism, this element is 
either invariant or transformed into - i because these ele
ments are the only solutions of the following equations: 

iEAlin, i# = - i, e = - e, 

iexs•xt = exs.xti, for x = 1,2 and all s,t = 1, ... ,n/2. 
(63) 

The same remark holds for the elements ± bo, the only solu
tions of the following equations: 

bOels.lt = e2s.2tbo, for all s,t = 1, ... ,n/2. 
(64) 

C/ass (a): ae1 = e1• Given theimagesaexs•xt of the units 
exs.xt for both x = 1 and x = 2 it is possible to construct uni
tary matrices U ~ such that 

aexs.xt = u#exs.xtu for x = 1,2, 

where 

(65) 

u = (U,O), U= U; $ Ui, utU= uut =E. (66) 

Each of the two matrices U; and U i is fixed by a up to a 
phase factor. Because of (65) the element uabou# is also a 
solution of Eqs. (64), i.e., uabou# =o'bo, 0'= ± 1. If 
0' = - 1 we replace the matrices U ~ by iU ~ which does not 
change relations (65) but the sign of 0'. It is therefore always 
possible to choose the element uEAlin in such a way that not 
only Eqs. (65) but also the following relation is satisfied: 

abo = u#bou. (67) 

If this element of A is known it can be used to obtain U; from 
U i and vice versa: 

( 
0' 

ab -
0- u,tu,. 

2 1 

u,tu ,.) 1 2 

0' . (68) 

For each automorphism aEaut the corresponding matrix U 
is therefore uniquely fixed up to the phase of the submatrix 
U;. 

Class (b): ae1 = e2• The product of two automorphisms 
in class (b) is in class (a). It is therefore sufficient to fix one 
automorphism in class (b), say a 1 and to consider the prod
ucts a 1a2' a 2Eclass (a). A possible representative of class 
(b) is a 1 = aR' the automorphism induced by a similarity 
transformation of the following form: 

R= RtR=RRt=E (0' V') 
W' 0' , . (69) 

Note that such an automorphism is not an inner one because 
REM lin and (O,R) induces an automorphism different from 
a R • Which unitary matrices V' and W' are chosen for the 
representative automorphism a R is a matter of convention. 
Wechose V' = W' =E',i.e.,R = T,fortherepresentative. 
Then ara u = aruEclass (b) if, and only if, Uis of the form 
(66). As U varies over all matrices of the form (66), the 
matrix TU = R varies over all matrices of the form (69). 
Since the image of bo under the automorphism a R , 

( 
0' 

a b -
R 0 - v'tw'. 

w'tv'.) 
0' , (70) 

relates the matrices V' and W', the matrix R is fixed by 
aEClass (b) up to the phase of the submatrix V', 
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The role of ao. Up to now it has not been taken into 
account that the Wigner canonical form of coirreps of type 
III requires more than the block structure of the matrices 
AEM lin and BEM anti given in Eq. (35). If one is only interest
ed in coirreps of the form (5) one has to specify a set of such 
coirreps that is contained in A in the following sense: 

D,,(h)EMlin, D,,(a)EManti; 

D.(gl)D,,(g2)(g,) =D,,(glg2)' 

trace D.(h) =X(h), for all KEK. 

(71) 

(72) 

There exists at least one set with these properties, namely the 
set {D} containing only the coirrep D that has been used to 
define the group algebra A [cf. Eqs, (6)-( 7) ]; other sets will 
be discussed below. Assuming the automorphisms to be in
duced by similarity transformations, we now define a sub
group of aut by the following condition: For each 
a = asEautK and each KEK there exists a K'EK such that 

(73) 

This condition implies the following restriction for the sub
matrices U; and V' that specify the automorphisms in class 
(a) and (b), respectively: 

case (a): u;tr.(h)U; = r".(h), (74) 

u;tu;* = E'; (75) 

case (b): V'tr.(h) V' = r". (ao-1hao)·, (76) 

v'tr" (a~) W'· = E'. (77) 

Equation (75) shows that U; = U;· while (74) restricts 
the matrices U; to a set that depends on the set 
D(K) = {D" IKEK} under consideration. Equation (77) im
plies, first of all, 

r. (a~) = rca~), for all K,K'EK, (78) 

because it is assumed that the transformation R is applied to 
all members of the set. In addition, Eq. (77) shows that W' is 
related to V' through W' = rca~) TV'·. Equation (76) se
lects those transformations R that leave the set D(K) invar
iant. We are therefore left with two possibilities: (i) 
r K (a~) =1= r K (a~) for some pair K,K'EK, In this case it is im
possible to find transformations oftype (b) that leave this set 
D(K) invariant; therefore autK kclass (a). The maximal 
group of this kind is class (a) because all transformations 
a = a uEclass (a) transform a coirrep of the form (5) into a 
coirrepofthe same form. (ii) r K (a~) = r K (a~), for allKEK 
or, equivalently, DK (ao) = D(ao), for all KEK. In this case 
aut K k auto where auto is defined by 

autokaut; aEauto¢:>a(O,D(ao» = (O,D(ao»' (79) 

The automorphisms aEauto are induced by those similarity 
transformations S( = U or R) for which StD(ao)S· 
= D(ao)' To what extent auto, the maximal group of this 

type, is restricted to a subgroup aut K depends on the set 
D(K). 

IV. CONCLUSION 

A similarity transformation of a coirrep D is a mapping 
D(g)-.[)(g) =StD(g)S(S), where S is a unitary matrix 
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and both D and D are of the canonical form proposed by 
A 

Wigner [seeEqs. (3)-(5)]. Let D and Qbegiven coirrepsof 
the same dimension and tr D(h) = tr D(h) for all heR. 

Type I. The matrix S is determined by the coirreps D and 
D up to a phase factor ± 1. A 

Type l/. Any matrix S that transforms D into D may be 
factorized as S = vc = CV where the unitary matrix V has 
the same block structure as the matrices D(h) and the uni
tary matrix C is of the form (27). These two matrices are 
determined by S up to a common sign. As C belongs to the 
commutator algebra of D it is always possible to choose the 
similarity transformation in the form S = V = V' Ell V'; this 
matrix is fixed by the pair D, D up to the sign. 

Type III. For these type of coirreps, the similarity trans
formations fall into two classes depending on the relation 
between the matrices D(h) = rl(h) Ell r 2 (h) and 
A A A A 

D(h) = rl(h) Ellr2 (h). Class (a): rl-rl . The matrix S 
has the form V' Ell Cf...'. where the unitary submatrix V' is s!.e
termined by D and D up to a phase factor. Class (b): r 1-r 2' 

These similarity transformations leave the "antiunitary" 
matrix D(ao) invariant. The matrix S has the form (69) 
:.'here the unitary submatrix W' is related to the submatrix 
V' by (77). 

The similarity transformations of a coirrep may be ex-
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tended to the corresponding group algebra. Except for coir
reps of type III and transformations of class (b) they may be 
identified with inner automorphisms induced by linear com
binations ofthe matrices D(h). 
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Properties of shifted tableaux have been explored in order to improve the algorithm for the 
calculation of Q function outer products. A simple technique has been established for finding 
out the highest and lowest partitions in the expansion of Q function outer products. Using 
these techniques and Young's raising operators, we have completed the Kronecker product for 
Sn spin irreps. 

I. INTRODUCTION 

Sagan I and Worley2 have developed a combinatorial 
theory of shifted tableaux. These tableaux playa similar role 
in the description of Schur's Q functions as do ordinary 
Young tableaux of S functions. Stembridge3 has given a 
shifted analog ofthe Littlewood-Richardson rule appropri
ate to the evaluation of Q function outer products. He has 
also extended the theory of the resolution of the Kronecker 
products of a basic spin representation with the ordinary 
irreps ofthe symmetric group Sn . 

In this paper we give a simplified presentation of the 
Stembridge algorithm of Q function outer products in which 
"dead partitions,,4 are automatically eliminated and the co
efficients of the "live partitions" readily evaluated. 

We also present a complete description for the evalua
tion of the inner products of Q functions and hence the 
Kronecker products of spin irreps of Sn. This both extends 
and simplifies the earlier work of Luan Oehuai and Wy
bourne.s 

We follow closely the notations of Stembridge. 3 Sections 
II and III briefly review relevant properties of Q functions 
and shifted tableaux while Sec. IV establishes theorems re
lating to skew shifted tableaux and the requirements for a 
live partition. The inner product of Q functions is discussed 
in Sec. V and the resolution of Kronecker products of spin 
irreps of S n in Sec. VI. 

II. SHIFTED TABLEAUX 

A shifted diagram is a diagonally adjusted Young dia
gram with the restriction that the (i + 1 )th row does not 
exceed the ith row. This condition ensures that partitions are 
restricted to those involving distinct parts. Let P' denote the 
ordered alphabet {I' < 1 < 2' < 2' .. }. The letters 1',2' ... we 
said to be marked and we denote an unmarked version of any 
a E P' by 101- Let OP represent partitions into distrinct parts 
only, then for each A E OP there is an associated shifted dia
gram defined as 

D ~ = {U,j) E Z2:i<j<;.Ai + i-I, l<;.i<;.t(A)}. 

A shifted tableau T of shape A is an assignment T: 
D ~ -+ P' satisfying the following conditions: 

(i) TU,j)<;.T(i+ 1,j), TU,j)<;.T(i,j + 1); 

(ii) Each column has at most one k(k = 1,2, ... ); (1) 

(iii) Each row has at most one k '(k' = 1',2', ... ). 

The tableau T is said to have content 

Y= (YI' Y2' ... ) and x T = x
y 

= xi' xp "', 

where Yi is the number of occurrences of Iii in T. 
We can define a generating function QA = QA (x) in the 

variables XI' x 2, •• , for each A E OP such as 

(2) 
T:D,-P' 

where summation is over tableaux T. 
Given a tableau T a word wen = W IW 2 " 'Wn is a se

quence obtained by reading the rows of T from left to right, 
starting with the last row. Let wr = WnWn _ 1 ., 'W I denote 
the reverse of wand let W = WI" 'wn denote the word ob
tained by inverting the marks of w, i.e., 2 = 2' and 2' = 2. Let 
ni (W,j) denote the number of occurrences of the letter i 
among WI" 'wj and ni (w, 0) = O. An extended word of Tis 
the sequence defined by e (n = w r W. The tableau S is said to 
satisfy the shifted lattice property if the extended word 
e = e l " 'e2n satisfies the following conditions for all i> 1 
and O<j<2n: 

n i (e,j) 

= n i _ I (e,j) implies {
ej + I =/=i, i', O<j<n, 

ej+ I =/=i, (i - 1 )', n<j < 2n 
(3) 

III. SKEW Q FUNCTIONS AND OUTER PRODUCTS 

The outer product of two Q functions QI' and Qv, 3 such 
that Il, v, A E OP can be written as 

QI' 'Qv = ~ 2[(1') + (v) - (A)] f;v QA' (4) 

where t(p) are the lengths of the partitions (p) and the coef
ficients f;v are positive integers. The same coefficients ap
pear in the following expansion: 

(5) 
v 

where the shifted skew diagram of shape A / Il is a collection 
of boxes of the form D ~/I': = D ~ - D ~ provided 
D ~ ~ D ~. A shifted skew tableau S of shape A / Il is an as
signment· S : D ~ II' -+ P' satisfying the rules of shifted tab
leaux. 

The coefficientf;v is defined as the number of shifted 
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tableaux S of shape A / fl and content v such that 

(i) S satisfies the shifted lattice property; 

(ii) The leftmost i of w(S) is unmarked (1 <i<t( v». 
(6) 

As an example, if A == 6421, fl == 431, and v== 32, then we 
obtain the following three shifted tableaux of shape Q6421 /431 
and content 32 that satisfy (6): 

~~-III 

Hencef~i.'32 = 3. 

IV. PROPERTIES OF SKEW SHIFTED TABLEAUX 

In the previous section we observe that skew shifted tab
leaux play an important role in skew Q functions and Q
function outer products. 

In this section we explore some of the important proper
ties of skew shifted tableaux that will simplify the algorithms 
for the calculation of the coefficientsf~v and lead to algor
ithms for finding the highest and the lowest partitions in the 
expansion of a Q-function outer product. 

A partition V= (V1V2"'Vi ) is lower than 
fl = (flU-t2' . 'flj) iff or alII <k..;J, l:~ = 1 flm >l:~ = 1 Vm and 
Ifll = Ivl· Throughout this section we have v, fl' A E DP. 

Theorem 1: In a skew shifted tableau of shape A / fl and 
content v no I il can be placed in the jth row such that Iii> j. 

Proof: In the first part we prove that an entry x> 1 
placed in the first row violates the shifted lattice property. 

In order to satisfy (i) the largest entry x> 1 in the first 
row must be placed in the right-most position. This entry 
will ultimately appear at the first position of the extended 
work e = e l " ·e2n . Noting (3) requires 

nx (e, 0) = nx_ 1 (e, 0) = 0, 

but e l = x which violates the shifted lattice property. Simi
larly if an entry y > 2· is placed in the second row we again 
obtain a violation of the shifted lattice property leading read
ily to the same conClusion for every row and hence Theorem 
1. 

Use of Theorem 1 makes it possible to eliminate most of 
the "dead tableaux" that do not satisfy the shifted lattice 
property. 

Theorem 2: In a skew shifted tableau of shape A / fl and 
content v for alII <i<t(A), 

i i 

L A k < L (flk +Vk)' (7) 
k=1 k=1 

Proof: If l:~= 1 (A k - Ih) is greater than l:~= 1 Vk for 
any value of i then we have to make 
l:~= 1 (A k - flk) -l:~= 1 vk entries greater than i, which 
violates Theorem 1. 

Corollary 1: The largest partition A appearing in the ex
pansion of the outer product of two Q functions QI' and Qv is 
given by 

A = fl + v, 

such that 
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Ai = fli + Vi' 

for all values of i. 
Proof: It is easily concluded from (7) that the maximum 

value of Ai is obtained when only equality holds for all i. 
Corollary 1 immediately gives the highest partition in 

the outer product of two Q functions. We now use the rela
tionship between skew shifted tableaux and the shifted lat
tice property to establish the lowest live partition in a Q
function outer product. 

Theorem 3: Let fl and v be self-conjugate partitions, 
each with distinct parts. Then, 

Q 'Q = 2minl /(I')./(v»)Q (8) 
II v A' 

where A = fl + v and min [t(fl), t( v)] is the minimum 
length of the partitions (fl) and (v). 

Proof: Let v = (V1V2" 'Vn -IVn ) be the content of the 
skew shifted tableaux of shape A/fl. It is clear that v n = 1 
and v n _ 1 = 2. Let x denote v n _ I entries and y denote v n 

entries. Six possible types of extended words arise: 

1········ j............................ k··· 2n 

w' '" w 
x'·· y ........ X'" x'······· y'" X'" (i) 

X'" y ........ X'" x' ...... · y'" x' (ii) 

y'" x'·· X'" x'·· X'" y' .... (iii) 

y'" X'" X'" x'·· x'·· y"" (iv) 

x' .. X'" y ....................... y'" x'·· x (v) 

X'" x'" y ....................... y'" x'·· 
, 

x. 
(vi) 

We can see that "y" and the right-most "x" of w' are not 
marked because the left-most i in w is not allowed to be 
marked. Let "y" always appear at thejth position then (i), 
(iii), and (iv) do not satisfy the lattice property since 

nx(e,j-l) =ny(eJ-l) =0, 

but ej = y, when y = x + 1. 

( v) does not satisfy the shifted lattice property because 

nx(e,k-l) =ny(e,k-l) = 1, by ek =y. 

The only surviving words are (ii) and (vi) both of which do 
not contain marked letters. 

Successive applications of these arguments for other 
parts show that in such a situation we can not make any 
marked entry. As the partition fl is self-conjugate it forms a 
right-adjusted shifted diagram as shown below: 

0····0 

It should now be clear that if we are not permitted to make 
marked entries then all the 1 's must be placed in the first row, 
all the 2's in the second row, etc. Thus A = fl + v. Since none 
of the entries can be marked or interchanged we conclude 
f~v = 1. 

We have, for example, 

Q4321'Q4321 = 16Q8642' Q4321'Q54321 = 16Q97531' 
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We note that for the S-function outer product 
{ 4321}' {4321} involves 206 distinct Young tableaux and a 
multiplicity sum of 930. 

Extending the above arguments for any pair p, and v we 
establish the following algorithm to yield the lowest parti
tion that arises in Qp . Qv' 

(i) Combine p, and v in in nonascending order and de
note by r= rl" 'rn' 

(ii) Find i for which we get a sequence such that 
ri = ri + I or ri = ri + I + 1. 

(iii) Find the numbers k of successive pairs of equal 
parts in this sequence provided rj = rJ + I = rj + 2 will be 
treated as one "pair." 

(iv) Add k in ri and substract the same from ri + I ; 

i.e·,r=rl··Ti+ k, ri+l-k,· .. rn, 

and rearrange. 
(v) Repeat steps (ii)-(iv) till the end of r. 
(vi) Repeat steps (ii)-(v) until a partition into distinct 

parts is obtained. 
As an example of p, = 541 and v = 542 then the lowest 

partition can be obtained by the use of the above algorithm: 

r=554421, using (i), 
=744321, using (ii)-(v), 

=753321. using (ii)-(v), 

=754221, using (ii)-(v), 

=754311. using (ii)-(v), 

=75432, using (ii)-(v). 

Making use of Corollary 1 the highest partition is 10 83. It 
follows that the only live partitions are those partitions pinto 
distinct parts such that 10 83>p> 75432. In the case of p, and 
v being self-conjugate partitions, each into distinct parts, the 
highest and lowest live partitions coincide as expected from 
(8). 

V. INNER PRODUCT OF Q FUNCTIONS 

The inner product of two Q functions, Q! Qv may be 
written as follows6

: 

Q! Qv = + b;v SA' (9) 

where Ipi = Ivl = IA I and SA is an S function. The same 
coefficients b ;v appear in the expansion of the inner product 
of a Q function, Qp, and an S function, SA., 6 i.e., 

(10) 

There is no direct method of calculating the coefficients 
b ;v. We can however calculate the coefficients b;v in (10) 
by the following algorithm. 

(i) Expand Qp in terms of S functions using the inverse 
raising operator 

Qp. = II (1 - 8ij + 8~ ... )Sp.. (11 ) 
i<i 

(ii) Compute the S-function inner product. 
(iii) ConverttheresultinglistofS functionsintoQ func

tions using the raising operator 
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SA = II (1 +8ij)QA' 
i<j 

(12) 

(iv) Multiply the coefficients of Qv by 2((V) to get b ;v. 
Instead of making the whole expansion of S function in 

terms of the Q function in step (iii) we use a direct method of 
computing the coefficient b;v for any set of A, p, and v. For 
this purpose we use the following analogy. 

Stembridge3 has defined the Kronecker product of basic 
spin representation <pn and an ordinary irrep x" of Sn as 
follows: 

Let 

A E DP, and 1p,1 = n, 

then 

<p n.x" = L _1_ 2[f(A) -l[/2gA/l<P A, 

A EA€n 

where gAP is the number of shifted tableaux S of unshifted 
shape A and content p such that (a) w = w(s) satisfies the 
shifted lattice property; and (b) the left-most i of I wi is un
marked in w(l<i<t(A», and ~ is a spin representation. 

The coefficients gAp. can easily be calculated using the 
techniques developed earlier. 

VI. SPIN IRREPS OF Sn AND KRONECKER PRODUCT 

Much has been written about spin irreps of the symme
try group,3,S,7,8 but little is know about the Kronecker prod
ucts of spin irreps of Sn. We will use the techniques devel
oped in the previous section for this Kronecker product. 

Let {p} denote an ordinary irrep of Sn when 
P = PIP2' "Pk is a partition of "n," and [A;A] denote a spin 
irrep of Sn when A is basic spin representation. Here we are 
using reduced notation/ i.e., PI = n - IA ). The inner prod
uct of an ordinary irrep {A} and a spinirrep [A;p] can easily 
be worked out using (10) and the algorithm given in the 
previous section. In order to convert the Q functions into 
representations, the right-hand side of ( 10) needs to be mul
tiplied by 2[(((v) - n(mOd 2) + 1)/2J and divided by 
2[«((/l) - n(mod2) + \)/2J when [x] means only the integer part 
of x. We also observe that 

(13) 

If n - k is odd then A is called odd and spin irreps [A;A] 
splits into an associate pair such as 

[A;A] = [A;A] + + [A;A L, for n - k odd (14) 

and 

for n even. (15) 

Here we need difference characters for a complete reso
lution of the Kronecker product of the type 
[A;A f± or [A;A ] ± [A;A he . 

The difference character [A;A] I is defined as 

[A;A ]' = [A;A ] + - [A;A L . (16) 

From (14) we get 

[A;A ]2 = [A;A ] + [A;A. ] + + [A;A. L [A;A. L 

+2[A;A l+[A;A L. (17) 

and from (16) we get 
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(22) [a;A ]'2 = [a';A ] + [a;A ] + + [a;A L [a;A L 

- 2[a;A ] + [a;A ]_. 

Adding (17) and (18) 

[a;A ] ± [a;A ] ± = !([a;A F + [a;A ]'2), 

and subtracting (18) from (17) 

(18) 

(19) 

Here, [a;,u] [a;v] or [a;A] 2 can be calculated using the 
algorithms given in the previous section. In order to convert 
the Q functions into spin irreps we need to multiply the coef
ficients b A by a factor (E E ) -\ 2 - ([!lit) + ftv) + 2J)/2 when 

ltv It v 

(20) 
_ {.J2, if,u is odd, 

Eit - 1, if,u is even. [a;A ] ± [a;A h = !([a;A ]2 - [a;A ]'2), 

when 

[a;A ] + [a;A ] + = [a;A ] _ [a;A ] _ , 

and 

[a;A] + [a;A L = [a;A L [a;A ] + . 

For the calculation of difference characters let us consider 
[a;A ]'2. This will have nonzero characters only for the 
classes of (A) and (a;A) . We can expand [a;A]'2 in terms of 
ordinary irreps p of Sn as follows: 

[a;A]'2 =~,\ {p}, 

where ~A = 2;n - k + 1 Xi, For two different spin irreps of Sn, say [a;Jl] and 
[a;v], the Eqs. (19) and (20) reduce to 

[a;Jl] ± [a;v] ± = [a;,u] ± [a;v] + = Ha;,u] [a;v]. 
(21) 

The character Xi can easily be calculated using 
Littlewood's theorem (see Ref. 9, p. 70). 

For any,u and v including,u = v we get the following: 
Some typical examples of products for the symmetric 

group that illustrate the above algorithms are given below. 

Group is S( 10) 
[a;32]*[a;31] ..... 

4{9} + 16{82} + 16{811} + 32{73} + 68{721} + 36{7111} + 36{64} 

+ 124{631} + 88{622} + 140{6211} + 52{61111} + 16{55} + 108{541} 

+ 168{532} + 216{5311} + 2oo{5221} + 176{52111} + 52{511111} + 92{442} 

+ 112{4411} + 76{433} + 284{4321} + 2oo{43111} + 112{4222} + 216{42211} 

+ 140{421111} + 36{4111111} + 76{3331} + 92{3322} + 168{33211} 

+ 88{331111} + 108{32221} + 124{322111} + 68{3211111} + 16{31111111} 

+ 16{22222} + 36{222211} + 32{2221111} + 16{22111111} + 4{211111111} 

dimension = 1382400 

dim [a;32] = 864 

dim [a;31] = 1600; 

[a;32]± *[a;31] ..... 
2{91} + 8{82} + 8{811} + 16{73} + 34{721} + 18{7111} + 18{64} + 62{631} 

+ 44{622} + 70{6211} + 26{61111} + 8{55} + 54{541} + 84{532} 

+ 108{5311} + lOO{5221} + 88{52111} + 26{511111} + 46{442} + 56{4411} 

+ 38{433} + 142{4321} + loo{43111} + 56{4222} + 108{42211} + 70{421111} 

+ 18{ 4111111} + 38{3331} + 46{3322} + 84{33211} + 44{331111} 

+ 54{32221} + 62{322111} + 34{3211111} + 8{31111111} + 8{22222} 

+ 18{222211} + 16{2221111} + 8{22111111} + 2{211111111} 

dimension = 691200; 

[a;32] ± *[a;32] ± ..... 

1313 

{1O} + {91} + 4{82} + 4{811} + 5{73} + 11{721} + 7{7111} + 4{64} 

+ 18{631} + 13{622} + 21 {6211} + 8{61111} + 3{55} + 13{541} + 22{532} 

+ 29{5311} + 27{5221} + 25{52111} + 9{511111} + 12{442} + 14{4411} 
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+ 9{433} + 36{432l} + 27{4311l} + 14{4222} + 29{4221l} + 21{421111} 

+ 6{ 411111l} + 1O{333l} + 11{3322} + 22{3321l} + 13{33111l} + 14{3222l} 

+ 17{32211l} + 12{321111l} + 4{3111111l} + {22222} + 5{22221l} 

+5{2221111}+3{22111111}+2{211111111} 

dimension = 186624; 

[a;32] ± *[a;32] -+ 
2{9l} + 3{82} + 4{811} + 5{73} + 12{72l} + 6{7111} + 5{64} + 17{63l} 

+ 13{622} + 21{6211} + 9{6111l} + {55} + 14{54l} + 22{532} + 29{5311} 

+ 27{522l} + 25{5211l} + 8{51111l} + 11{442} + 14{441l} + 1O{433} 

+ 36{ 432l} + 27{ 43111} + 14{ 4222} + 29{ 4221l} + 21{ 42111l} + 7{ 411111l} 

+ 9{333l} + 12{3322} + 22{3321l} + 13{33111l} + 13{3222l} + 18{32211l} 

+ 11 {321111l} + 4{3111111l} + 3{22222} + 4{22221l} + 5{222111l} 

+4{22111111}+{211111111}+{1111111111} 

dimension = 186624; 

[a;32] ± *{532}-+ 

23 [a;41] + + 23 [a;41 L + 36[a;4] + 5 [a;321] + 22[a;32] + + 22[a;32L 

+42[a;31]+ +42[a;31L +43[a;3]+22[a;21]+ +22[a;21L + 26[a;2] 

+ 8[a;l] + [aiD] + + [aiD] 

dimension = 194400 

dim {532} = 450; 

[a;32] *{532}-+ 

46[a;41] + + 46[a;41] _ + 72[a;4] + 1O[a;321] + 44[a;32] + + 44[a;32]_ 

+ 84[a;31] + + 84[a;31L + 86[a;3] +44[a;21] + +44[a;21L + 52[a;2] 

+ 16[a;l] + 2[a;0] + + 2[a;0]_ 

dimension = 388800. 

VII. CONCLUSION 

We have improved the algorithm for the calculation of 
the Q function outer product and established a simple tech
nique for finding out the highest and lowest partitions in the 
expansion of the Q function outer product. We have com
pleted the Kronecker product of spin irreps of S n • 
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The Clifford algebra in dimension d = 2m + I - 1, m>2, is treated using the finite 
m-dimensional projective geometry PG (m, 2) over the field of order 2. Full details are given 
for the case m = 4, d = 31, generalizing previous work for m = 2 and 3. Details are given of 
some configurations that arise in PG(4, 2). 

I. INTRODUCTION 

In a previous paper Shawl treated the Clifford algebra of 
dimensiond = 2m + I - 1, m>2, using the incidence proper
ties of the m-dimensional projective geometry PG(m, 2) 
over the field F2 with two elements. Shaw's paper, which we 
refer to as I, gives full details in the case m = 3. The present 
paper deals with m = 4 and provides an affirmative answer 
to conjectures A and B in this case. 

We recall some notation and definitions from I. The 
linear operators r I"" , r d satisfy the relations 

(r;)2 = - I, r;rj = - rjr;, i#j, (1.1) 

and 

( 1.2) 

Consider the finite group Go generated by the operators r;: 

Go = {± I, ± r;. ± r;rj, ± r;rjrk, ... }. (1.3) 

The center {I, - I} is also the commutator subgroup of 
Go, so we can obtain the Abelian group 

Co = Go/{I, - I}. (1.4) 

Let S; be the image of r; under the canonical projection 
11': Go -+ Co. The elements SI' ... , Sd generate Co subject to the 
relations 

(S;)2= 1, S;Sj =Sjs;. SI",Sd = 1. (1.5) 

Consider the set S = {SI' .. , , Sd}' A subset akS is said 
to be a small subset, or a figure, if lal<!(d - 1). We can 
identify Co with the set of all figures of S, the multiplication 
being given by 

{
aa{3, if aa{3 is small, 

a/3 = A a 'f A a' 1 (a'->fJ) c, 1 a'->fJ IS arge, 

where aa{3 is the symmetric difference. 
Now view the elements S; of S as the points of the finite 

projective geometry PG (m, 2), d = 2m + I - 1. For any col
lection.7 of figures, let (.7) be the subgroup of Co genera
ted by .7. We are interested in the subgroups C I , C2, ... , 

Cm _ I generated, respectively, by lines, planes, .. , , hyper
planes in PG(m, 2). In other words, if S, (m) is the set of 
r-spaces in PG(m, 2), C, (m) = (S, (m». [Of course we 
write C, for C, (m) when the m is understood.] 

From I we know that wecanidentifySo(m) U {O}with 
a vector space V(m + 1) of dimen~on m + lover lF2• We 
also know that C m _ I (m) and V( m + 1) [= dual of 
V(m + 1)] are isomorphic. Now choose a simplex of refer
ence Y whose vertices VI' ... , Vrn + 1 correspond to a basis of 
V(m + 1). It is clear thatthe (m - 1)-dimensional faces of 

Y will correspond to the dual basis of V( m + 1) and hence 
that Cm _ I (m) is generated by the set of (m - 1 )-dimen
sional faces of Y. 

Let .7 ';' denote the set of r-dimensional faces of the cho
sen simplex of reference Y in PG (m, 2). There is good rea
son to believe that C m _ 2 (m) is generated by 
.7;:: _ 2 U .7;:: _ 1 and, in general, that C, (m) is generated 
by.7';' U' .. U .7;:: _ I' At any rate, using the coset decom
position proved in Sec. III, we prove this for m = 2, 3, 4. It 
also follows from this decomposition that the orders of the 
groups C, (m), at least in these cases, are given by 

IC,(m)1 = 2q
,(m), whereq,(m) 

This is in agreement with a count of the relevant number of 
faces of the simplex of reference. 

Again from I (corollary to Theorem 2.3), we have a 
chain of subgroups 

Co::J C 1 ::J ... ::J Cm = {t}. 

Taking inverse images under the projection 11': Go -+ Co gives 
another subgroup chain 

Go ::J G1 ::J ... ::J Gm = { ± I}, 

with 

Gr = 11'-1 (Cr ) = ( ± rea): a ESr(m». 

Here, for example, if a = {p,q,r}, then 
± rca) = ± rprqrr' Clearly 

IGr(m) 1= 2ICr (m) 1= 21 +q,(m). 

Since this paper deals mainly with the case m = 4 let us 
recall that four-dimensional projective space PG( 4,2) over 
the field IF 2 consists of 31 points, 155 lines, 155 planes, and 31 
solids. Each plane has the structure of PG (2, 2) and each 
solid the structure ofPG(3, 2). From Hirschfeld2 (or from 
I) we know that through each point there are 15 lines, 35 
planes, and 15 solids. Through each lines there are seven 
planes and seven solids. Through each plane there are three 
solids. In general, two planes intersect in a point but they can 
also intersect in a line. More precisely, let 11' be any plane in 
PG (4, 2), of the remaining 154 planes, 112 of these meet 11' in 
a point and 42 meet 11' in a line. Similarly, if A is a line, then 
there are 112 lines skew to A and 42 that meet A. Also let us 
record the well-known face that the group of projectivities 
of PG(4, 2), which can be identified with GL(5,lF2 ), has 
order 31·30'28·24·16. 

1315 J. Math. Phys. 31 (6), June 1990 0022-2488/90/061315-10$03.00 @) 1990 American Institute of PhySiCS 1315 



                                                                                                                                    

At one stage we will need the following result of Bose 
and Burton. Let Oem) = 2m + I - 1 denote the number of 
pointsofPG(m, 2). [lnlitwasdenotedN(O, m).] Let abe 
a set of points of PG (m, 2) such that, for any r-space 
1T" lan1T,I>O(s). Then lal>O(m - r+ s); moreover, 
lal = O(m - r + s) ifand only if a is an (m - r + s)-space. 

A proof can be found in Hirschfeld.4 

II. THE GROUP Go AND ITS SUBGROUPS 

We now consider the subgroup chain for m = 4: 

Go ::J GI ::J G2 ::J G3 ::J G4 = { ± I}. (2.1) 

Let Z, denote the centralizer of G, in Go. The main result is 
that Z3 = GI , Z2 = G2, and ZI = G3• Of course, from I 
[(4.10)] we already know that G4 _, ~Z" for r = 1,2,3. 

Now let a be a figure: we say that a has an odd relation to 
S, whenever a bears an odd relation to some element {3 E S, 
(as defined in Sec. IVofI), that is, wheneverE(a,{3) = - 1, 
for some {3 E S,. This is equivalent to saying that there is a 
{3 E S, such that an odd number of points of a do not belong 
to {3. The significance of this is that if a has an odd relation to 
S, then na) ~ Z, because there is an r-space {3 such that 
r (a) and n{3) do not commute. 

Now let p, q be distinct points in SoC 4) and let r be the 
third pont of the line defined by them. Then 

rprq = r, (mod GI ) 

and hence we can write 

Go = U (rpGI : pESo(4) U {O}} (2.2) 

with the understanding that r oG I = GI • (Note: We are not 
claiming at this stage that the sets involved in this decompo
sition are disjoint. ) 

Theorem 2.1: Z3 = G I • 

Proof: Let x be an element of Go and suppose that x ~ G I' 
Then x E r p G I for some PESo ( 4 ). But for any point p there 
is clearly a three-space u such that p ~ u, i.e., p has an odd 
relation to S3 so that r p ~ Z3' Thus x ~ Z3' This proves that 
Z3 C Gland hence the result. 

Theorem 2.2: Z2 = G2 • 

Before giving the proof we prove a result that must sure
ly have been noticed in other contexts. 

Lemma 2.3: If a set of points in PG (4, 2) has at least 
seven members then at least four of the points are coplanar. 

Proof: The result is easily seen to be true if all the points 
lie in a three-dimensional subspace so we may suppose that 
five ofthe points VI' '" 'V5 (say) form a basis for V(5). Two 
more points, say x and y, are to be chosen from the remaining 
26, namely, U = VI + ... + V5, vij = Vi + Vj (ten such 
points), Vijk = Vi + V; + Vk (also ten), Ui = U + Vi (five). 

If x is a vij or a Vijk, then x and three of the v's are 
coplanar. 

Ifx = Ui andy = uj , then x,y, Vi' Vj are coplanar. 
If x = Ui and y = u, then x, y, Vi are collinear so there 

are four coplanar points in this case as well. 
ProofofTheorem 2.2: We show first that any subset of 

PG (4, 2) with six or less points has an odd relation to S2' Let 
aCPG(4, 2) and suppose lal = 2, 4, or 6. Take any pEa. 
Then there is a line A through p that does not contain any 
other point of a. (There are 15 lines through p and 
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la\ {P} 1< 5.) Now there is a plane 1T through A that does not 
contain any other point of a. (There are seven planes 
throughA.) On the other hand, iflal = 1,3,5, we can repeat 
this argument starting with p ~ a. In each case there is a 
plane 1T with the property that an odd number of points of a 
are not contained in 1T. In other words, rea) ~ Z2' 

For the next case, suppose that lal = 7. If na) E Z2' 
then na) commutes with r( 1T) for every plane 1T. By I 
[ ( 4.4 )] every plane meets a and hence by the result at the 
end of Sec. I with m = 4, r = 2, s = 0, a is itself a plane. 
Thus rea) E G2• 

The proof can now be completed by an inductive argu
ment. Let a be a figure in PG(4, 2). We have to show that 

if rea) E Z2' then na) E G2. (2.3 ) 

Suppose lal = n; then (2.3) has already been proved for 
n<7. Take as an inductive hypothesis (2.3) for all figures 
with less than n points. Since we may suppose n> 7, by 
Lemma 2.3, there are four points of a that are coplanar. Let 
1T' by the plane defined by them. Now r(1T') E Z2; thus 
r(a1T') E Z2 and la1T'1 < lal. By the inductive hypothesis 
r (a1T') E G2; thus rea) E G2• This completes the proof. 

Theorem 2.4: ZI = G3• 

Proof: We have to show that if na) E ZI' then 
na) E G3• Notice that if a is a figure (a small set), then 
lal < 15. We claim that if lal < 15, then rea) ~ ZI: whilst if 
lal = 15 and rea) E ZI' then a is a three-space. 

The first part, lal < 15, is clear because if lal is odd, take 
p ~ a. There are 15 lines through p so there is a line A that 
does not meet a. If I a I is even, take pEa and again there is a 
line A that does not meet a \ {P}. In each case, we have found 
a line A such that an odd number of points of a do not belong 
to A. So a has an odd relation to SI' 

On the other hand, suppose lal = 15 and na) E ZI' 
Then a meets every line. Using the result at the end of Sec. I, 
lan1TI I>1 = 0(0). But lal = 15 = 0(4 - 1 + 0); so a is a 
three-space. Thus r (a) E G3• The proof is now complete. 

Remark: We do not need to generalize these results at 
this stage, but it is easy to see that Theorems 2.1 and 2.4 
generalize to give Zm_1 = GI and ZI = Gm _ 1 in 
PG (m, 2). This is part of conjecture B of I. 

Remark: An immediate consequence of Theorem 2.2 is 
that G2 is a maximum Abelian normal subgroup of Go. (This 
was also conjectured in I.) We can express G2 in the form 

A choice of a set of 15 generators for K2 will provide us with a 
complete commuting set of 15 operators, each operator hav
ing eigenvalues ± 1. The 215 sets of simultaneous eigenval
ues will then serve to label the 215 spinor states of our irredu
cible representation of Cliff(0,31). Looking ahead to 
Theorem 3.2, a suitable choice of a complete commuting set 
of 15 operators is the set 

(2.5) 

associated with the 10 two-faces and 5 three-faces of a cho
sen simplex of reference for PG (4, 2). 
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III. PG (4, 2) AND THE SUBGROUP CHAIN 
Co:J C1 :J ... :J C4={1} 

We wish to find various quotient groups of the chain and 
to use the coset decompositions to gain insight into the 
groups Ci • To this end we introduce two "intermediate" 
groups. Choose a distinguished solid 8 which will remain 
fixed throughout the discussion. Let C2, 6 be the subgroup of 
Co generated by the planes of PG( 4, 2) together with the 
lines that lie in 8. Let C3, 6 be the subgroup generated by the 
solids ofPG (4, 2) together with the planes that lie in 8. Thus 
we are led to the subgroup chain 

Co:J CI :J C2,6 :J C2 :J C3,6 :J C3 :JC4 = {I}. 
(3.1 ) 

Recall that So = {SI' S2' ... ,S31}' To avoid an excess of suf
fixes let us also write p, q etc. for the points of So. 

Let v be a point that is not in 8, Let 8' be a plane in 8 and 
let v' be a point in 8 but not in 8'.·We write vp and v; for the 
joinsj(v, p) andj(v',p), respectively. When A is a line, we 
write a .. and a~ for the joinsj( v, A) andj( v', A), respective
ly. Thus vp and v; are lines while a.le and a~ are planes. 

Before starting the main theorem we describe the de
compositions involved. 

Let A be a line in PG( 4, 2). Suppose that A does not lie 
entirely in 8. Then A will meet 8 at a point p and a.le will meet 
8in a lineA I. The lines A, vp ,A I are coplanar and concurrent. 
By Theorem 2.3 ofI, we have A vp A I = 1T for some plane 1T. 
Thus we can write A = vp A '1T. If A C 8, we write 
A = Vo A1To, where Vo and 1To are interpreted as 1. So 

A EVp C2,6' where pESo(8) U {O}. (3.2) 

SupposethatA lies in 8but not in 8' and that v' itA. Then 
A will meet 8' at a point p and the plane a~ will meet 8' in a 
line A I. As above, there is a plane 1T' such that AV; A I = 1T', so 
thatA = v; A '1T'. IrA liesin8', we write A = v~ A I 1T~; while 
if v' lies on A, we write A = v; Ao 1T~, where again v~, Ao, and 
1T~ are interpreted as 1. So 

A E v; A 'C2, 

where pESo(8') U {o}, A / ESI (8' ) U {O}. (3.3) 

Let 1T be a plane in PG (4, 2) that does not lie in 8 or contain 
v. Then thejoinj(v, 1T) is a solid that meets 8 in a plane 1T'. 
Thus 1Tmeets8in a lineA I. The three planes 1T, 1T', anda~ are 
contained inj(v, 1T) and each one contains the lineA I. Thus 
1T1T'a.le' =j(V,1T) (Theorem2.30fIagain). 

The plane 1T also meets 8' in a point p. Suppose that A I 

does not contain v'; then a~, meets 8' in a line A. The lines v;, 
A I, and A are concurrent and coplanar; hence the planes a ., 

Vp 

a.le' , and a.le have a comon line and lie in a solid u. Thus a . 
Vp 

a.le' a.le = u. Combining these two expressions gives 

1T=a.le,1T'j(v,1T) =a. a.le1T'uj(V,1T). 
Vp 

Ifv' E A I, then we can take A = O. If A ' C 8', we can take 
p = O. If 1T C 8, we can take p = 0 and A = O. If v E 1T, we go 
straight to the second step of the decomposition. Thus we 
can write 

1TEa. a.leC3 6' vp • 

where pESo(8') U {a}, A ESI(8') U {O}. (3.4) 
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We are now in a position to prove the main theorem of 
this section. 

Theorem 3.1: (i) The disjoint cosets of CI in Co are given 
by 

(PCI: pESo(4) U {O}}; 

(ii) CoICI = V(5); 

(iii) the disjoint cosets of C2, 6 in CI are 

(Vp C2,6: pESo(8) U {O}}; 

(iv) CI /C2, 6 = V(4); 

(v) the disjoint cosets of C2 in C2,6 are 

(v; A I C2 : p E So(8' ) U {o}, A I E SI (8' ) U {O}}. 
A 

(vi) C2,{jIC2= V(3) X V(3); 

( vii) the disjoint cosets of C 3, 6 in C2 are 

(a
v

; a.leC3,6: PESo(8') U {o}, A ESI (8') U {O}}; 
A 

(viii) C2/C3, 6 = V(3) X V(3); 

(ix) the disjoint cosets of C3 in C3,6 are 

(1T C3: 1T E S2(8) U {O}}; 

(x) C3,61C3= V(4); 

(xi) C3 = V(5). 

Proof Take distinct points p, q E So( 4) and let r be the 
third point of the line defined by them. Then 

pq=r (modCI). (3.5) 

It follows that Co is the union of the cosets listed in (i). Thus 
I Col < I CI125 with equality if and only if the cosets are dis
joint. 

Part (ii) follows from (3.5) once it has been shown that 
the cosets are disjoint. 

If p and q are distinct points of So(8) and r is the third 
point of the line defined by them, then 

(3.6) 

It follows from (3.2) that C I is the union of the cosets 
listed in (iii). Thus ICII < IC2, 6124 with equality if and only if 
the cosets are disjoint. 

Part (iv) follows from (3.6) once it has been shown that 
the cosets are disjoint. 

Parts (v)-(x) follow in the same way from (3.4) giving 
IC2,61<IC2126, IC21<IC3,6126, and IC3,61<IC3124 with 
equality in each case if and only if the corresponding cosets 
are disjoint. 

Part (xi) is dealt with in the Introduction. Combining 
the inequalities for the order for the various groups we have 
that ICol <25'24'26'26'24'25 with equality if and only if the 
cosets are disjoint in every decomposition. But we know that 
I Col = 230; so the proof of the theorem is complete. 

The groups involved in these decompositions can all be 
regarded as IF 2 vector spaces so that any extensions involved 
are split extensions. 

Thus, using the second isomorphism theorem for 
groups, we have that C3, 61C3 is a subgroup of C2/C3 with 
quotient C2/C3, 6 and hence 

C2/C3= C2/C3,6 XC3,61C3= V(3) XV(3) xV(4). 
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Similarly 
A 

C/C2 :::.C\IC2• 6 XCl,6/C2 :::. V(4) X V(3) X V(3). 

From these isomorphisms arise two further coset de
compositions: the disjoint cosets of C2 in CI are 

(vp v~ A 'C2 : P E So(8) U {o}, q E So(8') U {a}, 

A' E SI (8') U {o}); (3.7) 

Co ::J c) ::J C2 

the disjoint cosets of C3 in C2 are 

(a
v

• a.< 11' C3 : P E So(8') U {a}, A E SI (8') U {a}, 
p 

11'ES2 (8) U {o}). (3.8) 

The isomorphisms of the theorem can be summarized 
by the following diagram: 

J 1 A Al A 
V(5) V(4) X V(3) X V(3) V(3) X V(3) X V(4) 

The isomorphisms of the theorem could be established 
in other ways. They could be cast in a more algebraic frame
work by assigning to each line, plane, etc., its Pliicker 
(Grassmann) coordinates. For example, a line in PG ( 4, 2) 
has ten coordinates and this would give rise to a vector in 

A 

V( 4 ) X V( 3 ) X V( 3). Different partitions of the coordinates 
as 4 + 3 + 3 would correspond to different choices of 8 and 
v. 

Alternatively a third possible line of proof would in
volve the following ideas. Assigning to each line in PG( 4, 2) 
the point where it meets 8 (0 if the line is in 8), gives a 
homomorphism not from C I but from the/ree group genera
ted by lines to V(4). To get a homomorphism from C I it 
would be necessary to show that relations between lines are 
taken to zero. What are these relations? We conjecture that 
in PG(3, 2) the only relations between lines would arise 
from sets of five skew lines and reguli (see Hirschfelds ). We 
do not know what they would be in four dimensions. 

Similarly we would have to assign to each plane the 
point where it meets 8' and the projection of the line where it 
meets 8. This time we would have to ask for relations 
between planes. 

The group Co and its subgroups are generated by points, 
lines, etc. As explained in the Introduction the coset decom
position can be utilized to give a more succinct system of 
generators. 

Theorem 3.2: For m = 2,3,4, the group Cr (m) is gen
erated by the union Y,:, U Y~ \ U ... U Y::: _ I' where 
Y,:, denotes the set of r-dimensional faces of the chosen sim
plex of reference Y in PG(m, 2). 

Proof In the Introduction it was shown that Cm _ I (m) 
is generated by Y::: _ I . 

On the other hand, we know, at least when m = 2, 3, 4, 
that Co(m) is the disjoint union of the cosets 
(p CI(m): p ESo(m) U {o}}. So it follows that 
Co(m)IC)(m) is generated by Y;. These two steps deal 
with the m = 2 case. 

Consider PG( 3, 2). Choose the distinguished plane 8 to 
be a face of Y and the distinguished point v to be the remain
ing vertex. From I (Lemma 3.1) we have the coset decompo
sition of C) as the union of (VpAC2 : p E So(8) U {a}, 
A E S\ (8) U {O}}. So it is only necessary to show that each 
v p and A can be written in terms of the required generators. 
This is already clear for A by considering 8 as PG (2, 2), and 
it also follows for vp because we know that p E So(8) U {a} 
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can be written in terms of 
Y~ U Yi [again in PG(2, 2)], and vp ' being the join 
j( v, p), can be written in terms of Y~ U Y~. This deals with 
PG(3,2). 

The m = 4 case can be dealt with in the same way. 
Choose 8 to be three-dimensional face of Y and v the re
maining vertex. Then choose 8' to be a two-dimensional face 
of Yin 8 and v' the remaining vertex in 8. Now consider the 
decompositions (3.7) and (3.8). Each term is either the join 
with a vertex or already lies in a lower-dimensional face. 

This completes the proof. 

IV. THE GROUP Cz IN CLOSE-UP 

In the case m = 3 we know that the group C I (3), gener
ated by the lines ofPG(3, 2), is partitioned into seven orbits 
under the action of the subgroup O(3):::.GL(4;F2 ) of 
Aut Co (3 ). For details, see Lemma 3.3 of I. The seven orbits, 
say (Jo, (J), ... , (J6' are as follows: 

(Jo = {0}, (J\ = {35 lines}, (J2 = {105 two-frames}, 

(J3={280 skew pairs}, (J4={15 planes}, (4.1) 

(Js = {168 three-frames}, (J6 = {420 tripods}. 

The figures belonging to the orbits (Jo, (J\, ... , (J6 have respec
tive sizes 0, 3,4, 6, 7, 5, 7. Altogether we have, of course, 
1024 = I C I (3 ) I figures. 

In this section we will determine the orbits of 
C2 = C2 (4) under the action of the subgroup O:::.GL (5;F2) 
of Aut Co. To this end note that a figure'" formed from the 
product oflines A, A " ... lying in a solid 8 gives rise, upon 
choosing a vertex v E 8, to a figure \II E C2 formed from the 
product of planes a, a', ... , where a = j(v, A), 
a' =j(V,A '), .... Each of the orbits (J\, ... , (J6 gives rise in 
this way to corresponding orbits 0 1, ... ,06 for the group 
C2 = C2 ( 4). So already we have seven orbits for C2, namely: 

0 0 = {0}, 0 1 = {155 planes}, O2 = {465 cubes}, 

0 3 = {8680 slew pairs}, 0 4 ={31 solids}, (4.2) 

0 s = {5208 pentapods}, 0 6 = {4340 triblades}. 

In the next few paragraphs we will explain the terminol
ogy employed in the list (4.2), and will also justify the asser
tions there concerning 10; I (in the less obvious cases, name
ly, for i = 2,3,5,6). Granted the values of 101 1, 
i = 0, 1, ... , 6, note that we have so far accounted for 18 880 
figures of C2• Since IC21 = 21s = 32 768, it follows that we 
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have still to consider 13888 figures of C2• We shall see in a 
moment that these remaining figures form a single O-orbit 
9 7 in C2• 

Concerning 9 2, recall that a two-frame rp arises as the 
product AP of two lines lying in a plane a. Equivalently, 
expressing a as a star APV of lines, we can view rp as the 
complement av = a'\ v within a of the line v. This second 
point of view has the advantage that rp has the unique expres
sion rp = av, v C a, in contrast to three different expres
sions rp = AP = A 'p' = A "p" arising from the three choices 
of the point p E v to form star I (p, a). Viewing v as line at 
infinity in the plane a the four points of rp = av can be con
sidered as the four points, which could perhaps be referred to 
as a "square," of a two-dimensional affine geometry 
AG(2, 2). Going up one dimension, consider the product 
rp = ap of two planes lying inside a solid (T. Expressing (T as a 
star aPr of planes we can view rp as the complement 
ur = (T,\ r within (T of the plane r. Viewing r as a plane at 
infinity in the solid (T, the eight points of rp = ur can be con
sidered as the eight points, referred to in ( 4.2) as a "cube," of 
a three-dimensional affine geometry AG(3, 2). Now in the 
geometry PG (4, 2) there are 31 choices for the solid (T, and 
within the chosen (T there are 15 choices for the plane r. 
Consequently 

1921 = 31 X 15 == 465. (4.3) 

Caution: We can compute 192 1 also by calculating first 
the number P (= ~X 155X42) of pairs a, P of planes such 
that a intersects P in some line A. But take note that 
192 1 = P 17, because each cube rp = ur can be expressed in 
seven different ways as the product ap of two planes, corre
sponding to the seven choices of line A C r to form 
star2 (A, (T). In AG(3,2) terms we have seven different 
4 + 4 decompositions of the eight points of the "cube" rp into 
a pair of parallel affine planes (or "squares" )-parallel be
cause a, P meet in a line A of the plane at infinity r. It is 
perhaps worth remarking that these seven different decom
positions of an affine cube (over IF 2) into pairs of parallel 
planes entered into some earlier work6 on eight-dimensional 
ternary composition algebras. 

Concerning 9 3, by a "slew pair" we mean a figure 
rp = ap formed from a pair a, P of planes that are "as skew 
as possible" (granted that they lie in a projective space of 
dimension 4); that is, a, P intersect only at a single point p. 
(We imagine P as obtained from a by "pivoting," or "slew
ing," around this point p; hence the terminology.) Note that 
I rpl = 12. Also, in contrast to the case of tfJ E 9 2, a slew pair tfJ 
has unique expression in the form rp = ap, and defines also a 
unique "pivot" p = a n p. Now there are 31 choices of piv
ot p, and any solid (T not passing through p = a n P will 
intersect tfJ = apin a pair of skew lines. As in (4.1) there are 
280 choices of skew pairs in (T. Consequently 

193 1 = 31 X280 = 8680. (4.4) 

Alternatively, we could say that as a given plane is met in a 
point by 112 planes then 1931 = ~ X 155 X 112. 

Concerning 0 s, by a "pentapod" we mean a product of 
five lines that join the five points of a three-frame to a com
mon "apex" v lying outside the three-space (T of the three
frame. Clearly each tfJ E 0 s has size ItfJl = 11. Just as a three-
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frame can be expressed in the form ApV, where Ap is a skew 
pair and where the line v is a transversal of A and p, so a 
pentapod rp can be expressed in the form rp = aPr, where ap 
is a slew pair and where r is a plane which is a "transversal" 
of a and P in the sense that r intersects both a and P in lines 
(which necessarily pass through the pivot a n P). Now 
there are 31 choices for the apex v of a pentapod, and any 
solid (T not passing through v will intersect the pentapod in a 
three-frame. As in (4.1) there are 168 choices of three
frames in (T. Consequently 

19s1 = 31 X 168 = 5208. (4.5) 

Concerning 9 6 , by a "triblade" we mean a figure 
tfJ = aPr formed from the product of three planes a, p, r 
that intersect in a common line A (the "axis" of tfJ) but that 
do not lie within any common solid. Clearly 
ItfJl = 3 + 4 + 4 + 4 = 15. If (T is any solid not containing 
the axis A of the triblade tfJ = aPr, then rp n (T is a tripod 
with apex p = A n (T and with legs a n (T, P n (T, and 
r n (T. Now there are 155 choices for the axis A, and within (T 

there are 7·6· 4/3! = 28 choices for the three legs of a tripod 
having p as apex. Consequently 

106 1 = 155X28 = 4340. (4.6) 

Incidentally, just as a tripod can bethought of (see I) as (the 
complement within three-space of) a "pierced plane" aA, 
where the line A does not lie in the plane a, so can a triblade 
be thought of as (the complement of) a "sliced solid" (Ta, 

where the plane a does not lie in the solid (T. Now there are 31 
choices of solid (T, and 155 - 15 = 140 choices of plane a not 
lying in (T. Consequently we have the following check of 
(4.6): 

106 1 = 31 X 140 = 4340. 

As noted after (4.2) there are 13 888 figures of C2 ( 4) 
that do not arise, in the above manner, out of figures of 
C I ( 3 ). For a start, consider a figure of the kind 

rp=aPr, (4.7) 

where a, p, r are pairwise slew planes. The plane a contrib
utes five points to rp, the remaining two points of a being the 
pivotsb' = a n rande' = an p. Similarlyp does not con
tribute the pivots e' and a' = P n r, and r does not contrib
ute the pivots a' and b', and so Irpl = 5 + 5 + 5 = 15. Such a 
figure tfJ, formed from three mutually slew planes, will be 
referred to as a 153, Now the points a = b ' + e', b = e' + a', 
e = a' + b ' constitute a line A that is a transversal for the 
three planes a, p, r. Let Pa' Va be the lines of a through a 
other thanj(b', e'), and let /-lb' Vb and /-lc, Vc be similarly 
defined. Then the 153 figure tfJ = aPr can be expressed in the 
form 

tfJ = A/-la Va/-lb Vb/-lc Vc (4.8) 

and could perhaps also be referred to as a "sixwig" consist
ing of a "body" A together with the three pairs of "legs, " each 
point p ofthe body contributing a pair oflegs /-lp' vp' 

The number N of mutually slew triads of planes a, p, r 
can be computed as follows. There are 31 X 30 X 28 choices 
for the three pivot points a', b', e'. There are seven planes 
throughj(b', e'); discounting the plane of the pivots, this 
leaves six choices for the plane a. Of the corresponding 
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choices for the plane /3 a further two are discounted because 
they intersect a in a line, so that there are four choices for /3. 
Similarly there are 6 - 2 - 2 = 2 choices for r. Consequent
ly 

N = 31 X30X28x6x4X2/3! = 15X 13 888. (4.9) 

Clearly N is not the number of 153 figures in C2 since it is 
much larger than the order of C2! In fact, as described in the 
Appendix, a 153 figure ¢ is a surprisingly symmetric object 
that can be expressed as the product a/3r of mutually slew 
planes in precisely 15 ways. Consequently, if07 denotes the 
set of all the 153 figures, we have 

1071 = N 115 = 13 888. (4.10) 

One easily sees that 0 7 forms a single !l-orbit, and so, since 

100 1 + 1011 + ... + 1071 = 32768 = 215 = IC2 1, 

we have arrived at the complete list 

(4.11 ) 

of the !l-orbits constituting the subgroup C2 of Co. The fig
ures of these eight orbits are of respective sizes 

0, 7, 8, 12, 15, 11, 15, 15. (4.12) 

Remark: We can make the observation that, as is to be 
expected, the number of elements in each orbit divides the 
order ofthe group GL(5, lF2 ). 

Remark: The 15 different 5 + 5 + 5 decompositions of 
the 15 points of a 153 figure ¢ alluded to above, each decom
position being associated with representation of ¢ of the kind 
( 4. 7), can be given a more colorful and detailed description 
in terms of sixwig decompositions of the kind (4.8). One 
finds that a sixwig has a remarkable propensity for reconsti
tuting itself, in that, for a start, each of its six legs can be 
thought of as the body of another sixwig formed out of the 
same fifteen points. Moreover, for the sixwig ¢ in (4.8), 
through each of the four points of the legs f-la' Va (leaving 
aside their point of attachment a to the body A) there pass 
two transversals of the original 5 + 5 + 5 decomposition. 
These further eight transversals of the original structure can 
equally be thought of as the body of a sixwig formed from the 
same 15 points of ¢. Thus ¢ can be thought of as a sixwig in 
1 + 6 + 8 = 15 different ways, the 15 different choices of 
body comprising in fact the totality of lines that lie entirely 
inside the figure ¢. As described more fully in the Appendix, 
all 15 points of ¢ enter on an equal footing, as do all 15 of the 
lines, each point being the apex of a tripod oflines and each 
line containing three points of ¢ (indeed, since we are work
ing over the field IF 2' each line consists solely of three points 
of¢). 

Since our arithmetic has assured us that the list of 
(4.10) is complete, any other apparently different figure of 
C2 must, in fact, be one of the above in disguise. We have 
already encountered the example of a sliced solid being the 
(complement of) a triblade. A more interesting example is 
that of a figure ¢ = uaa' formed from a solid u and a slew 
pair a, a' of planes whose pivot v does not lie in u. Clearly 
I ¢I = 15, since ¢ consists of nine points of the solid u togeth
er with two triangles, one in the plane a and the other in the 
plane a'. Now one can choose the pivot v in 31 ways and a 
solid u not passing through v in 31 - 15 = 16 ways. Within 
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u there are 280 skew pairs A, f-l of lines, whose joins to v will 
yield 280 slew pairs of planes a, a' having v as pivot. Conse
quently the number N' of such (u, a, a')-configurations is 

N' = 31 X 16X280 = 138880, (4.13 ) 

again much larger than IC2 1! Now, in fact (again see the 
Appendix), the figure ¢ in question can be seen to be a 153 

figure, and the symmetry of a 153 figure ¢ is such that it can 
be expressed in the form 

¢=uaa' (4.14) 

(where a, a' are a slew pair of planes whose pivot v lies 
outside the solid u) in precisely ten distinct ways. Conse
quently the number of such figures is 

N'/1O = 13 888, (4.15 ) 

in agreement with (4.10). 

V. SOME PROJECTIVE GEOMETRY SPIN-OFFS 

The result Z2 = GI of Theorem 5.2 of! yields the follow
ing theorem in solid projective geometry over lF2 • 

Theorem 5.1: A subset q; ofPG(3,2) bears an even rela
tion to every plane if and only if q; (or equally well q;C ) is a 
product of lines. 

In more detail, after making use of (4.1 ), we have the 
following results. 

Corollary 5.2: (a) Let Hk = Hk (q;) denote the proposi
tion H k : q; is a k-set that has odd intersection with every 
plane ofPG(3, 2).Then the following implications hold: 

H3 {::} q; is. a line, 

Hs {::} q; is a three-frame, 

H7 {::} q; is either a plane or a tripod, 

H9 {::} q;C is a skew pair of lines 

(equivalently, q; is a regulus), 

HII {::} q;C is a two-frame. 

(Also no 'P satifies HI or H 13·) 

(b) LetJk be obtained fromHk by replacing "odd inter
section" by "even intersection." Then the following implica
tions hold: 

J 12 {::} q;C is a line, 

JIO {::} q;C is a three-frame, 

J8 {::} either q;C is a plane, or q; is a pierced plane, 

J6 {::} q; is a skew pair of lines, 

J4 {::} q; is a two-frame. 

(Also no q; satisfies J I4 or J2.) 

( c) No q; satisfies H k for k even, or J k for k odd. 
Remark: Part (b) is merely a rewrite of part (a). The 

four-dimensional case of part (c) is proved below. 
Similarly the result Z2 = G2 of Theorem 2.2 of the pres

ent paper yields a corresponding theorem in four-dimension
al projective geometry. 

Theorem 5.3: A subset q; ofPG( 4, 2) bears an even rela
tion to every plane if and only if q; (or equally well q;C ) is a 
product of planes. 

In more detail, after making use of (4.2) and (4.12), we 
have the following results. 
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Corollary 5.4: Let Hk and Ik denote the same proposi
tions as in Corollary 5.2, except that PG( 4, 2) now takes the 
place ofPG(3, 2). Then we have the following. 

(a) No tp satisfies Hk for odd k<31 except when 
k = 7, 11, 15, 19,23, in which cases the following implica
tions hold: 

H7 <=> tp is a plane, 

Hl1 <=> tp is a pentapod, 

HIS <=> either tp is a solid, or tp is a triblade, 

or tp is a 153, 

HI9 <=> tpc is a slew pair of planes, 

H 23 <=> tpc is a cube. 

(b) No tp satisfies Ik for even k > 0 except when 
k = 24, 20, 16, 12, 8, in which cases the following implica
tions hold: 

124 <=> tpc is a plane, 

J 20 <=> tpc is a pentapod, 

116 <=> either tpc is a solid, or tp is a sliced solid, 

or tpc is a 153, 

112 <=> tp is a slew pair of planes, 

18 <=> tp is a cube. 

(c) No tp satisfies Hk for k even, or Ik for k odd. 
Remark: Part (c) says that an even set cannot have odd 

intersection with every plane and that an odd set cannot have 
even intersection with every plane. 

Proofof(e}: Let tp be any subset ofPG(4, 2). Suppose 
that for every plane 1T the elements r( tp) and r( 1T) of Go 
anticommute. Let 1T1, ... , 1T7 be the seven planes through a 
line. Then, using Theorem 2.3 of I, we have that 
r(1TI )'" r(1T7) = ± I, so that r(tp) anticommutes with 
± I, which is absurd. Hence there is a plane 1T such that 
r (tp) and r ( 1T) commute, in other words, an even number 
of points of tp are not in 1T. 

In the case of a 153 figure 1/1 of PG (4, 2), we can appeal 
to our knowledge of 1/1 as given in the Appendix to produce 
details concerning its odd intersection with all the 155 planes 
of PG(4, 2). Let us call a plane a an s-plane whenever 
la n 1/11 = s. Then one obtains the following results: 

(i) there are 45 five-planes, each five-plane intersecting 
1/1 in one of the 45 bipods contained in 1/1; 

(ii) for a three-plane a there are three possibilities for 
la n 1/11, namely, 

(a) one of the 15 lines A of L [with a = j(e, A)], 

(b) one of the 20 triangles contained in 1/1, 

(c) one of the 60 triads contained in 1/1, (5.1) 

altogether there are therefore 95 three-planes, those 
of kind (a) or (b) accounting for all of the 35 planes 
through the center e of 1/1; 

(iii) there are 15 one-planes a ij' say, one for each of the 
15 pointspij of 1/1. 

In this way we account for all the 155 ( = 45 + 95 + 15) 
planes in PG( 4,2). 
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Similarly we can use the results of the Appendix to pro
duce the following details concerning the odd intersection of 
a 153 figure 1/1 with all the 31 solids ofPG(4, 2): 

(i) there are ten nine-solids, namely, the ten solids 
O'ijk = O'imn of (AI5), which intersect 1/1 in one of its 
ten nonads; 

(ii) there are 15 seven-solids, namely, the 15 solids O'ij 

introduced after Eq. (AI4), which intersect 1/1 in 
one of its 15 tripods (these 15 seven-solids account
ing for all the solids through the center e of 1/1) ; 

(iii) there are six five-solids, say 0';, each five-solid inter
secting 1/1 in one its six pentads 1T;. 

(5.2) 

In this way we account for all the 31 solids in PG ( 4, 2). 

APPENDIX: THE SYMMETRICAL CONFIGURATION 153 
IN PG (4,2) 

In a five-dimensional vector space, over a field F, we 
may choose six vectors VO, VI' V2, V3, V4, Vs such that 

Vo + VI + V2 + V3 + V4 + Vs = 0 (AI) 

and such that no five of the vectors are linearly dependent. 
Define 15 further vectors Pij = Pji by 

(A2) 

Consider now the corresponding 15 points in the projective 
geometry PG (4, IF), and let us denote these points by their 
representative nonzero vectors Pij' Suppose for the moment 
that ehar IF =I- 2. Then the only collinearities (of three or 
more points) amongst the 15 points derive, by way of (AI), 
solely from the 15 different partitions of the six symbols 
012345 into three pairs. That is, the three distinct points 

(A3) 

lie on a line if and only if ijklmn is a permutation of 012345. 
In what follows let us agree, except when anything is said to 
the contrary, that indices i,j, k, ... range from 0 to 5 and that 
ijklmn denotes an arbitrary permutation of 012345. The line 
containing the points (A3) will be denoted A (ij, kl, mn), or 
equally A (/k,ji, mn), etc. 

Let 1/1 denote the set of 15 projective points defined via 
(A2) and let L denote the set of 15 projective lines defined 
via (A3). Now for fixed ij in (A3) there are precisely three 
partitions of the remaining four indices into three pairs, 
namely, (kl, mn), (km, n/), and (kn,lm). Consequently 
each point P of 1/1 lies on precisely three lines of L, just as each 
line A of L contains precisely three points of 1/1. The configu
ration (1/1, L) consisting of 15 points and 15 lines is a well
known configuration of four-dimensional projective geome
try/ and is commonly denoted by the symbol 153 , It is a 
highly symmetrical configuration in that all 15 points enter 
into it on an equal footing, as do all 15 lines; moreover, there 
is an obvious duality between points of 1/1 and lines of L, for 
example, dual to the notion of a tripod with apex P E 1/1, which 
by definition consists of the three lines A, A " A " of L that 
intersect in P (and which therefore determine six other 
points of 1/1, a pair on each of the lines A, A " A "), there is the 
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notion of a tripoint with body A E L, which by defintion con
sists of the three points p, pi, p" of t/J that lie on A (and which 
therefore determine six other lines of L, a pair through each 
of the points p, pi, p"). 

Actually we will often think of a tripod in terms of the 
seven points of intersection with t/J of its three legs, A, A', A ". 
The seven-set C t/J which is determined in this way by a point 
Pij of t/J will be denoted by T(Pij ), and will also be referred to 
as the tripod with apex p ij' Similarly we may think of a tri
point in terms of its associated sixwig with body A, a seven-set 
C L consisting of the body A together with six legs attached 
in pairs at each of the points p, pi, p" . 

Given two distinct points p, q E t/J there are two possibil
ities: either p, q lie on a line of L, in which case we will say 
that p and q are connected, or they do not, in which case we 
will say they are unconnected. 

In the former case we will refer to the two-set 
{p, q} C t/J as a bipoint, and in the latter case as a dyad. 
Dually, given two distinct lines A, ft E L, either they meet in 
a point of t/J, in which case we will say that A, ft form a bipod, 
or they do not, in which case they form a skew pair. (Actual
ly we will usually think of a bipod in terms of the five points 
ofintersection with t/J of its two legs A, ft, and this five-set will 
also be referred to as a bipod.) Observe that each point p E t/J 
is connected to six other points of t/J, namely, those forming 
the legs of the tripod whose apex is p, and is therefore uncon
nected to the remaining eight points of t/J. Dually each line 
A E L meets six other lines of L, namely, the six legs of the 
sixwig whose body is A, and is skew to the remaining eight 
lines of L. 

By a pentad we will mean a totally unconnected set of 
five points of t/J; the five tripods having the five points as 
apexes then account for all the 15 lines of L. Dually we also 
have the notion of a skew pentad, or spread, of lines of L, 
whose associated tripoints account for all the 15 points of t/J. 
Now there are six obvious pentads (of points), say 1Ti , 

i = 0, I, ... , 5, where 

(A4) 

If we recall from (A3) that 

Pab is connected to Pcd {::} {a, b} n {c, d} = 0, 
(A5) 

we easily see that there are no other pentads other than the 
six of the kind (A4), and that there exist no totally uncon
nected sets of size> 5. By the terms tetrad, triad, dyad we 
will mean subsets of a pentad of sizes 4, 3, 2, respectively. 
Note therefore that there exist 30 tetrads, 60 triads, and 60 
dyads. 

Now a totally unconnected three-set is not necessarily a 
triad, since it is possible that it cannot be extended so as to 
form a pentad. For example, all three-sets of the form 

(A6) 

are easily seen to be already maximal unconnected sets. It 
follows easily from (A5) that all maximal unconnected 
three-sets are, in fact, of the form (A6). Such three-sets of t/J 
will be referred to as triangles. There are thus (~) = 20 trian
gles, which occur in complementary pairs Tijk' Tijk' where 

1322 J. Math. Phys., Vol. 31, No.6, June 1990 

(A7) 

Given the triangle T ijk' the points of the complementary tri
angle are distinguished by the property that they are con
nected to all three points of T ijk • The remaining nine points of 
t/J, namely, 

Vijk = Vlmn = {Pad; a E {iJ,k}, dE {/,m,n}}, 

can be usefully displayed in the 3 X 3 array 

kn] jl 

im 
[

if jm 

Vijk = vlmn = km in 

jn kl 

formed by "addition" of the two arrays 

j 

k 

m 

n 
I 

(AS) 

(A9) 

(AlO) 

Here we have letjm denote the point Pjm' and k denote the 
vector Vk' Observe that the rows of (A9) form a triplet of 
mutually skew lines of L, and that the columns of (A9) form 
a complementary triplet of mutually skew lines, each column 
being a transversal of the three rows and each row being a 
transversal of the three columns. It is easily seen that each of 
these triplets is "maximally skew," unlike skew triads oflines 
consisting of three lines selected from a skew pentad oflines. 
Such nine-sets of points as (A9), obtained from t/J by delet
ing a complementary pair of triangles, will be termed non
ads. Since t/J contains 20 triangles, it will contain ten nonads. 

The points of a nonad have the property that each one is 
connected to just one point of each of the complementary 
triangles. Thus if abc is any permutation of ijk, and defis any 
permutation of Imn, then the point Pad in (AS) lies on the 
line A (ad, bc, ej). [The other two lines through Pad are, of 
course, that row and that column of the array (A9) which 
meet at ad.] The nine points of the nonad (A9) in this way 
give rise to a nonad of lines that are transversals of the 
(V, T, T') decomposition of the (9 + 3 + 3 = ) 15 points of 
t/J, and that account for the 3 X 3 = 9 lines joining points of a 
triangle to points of the complementary triangle. 

Observe that we have shown that t/J possesses precisely 
ten different (9, 3, 3 )-decompositions, 

(All) 

into a nonad Vijk = vlmn and a complementary pair oftrian
gles T ijk and Tijk = Tlmn' Dually L possesses precisely ten 
different (9, 3, 3)-decompositions, 

(AI2) 

into a complementary pair of skew triplets oflines Rijk' R ijk 

[the rows and columns of the array (A9)] and a nonad of 
transversals, Tijk say (as in the preceding paragraph). Just 
as the joins of T to T' yield the nine lines of T, the intersections 
of Rand R I yield the nine points of v. Also just as each line of 
Tijk is transversal of the (v, T, T')-decomposition (All), 
each point of v ijk is a "meet" of the ( T, R, R ') -decomposi
tion (A12). Incidentally a (9, 3, 3)-decompositionofagiv
en 153 configuration is determined by a choice of dyad, for a 
dyad is necessarily of the form {Pij,Pik} and hence deter
mines a triangle Tijk (and hence also the complementary 
triangle Tijk = Tlmn ). 
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While on the topic of decompositions of ,p, note that 
each line A E L gives rise to a (5, 5, 5) decomposition of,p as 
follows. If A =A(ij, kl, mn), letf3ij,f3kl,{3mn denote the bi
pods, whose apexes are, respectively, pij'Pkl,Pmn' formed 
from the three pairs oflegs of the sixwig with body A. View
ing these bipods in terms of the five-sets of points in which 
they intersect ,p, we have arrived at a (5,5,5) decomposi
tion of,p: 

,p=f3ij U f3kl U f3mn' (A13) 

There are precisely 15 such decompositions, one for each 
choice ofline A E L. 

Finally (before dealing with the case that interests us, 
namely, IF = lF2 ), let us briefly mention some further aspects 
of the high symmetry of our 153 configuration. One easily 
checks that each point of,p lies in precisely six nonads, each 
line of L lies in precisely four nonads, and each bipod lies in 
precisely two nonads. In fact, two distinct nonads always 
intersect in the five points of a bipod. In detail, Vijk and Vijl 
are seen to intersect in the bipod obtained from the tripod 
T(Pk/) by deletion ofthepointspij' Pmn' and Vijk and VUm are 
seen to intersect in the bipod obtained from the tripod T(P;n ) 
by deletion ofthe points Pjk, Plm . 

Suppose now, at last, that IF = F 2' Then the above con
struction of a 153 configuration, via (AI) and (A2), fails 
because, in addition to the 15 collinearities (A3), there are 
now 20 others consisting of "triangles" Pij,Pjk ,Pk;' This ap
plies for any field IF of characteristic 2, and, in fact, we see 
that the configuration arising from (A 1) and (A2) is merely 
that of the 15 points and 35 lines of a PG(3, lF2 ) subgeo
metry ofPG(4, IF). 

Let us therefore start afresh in the following manner. 
Choose a simplex of reference for PG ( 4, 2), and let its ver
tices be denoted VI' V2' V3, V4, vs, and let its associated "cen
ter," or unit point, be 

c = VI + V2 + V3 + V4 + Vs' (AI4) 

Setting Vo = 0, we define a set Vi of 15 points Pij = Pj;, 
O<J=fI<, 5, and a second set ,p of 15 points Pij = Pji' 
0<, i=fj<, 5, by 

(AI5) 

An easy check now shows that three distinct points Pij' hi' 
Pmn' chosen from the second set ,p of 15 points, lie on a line if 
and only if ijklmn is a permutation of 012345-exactly as 
previously in (A3). Thus we have constructed a 153 configu
ration (,p, L) over F 2 (or indeed over any field of character
istic 2). Moreover, with one slight exception, everything we 
said from (A 3) onwards applies equally to the present 153 

configuration over IF 2' [The exception is (A 10), though this 
can serve still as a mnemonic for the construction of the 20 
different nonads of the configuration. ] 

There are some features peculiar to characteristic 2. For 
a start the points of each pentad 1T; in (A4) sum to zero, and 
so each pentad 1T; is a three-frame, which defines some solid, 
say (T;, 0<,i<,5. Next note that if aijk denotes the plane of the 
triangle Tijk in (A6), then each of the 20 planes aijk passes 
through the center c, since from (AI4) and (AI5) we have 

(A16) 
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The center c is thus a privileged 16th point uniquely deter
mined by the 15 points of,p. Each of the 15 solid (Tij' say, 
determined by the 15 tripods T(Pij) also passes through c, 
since each tripod contains triangles. Incidentally, over F 2' 

the priveleged center c "or' ,p is picked out by the property 
that it alone [amongst the 31 points of PG (4, 2)] does not 
lie on any of the joinsj(p, q),p, q E,p. Of course, one feature 
that is obviously peculiar to IF 2 is the fact that each line of L 
consists entirely of (three) points of ,p. 

Concerning the ten (9, 3, 3 )-decompositions of the kind 
(All), observe that for each of them the associated comple
mentary pair of slew planes, aijk and aijk = a lmn , have the 
same pivot, namely, the center c of ,p. Concerning the 
(9,3, 3)-decomposition (AI2), we may now (overF2 ) refer 
to Rijk and R ijk = R lmn as complementary reguli (see, e.g., 
Hirschfelds ). Of course, over lF2' the (9,3, 3)-decomposi
tion (A 11) can be expressed in the form 

(A17) 

encountered in (4.14), where (T ijk denotes the solid defined 
by the nonad Vijk (or equally by the regulus Rijk)' We have 
thus justified our computation after ( 4.14 ) of 107 1. Similarly 
the (5,5, 5)-decomposition (A13) can be expressed in the 
form 

(A18) 

encountered in (4.7), where aij denotes the plane of the bi
podf3ij' etc. We have thus justified our computation of 1071 
in (4.10). 

Remark: Over F 2 the figure Vi, consisting of the first set 
{Pij} of 15 points in (AI5), possesses properties that are in 
many ways "opposite" to those of,p. For example, note that 
the analog of the 20 pairs T ijk' Tijk = Tlmn of triangles of,p are 
the 20 pairs Aijk' A ijk = Almn oflines of Vi, where 

Aijk = PijPjkPk;' (AI9) 

These 20 lines I, say, are the only lines formed from points of 
Vi, and so we have a configuration (Vi, I) consisting of 15 
points and 20 lines such that each line of I contains three 
points of Vi and through each point of Vi pass four lines of I. 
Just as each point of Tijk connects, within the configuration 
( ,p, L), to each point of Tijk' no point of A ijk connects, within 
the configuration (Vi, I), to any point of A ijk' Given a line 
Aijk E L, and hence given also the line A ijk' the remaining 
(15 - 3 - 3 = )9 points of Vi can be obtained as follows. 
Join Aijk in turn to each of the three points of the triangle Tijk 
to obtain three one-planes of the (,p, L) configuration [see 
(5.1) ], namely, aim' a mn , ani' Of course these planes are 
six-planes of the (Vi, I) configuration and, discounting the 
three points of Aijk' they contribute the required 
3 + 3 + 3 = 9 points of Vi lying outside Aijk and A ijk' 

The analogs of the six pentads 1T; in (A4), the totally 
unconnected five-sets in ,p, are the six simplices 

(A20) 

which are picked out by their being the completely connect
ed five-sets in Vi, Each simplex generates the remaining ten 
points of Vi by way of the ten further points lying on the ten 
edges (joins of pairs of vertices) of the simplex. Note also 
that all six simplices (A20) have the same center 
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c = :IN i P ij' The center c of1/i is also picked out by the prop
erty that it alone [amongst the 31 points ofPG(4, 2)] does 
not lie on any of the joinsj(p, q), p, q E 1/i. 

It is worth noting that we can compute 1071 equivalently 
in terms of the number of (1/i, I) configurations. Conse
quently we have 1071 = N"/6, whereN" denotes the number 
of (nonordered) simplicies of PG ( 4, 2) and where we need 
to divide by six because each 1/i figure contains precisely six 
simplices of the kind (A20) (which generate 1/i in the man
ner described above). Consequently 

1071 = 31 X 30X28X24X 16/(5!X6) = 13 888, 
(A21) 

in agreement with (4.10) and (4.15). 
Remark: Our construction of a 153 configuration over 

the field IF 2 did not treat the six vectors vo, ... , vs, which span 
V( 5), in a completely democratic fashion since we imposed 
the condition Vo = O. In fact, any condition 

5 

L aiv; = 0, a; E lF2' 
;=0 

(A22) 

could be used instead of Vo = 0, provided that an odd number 
o/the a; are nonzero, 

5 

L a;= 1, (A23) 
;=0 
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and provided that we define c by 
5 

c= LV;. 
;=0 

(A24) 

A more democratic treatment is possible if we view 
V(5) as a subspace of V(6) (cf. Edges). Choose any basis 
{vo, ... , vs} for V( 6;lF 2) and let V( 5) denote the associated 
"even" subspace, consisting of vectors having an even num
ber of nonzero coordinates. The 31 points of 
PG(4, 2) = V(5)\{0} in this view consist of the point c, 
defined now by (A24), together with the two sets 1/i, 7/J of 15 
points defined by (AI5). 
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Explicit orthonormal Clebsch-Gordan coefficients of SU(3) 
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The construction of the explicit algebraic-polynomial expressions for the nonmultiplicity-free 
orthonormal Clebsch-Gordan (Wigner) coefficients of SU (3) ::> U (2) is completed in the case 
of the paracanonical coupling scheme related with the explicit minimal biorthogonal systems 
by means of the Hecht or Gram-Schmidt process. The direct and inverse orthogonalization 
coefficients (the first of them being equivalent to the boundary orthonormal isofactors) are 
expressed, up to explicitly given mUltiplicative factors, in terms of the numerator and 
denominator polynomials related with the auxiliary A" function of Louck, Biedenharn, and 
Lohe that appears as a fragment of the denominator G-functions of canonical SU (3) tensor 
operators. 

I. INTRODUCTION 

In a previous paper l (referred to hereafter as Paper I), 
the alternative approaches to the nonmultiplicity-free 
Clebsch-Gordan (Wigner) coefficients of SU (3) ::> U (2) 
have been considered. As it was demonstrated, the Gram
Schmidt processes applied to the explicit biorthogonal sys
tems of the SU (3) isofactors (reduced Clebsch-Gordan
Wigner coefficients) lead to the different algebraic systems 
of the orthonormal SU (3) isofactors that are determined by 
the additional selection rules, or by the null space structure 
and symmetries of isofactors. They include two versions of 
the paracanonical coupling I (suggested in fact by Hecht2

), 

three versions of the canonical coupling (introduced and 
developed by Biedenharn and collaborators3

•
4

), along with 
six versions ofthe pseudocanonical coupling. I In Paper I, the 
mutual expansion of the biorthogonal systems associated 
with the canonical and paracanonical systems has been es
tablished, as well as the symmetry and the main features of 
the polynomial structure of the boundary paracanonical 
SU (3) isofactors (orthogonalization coefficients). Follow
ing the ideas of Ref. 3, the boundary paracanonical or pseu
docanonical isofactors have been expressed in Paper I in 
terms of the specific numerator and denominator functions 
(the last functions being special cases of the first ones). For 
fixed value of a definite parameter and the multiplicity la
bels, the numerator-denominator functions can be ex
pressed as polynomials of definite degree in the remaining 
(five) independent parameters. The corresponding numera
tor-denominator polynomials were expressed originally in 
terms of the overlap determinants divided by the product of 
the linear functions. Unfortunately, the author of Paper I 
was not acquainted with the conjecture,5 proved in Ref. 4, 
about the explicit polynomial form of the denominator func
tion of the canonical SU (3) tensor operators. 

In the present paper the remarkable ideas of Refs. 4 and 
5 are ge~eralized for explicit expression of the boundary par
aca.nomcal 0r:thonormal isofactors (the direct orthogonali
zatlon coeffiCients, depending on eight parameters) as well 
as for the inverse orthogonalization coefficients of the mini
mal biorthogonal system of the SU (3) isofactors. The solu-

a) Present ~ddress: Institute of Theoretical Physics and Astronomy, Acade
my of SCIence of Lithuania, Vilnius 232600, Lithuania. 

tion ofthe boundary value problem (see Paper I and refer
ences therein) allows one to write the explicit expressions for 
the general paracanonical orthonormal SU ( 3) isofactors 
(depending on 12 parameters). 

In the present section the main definitions and the prop
erties of the paracanonical isofactors are given. In Sec. II the 
polynomial structure of the boundary paracanonica1 isofac
tors is discussed, as well as the reduction formulas, symme
tries, and zeros of the numerator-denominator functions, 
which determine the uniqueness of these functions. In Sec. 
III an expression (in two different forms) is presented for 
the numerator-denominator polynomials, that is proved on 
the grounds of the results of Ref. 4. In Sec. IV the explicit 
construction that leads to the inverse (dual) orthogonaliza
tion coefficients is presented. 

The irreducible representations (irreps) of SU (3) will 
be denoted as (ab), where a = m l3 - m23, b = m23 - m33, 

and [m \3m23m33 ] is the Young frame. The basis states are 
labeled by the hypercharge y = m l2 + m22 - j 
(m\3 + m23 + m33 ), the isospin i = !(m I2 - m22 ), and its 
projection iz = m I I - ! (m 12 + m22 ), where the integers m ij 
form the Gel'fand-Tzetlin pattern. Sometimes the param
eter 

is more convenient than y because the linear combinations 

i ± z, a + z - i, b - z - i ( 1.2) 

are non-negative integers. In the case of the coupling (a' b ') 
X (a"b") to (ab), 

z=z'+z"+v, 

where 

v =! (a' + a" - a - b' - b" + b) 

( 1.3) 

( 1.4) 

is an integer. The parameters of the highest weight state take 
the values 

Yo=! (a+2b), io= -zo=!a, 

while for the lowest weight state 

( 1.5a) 

(1.5b) 
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B = ~(a + b - b' - a" + Ivi) , ( 1.7a) For the first version of the paracanonical coupling the 
multiplicity label 1 (intrinsic isospin of the Gel'fand-Weyl
Biedenharn pattern) satisfies the conditions -: ., '" 1(' b") I z = '0 - 10 = 2 a - , z = ~(b" - a') + v. 

1 ±z;;;.o, a+z-l;;;.o, b -z-l;;;.o, ( 1.7b) 

1 ± Iz;;;'O, 

I;;;'B, 

where 

( 1.6a) 

(1.6b) 

( 1.6c) 
The paracanonical isofactors (to here their first version 

if it is not asserted otherwise) satisfy the following symme
tries (cf. Ref. 6): 

(a'b 'y'i'a" b "y"i" lIabyi;1) = (b II a" - y"t' b 'a' - y'i'liba - yi;l) 

= (_1)v+z'+r-i[ dim(ab)(2i" + 1) ]112 (ba- ia'b' 'i'llb"a"- "i".]") 
dim(a"b")(2i+l) y y y , 

= ( _ 1)V+ r - z" - i [ dim(ab)(2i' + 1) ] 112 (a" b" "i" ba - illb 'a' - :i'.]') 
dim(a'b')(2i + 1) y y y" 

where [see correspondence (2.17) of Paper I] 

1 = !(b - b' - v) + l' = !(a - a" + v) + 1" , 
dim(ab) = !(a + l)(b + l)(a + b + 2) . 

( 1.8a) 

(1.8b) 

( 1.8c) 

( 1.9a) 

( 1.9b) 

[Contrary to the case of the canonical tensor operators, the contragrediency transformation (a' -b " a" -b ", a-b) 
inter~hanges the two versions of the paracanonical coupling as well as the transposition of the states to be coupled. ] 

The paracanonical isofactors vanish unless 

i -1<io + z' + i~ - z", i' + !(b - b' - v) -1<i~ + z" + io + z, i" + !(a - a" + v) -1<.70 - z + io - z' . (1.10) 

After all, the paracanonical splitting is completely determined by the condition ofvanishing2 of the boundary isofactors 

(a'b'Yoioa"b"y~i~lIabyi;l) =0 

for l<i [which belong to conditions (1.10) J. 
Now, the general paracanonical isofactors ofSU(3) may be expanded as follows: I 

(a'b 'y'i'a" b "y"i" lIabyi;1) 

= L «a'b 'y'i'a" b "y"i"lIabyi) -. + "(a'b 'yoioa" b "y~i~lIabyi;1) , 
= })a'b 'y'i'a" b "y"i" lIabyiiP) (a'b 'yoioa" b "ji~iO'lIabY]iP)A ba'b'a"b";abJ 

pj 

== L (a'b 'y'i'a" b "y"i" lIabyi) _. + ,JA p'b'a"b";abJ , 
J 

( l.l1a) 

( l.l1b) 

where the first factors in the rhs belong to the minimal biorthogonal system of the SU (3) isofactors, expressed according to 
Eqs. (2.22), (3.2a), and (3.2b) of Paper I. The boundary isofactors and the inverse orthogonalization coefficients satisfy the 
biorthogonality relations: 

" (a'b 'y' ," a" b "y-"t"llabu/·l)A La'b'a"b";abJ -/j,-
~ 00 OO.T' iJ -]J, ( 1.12a) , 
kA bQ'b'QT;abJ(a'b 'yoioa"b "jiO't~lIabyi;l) = Dij . ( l.12b) 

I 

In order to represent the symmetry of the boundary isofactors and the numerator-denominator polynomials in Paper I, 
the following 3 X 6 array IqaP I was introduced: 

Iqapi 

b' -a" +a+v a'-b"+b-v b-v b b' b'+v 

a a+v a-a'+b"+v a" -b' +b-v a" - v a" 

a'-v a' b" b" + v b'+b"-b+v a' +a" -a-v 
(1.13 ) 
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where min qaP + 1 (a = 1,2,3; P = 1,2, ... ,6) gives the external multiplicity of the irrep (ab) in (a'b') X (a" b ") and 

qa2 - qat = qa'4 - qa'3 = qa'6 - qa'S = V, quP - quP' = qa'p - qa'p' . (1.14) 

The function [see (4.8) of Paper I] 

(a'b 'y6i6a" b "y;;i;;lIabjii;l') 

[dim(ab)(a' + l)(b" + I)M(a' + b ',b ')M(a" + b ",a")] 1/2 
(1.15 ) 

[where M(h l h2 ) = (h, + 1 )!h2!1(h, - h2 + 1)] is invariant under the 24 transformations of array (1.13), generated by the 
transpositions of rows, by the transposition of the left and middle couples of columns, and by the transposition of the even and 
odd columns in array (1.13). 

II. POLYNOMIAL STRUCTURE OF THE BOUNDARY PARACANONICAL ISOFACTORS 
The boundary paracanonical isofactors for q" =.b' - a" + a + v=.b - 22, i - z, and b - z -1 fixed may be expressed 

[cf. Eq. (4.2) of Paper I] as follows: 

(a'b "Y6i6a"b "y;;7;lIabjii;/) 

=[2dim(ab)b'(b-Z-1>(a'+b'+1)(b~Z-1>(b_Z+i+l!(b-Z-1>]'/2 _1 7- iK- .. _ _ _ -1/2 

a"( - 1)(/ - z + I) (a" + b " + 1) ( - \)(1- z + 1) (i + z) ( - 1)(1- z + I) ( ) I., ~" [ ~,I gI + 1,1 + I ] 

for min(b - z,a + z,i6 + I;) >1 >i>max( liz 1,lzi> and 
vanish otherwise. Here 

x ( y) = (X _ y) ( - I) Y 

=X(X-l)"'(X-y+ 1) =Xl/(X-y)!, (2.2) 

Kj,i = [(j + iz ) (j - i) (j - iz ) (j - i) 

X (i6 + 7;; - i) (j - i) U6 + 7; + j + 1) (j - i) 

X (a + z - i) (j - i) (a + z + j + 1) (j - i) 

X (j - z)(j- i)(b - z - i)(j- il] 1/2/(j - i)L (2.3) 

The functions g7,i (qap) _(where b - z>1>i>z and param
eters q II' b - z - I, and I - i are fixed) are the polynomials 
with some rational (for 1 = i integer) coefficients in five free 
[see Eqs. (1.14)] parameters of the total degree 

3(b-z-1+1)(l-z)-3(l-i). (2.4) 

Our definition of g7,i (together with the phase factor) is 
slightly changed to compare with Eqs. (4.6a) and (4.6b) of 
Paper I by substituting Ki. i ~stead of K7,;. The multiplica
tion of our polynomial g7i (l =l=i) by the maximal rational 
factor of 

(2.5) 

(2.1 ) 

[where (::') are binomial coefficients] makes all its coeffi
cients integer. Since the determination of this factor presents 
a number-theoretical problem, our definition of ~i is more 
convenient for formulating of the reduction formuias. 

The polynomials ~.i are invariant with respect to the S4 
group generated by the substitutions 

0'- - a' - 2, b'-a' + b' + 1 (v-v - a' - 1) ,(2.6a) 

a"-a" +b" + 1, b"- -b" -2 (v-v+b" + 1), 
(2.6b) 

and the transposition of the second and third rows of array 
(1.13), 

a-a' - v, a'-a + v, b" -a - a' + b" + v, 

a"-a' + a" - a - v. (2.6c) 

The invariance of g7.i with respect to the substitution 
(2.6a) follows from Eqs. (2.20), (3.3), (3.5), or (3.6) of 
Paper I; the invariance with respect to the composition of 
substitutions (2.6a) and (2.6b) is discussed in Paper 1. Be
sides, the polynomials g7.7 remain unchanged after the per
mutation of the middle and the right couples of columns of 
array (1.13). 

The remaining symmetry properties of function (1.15) 
together with Eq. (2.1) allow one to deduce the following 
reduction formulas of g7,i' respectively, for qll - b + z + 1 
<q21<ql1' for - i + z<v<O, or for ql1 - i + Z<qI3<ql1: 

1-2: i-z 
g,,i(qap) = IT (b'+v+s)(q,,-q")(b'+b"+v+l+s)(q,,-q,,) IT (b+s)(q,,-q,,) 

s= 1 .f= 1 

I-i 
X IT (b+l+s)(q,,-q")g7.i(qIP++f/2p), (2.7a) 

s= ;-2+ 1 
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b-z-I+I 
= (i-fz)<-V) II (b'+I-s)(-V)(b'+b"+a+v+3-s)(-V) 

s= I 

b-z-I 
X II (b- v+ I-S)(-V)~.j(qal++qa2,qa3+-+qa4,qaS++qa6)' (2.7b) 

s= I 

b-z-I+l 
= II (a' + b' + 2 -s)(q" -q")(a + b' + v+ 2 -s)(q" -q,.) 

s= I 

b-z-I 
X(i+fz )(9,,-qu J II (q12 + I-s)(q"-9u)~.j(qal++qa3,qa2++qa4)' (2.7c) 

s= 1 

The zeros of the polynomial8I.1 form at least the weight 
space W!,;- z - 1 + I (b ',v, - b' - v) , where the lattice (in
teger) points (b ',v) are restricted by the conditions 

O<,b '<,qll - I, - qll<'v<, - 1, 

-1+z<,b'+v<,b-z-l-l. (2.8) 

The points of W b
-

z- I + I(b' v - b' - v) in the Mobius 
qll ' 

plane 00 are in one-to-one correspondence with those of the 
weight space of the irrep (b - z -1, 1-z - 1) ofSU(3). 
The corresponding zeros have the mUltiplicity of the weight 

M b - z- I + I(b' v) 
qtl ' 

= min(b - z -1 + 1,1- z,1 + deb I,V», (2.9) 

where d (b ' ,v) is the distance from the lattice point (b ' ,v) to 
the nearest boundary point of W!,-;- z -I + 1 (b ' ,v, - b' - v) 
in 00. 

The zeros of the polynomials l?1 j form at least the trun-
d . h W b - Z - I + 1(b: b' ) h' h' cate welg t space 9uJl- j J ,v, - - v , W lC IS 

obtained from W!-Z-I+I(b',v,-b'-v) with the de
creased by unity ~~1tiplicities of the lattice points corre
sponding to the solutions of the equation 

(v-z+/)O-o=O. (2.10) 

The proof follows from the analysis of the null spaces 7 of the 
paracanonical tensor operators. According to Eq. (2.22) of 
Paper I, the first factors in the rhs of Eq. (Ula) vanish 
(have the simple zeros under the square root) unless 

i ± z;;;'O, t ± tz;;;'O, (2.IIa) 

b - z - bo, a + z - f;;;'O, io + I:; - 7;;;.0. (2.11b) 

Conditions (2.IIa) ensure the vanishing-of the superfluous 
paracanonical isofactors with the lower values of 1 for 
q21 <qu, or q31 <qu, as well as for q41 <quo The factor 
b ,(b- z- I) in Eq. (2.1) ensures the vanishing of the superflu
ousisofactors forqsl =b' <qll when v;;;.O. [Thefirstfactorin 
the rhs ofEq. ( 1.11 ) vanishes for b ' < 0.] Finally, the vanish
ing of the superfluous isofactors for q61 =b' + v < qll is en
sured by the correlation of the zeros in the numerator and 
the denominator functions of Eq. (2.1) together with the 
zeros of the factors b ' (b - z - I), K.1,;, and the first factor in the 
rhs of Eq. (1.11). 

Similarly to Lemma 2.2 of Ref. 4, it may be demonstrat
ed that the polynomial in the five free parameters with the 
weight space of zeros W!,-;-z-l+ l(b ',v, - b' - v) and the 
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S4 symmetry generated by substitutions (2.6) is of total de
gree at least 3(b - Z -1 + 1)(1- z). 

Up to multiplicative factor the polynomial g1,1 is the 
unique polynomial of the total degree 
3(b - z -1 + 1) (1 - z) with the S4 symmetry (2.6) and 
the weight space of zeros W:,;-Z-I+ l(b ',v, - b I - v) which 
satisfies the reduction formulas (2.7). 

Proof: Suppose this theorem is valid for 
ql1 = I,2, ... ,q - 1. The reduction formulas (2.7) allow us to 
express the function ~.1 for the all values of q21,q31,qI2,q13 
that satisfy the conditions 

q - b + z + 1<,a<,q - 1, q - b + z + 1<,a' - v<,q - 1 , 
q -1 + z<,q + v<,q - 1, q -1 + z<,b - v<q - I . 

(2.12) 

The possible variation polynomial should have zeros in the 
corresponding hyperplanes and therefore, it should include 
the factor 

Hq = (v + q) (q) (b - v) (q) (a' - v) (q)a(q) 

X(a+b+ 1)(Q)(b" +v+q+ 1)(q). (2.13) 

Besides for b - z -1> 0 and 1 - z> I the variation polyno
mial should include as a factor a polynomial with the S4 
symmetry (2.6) and a weight space of zeros W~,;-~2 I 
(b' - I,v + 1, - b' - v). Thus the total degree of the vari
ation polynomial 6q (for b - z -1 = 0 or 1-z = I) or 
3(1 -z- I)(b -z -1) + 6(b - 2Z) exceeds 3(1 -z) 
(b-z-1+1). 

Since polynomials K1 gl,j and g1,1 have the same weight 
space of zeros [with additional zeros corresponding to the 
solutions of Eq. (2.10) outside of region (2.8) in the first 
case] their total degree should be at least 3 (b - z - 1 
+ 1) (1 - z) + 3(1 - i). Thus the uniqueness of the poly-

. nomialsgl,j of the total degree (2.4) withS4 symmetry (2.6) 
is also ensured. 

III. EXPLICIT NUMERATOR-DENOMINATOR 
POLYNOMIALS 

According to Sec. IV of Paper I, 
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when the final polynomials that appears also in 6j (Racah) coefficients of SU (2). The 
relations between the terminating Saalschutzian 4F3 ( 1) se
ries9 or the different expressions lO for 6j coefficients allow 
one to present these polynomials in different forms. 

( l)b-Z-iE IK gb-z,i = b-z,i b-z,i> 

gz+ I,z+ 1 = FZ'z, gz+ I,z = FZ+ l,zlKz+ I,z 

may be expressed in terms of the Saalschutzian 4F3 ( 1) series 
I 

In analogy with Refs. 4 and 5 some of these expressions 
may be extrapolated to the following expression: 

M[(-] -)b-z-7. -] . ( ) = ~ - Z ,I - Z (i + 1 ) (i - z -1',) (i _ i ) (i - z - v,) 

K/,I qaP fv M(/1- )M( v) z z 

t-I _ _ 
X II (7 + i

z 
+ (-s)(I-Z-I")(7 - i

z 
+ (_s)(I-Z-V,) 

s= 1 

t 

X II (b' + v + 1 - s) ( - 1)1"(a' + a" + b - v + 3 - s) ( - 1)1', 

s= 1 

, 
X II (a' + b' + 1 - ( + s) v,) (a + b' + v + I - (+ s) (v,) (3.la) 

s= I 

M[(b-z-1+ l)i-Z(b_z_1)7-i] 

= I'f:. M(/1-*)M(v*) 
l-z _ _ • __ 

X II (v + s - as) ( - I)(b - z-/ + tl.,-I',) (b " _ a' + v + s _ as) (- I)(b - z-/ + tl.,- v:") 
s= I 

I-z. * 
X II (b' + v + s) (I', ) (a' + a" + b - v + 2 + s) (I', ) 

s= 1 

7-z 
X II (a' + b' - b + z + 1- s + 1) (- I)v:" (a" + 1-z - s + 1) (~I)v:". (3.lb) 

s= I 

Here ( = b - z -1 + I, as = 1 for 1 <;s.;;;i - z and ° otherwise. The partitions /1- = [/1- tf1-z' .. /1-t ], V = [vIVZ'" Vt ] denote 
the irreps of U(t). [Here, /1-1>/1-Z>"'>/1-t>O, etc.] The Young frames /1- and v accept such values that the irrep 
A' = [(7 - Z)b -z-7,; - z] appears (once) in the decomposition of the direct product of the irreps/1- X vof U(t). Particularly 

/1-s + Vt + I _ s = 1 - z for i = 1, 
/1-s + Vt _ s = 1 - z for i = Z, (3.2) 

1- z - /1-,-s+ I >vs>1- z - /1-,-s' 

with ~! = I (7 - Z - /1-s - V,_ s+ I ) = 1 - i (each term is non-negative in the lhs) for arbitrary i. 
The symbol M(A) denotes the measure of the Young frame A, 

N! ll!= I (As + (- s)! 
M(A) =-= , 

d 
A II (As - Ar - s + r) 

(3.3 ) 

wheredA is dimension oftheirrepA of SN' The partitions A '*,/1-*, v* and Eq. (3.lb) are obtained from A ',/1-, V and Eq. (3.la) 
after interchange of the rows and columns. 

The total degree of polynomial (3.1), the (truncated if necessary) weight space of zeros, the reduction formulas (2. 7b) 
and (2.7c), and the invariance with respect to substitution (2.6c) may be checked straightforward. The S4 symmetry of the 
function4 ,11,12 

A (b' + v + I, a' + a" + b - v + 3, a" + b - v + 2, b' + b" + v + 2) 
A, V + ( - a' - a" - b - b' - 4 

(3.4 ) 

[see Eq. (5.8) of Ref. 4] with respect to the permutations of the upper four parameters allows one to prove the remaining 
symmetries and reduction formulas of polynomials g l,i. 

The substitutions (2.6a), (2.6b) and their compositions with (2.6c) applied to Eq. (3.1) allow one to obtain the other 
versions of expression for K/,i' 13 

IV. EXPLICIT STRUCTURE OF THE INVERSE ORTHOGONALIZATION COEFFICIENTS 
The dual Gram-Schmidt processes [see Eqs. (4.la) and (4.lb) of Paper I] allow one to obtain also the expression of the 

inverse (dual) orthogonalization coefficients 
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A ~'b'a'b';ab) = (2j + 1 ) Kj/gj,7 [a ll
( - 1)(/ ~ Z+ I) (a" + b" + 1)(_- 1)(/ -z+ I)(j + z)( - I)~-Z) ] 112 (4.1) 

jl [dim(ab)~.I~+ 1,7+ I] 1/2 b '(b- z- 1)(a' + b' + 1)(b-Z- 1)(b - z + j + 1) (b-z-/+ I) 

formin(b - z,a + Z, i~ + i;;r>i>I>max (liz 1,lzl) which vanish otherwise. Thefunctionsgj.I(qaP) (whereb - z>j>I>zand 
parameters qw b - z -1, andj -1 are fixed) are the polynomials with rational coefficients in five free [see Eqs. (1.14)] 
parameters of the total degree 

3(b-z-I)(I-z+ 1) -3(j-I). 

Particularly, 
,:0 _ g_ _ ,J + I.I _ Ch _ 
IS - 1+1,1+1' IS -01+1,1' 

(4.2) 

(4.3) 

Similarly to Eqs. (4.6a) and (4.6b) of Paper I, polynomials g j,7 may be expressed in terms of the determinants of the overlaps 
E7,) or F7.J (in notation of Paper I): 

E b- Z,b-z"'E b-z,7+1 ° . . . . . . . . . . . . 
gj/ = det Ej,b_Z" ·Ej.I+ I 1 

. . . . . . . . . . 

Particularly, 

~-z,b-z=t-I,z-I =gb-z,z= 1, 

,.b-z-I,b-z-I - E 
IS - b-z,b-z' 
..b-z-I,b-z-2 - E /K IS - - b - z,b - z - I b - z,b - z - I , 

(4.4a) 

(4.4b) 

gj,z=Fj,z/KjZ' (4.4c) 

Analogical analysis as in Sec. II allows us to check the symmetries of polynomial gi.I and the reduction formulas 
(respectively, for qll - b + z + j<.q21<.qll' for -1 + z<.v <.0, or for qll -1 + Z<.qI3<.qll): 

l-z 
gj/(qap) = (b-z+j+ 1)(q,,-q,,) II (b+s)(q,,-q,,) 

s= 1 

7-z+1 _ 
X II (b' + v + s) (q" - q,,) (b' + b" + v + 1 + s) (q" - q2l)gj,l(qIP+-+q2P)' (4,5a) 

s= I 

b-z-l b-z-j 
= II (b'+I-s)(-u)(b'+b"+a+v+3-s)(-u) II (b-v+l-s)(-u) 

s= 1 s= 1 

b-Z-l 
X II (b-v-s)(-U)gj.I(qal+-+qa2' qa3+-+qa4' qaS+-+qa6)' (4.5b) 

s=b-z-j+1 
b-Z-l II (a' + b' + 2 - s) (q" - qu) (a + b I + V + 2 - s) (q" - q,.) 

s= I 

b-z-j b-Z-l 
X II (q12 + 1 - s) (q" - qu) II (q12 - s) (q" - q")gj,l(qal +-+qa3' qa2 +-+qa4)' (4.5c) 

s=1 s=b-z-j+1 

The zeros of the polynomial gj,l form at least the truncated weight space W~,--:J~~ (b ',v, - b' - v) which is obtained 
from W~,--: z- l(b ',v - b ',v) [cf, condition (2.8) and Eq. (2,9)] with the decreased by unity multiplicities of the lattice points 
(b'v) corresponding to the solutions of the equation 

( -+ ')U- 7) ° v-z J =. (4.6) 

The uniqueness of the polynomialg j ,7 of the total degree (4.2) with theS4 symmetry (2.6), the truncated weight space of 
zeros W b -u~ ~ ]) (b I,V - b I ,v), and the reduction formulas (4.5) may also be proved, 

q" 
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The extrapolation of the particular cases given by Eqs. (4.3) and (4.4) allows one to write the following expressions for 
polynomial g j,l: 

b-z-l - - - -
X II (b + a' - b " - v + Ks - s) (1- Z+ 4,-1',) (b _ v + Ks _ s) 1- Z+ 4,- v,) (b' + v + 1 - s) ( - 1)1', 

s= 1 

X (a' + a" + b - v + 3 - s) (- I)P'(a' + b' - b + z + 1 + s + 1) (v,) (a" - Z + 1 + s + 1) (v,) (4.7a) 

" M[(b-z-1)I-z,b-z-j] ( _+ .)(-I)(b-Z-j-p~)(b" '+ +' _)(-I)(b-z-j_~) = ~ v-z ] -a v J-Z 
po,," M(f.l*)M(v*) 

t' -I - • - v'!' t' * 
X II (v+S_1)(-I)(b-Z-I-p')(b" -a' +v+S_1)(-l)b-z-l- ,) II (b' +v+s)(p,) 

s=1 s=1 

Here Ks = 1 for 1 <,s<,b - z - j and 0 otherwise; 

t'=1-z+1; 

b - z -1- II.*. I 'v!'b - z -1- 11.* r-t + - s' s' rt, - s 

(4.8) 

with ~!'=+II(b - z -1- f.l~ - v:'- -s+ t> = j -1 (each 
term is non-negative in the Ihs). Partitions f.l and v are such 
that irrep [(1- z + l)b-z - j(1- z)j-l] appears (once) in 
the decomposition of the direct product of irreps f.l X v. 

Polynomial (4.7) may be also expressed in terms of 
functionA" defined according Eq. (5.8) of Ref. 4. 

v. CONCLUSION 

In this paper, the explicit constructions of the orthonor
mal coupling coefficients of SU (3) are completed for the 
arbitrary multiplicity of the irreducible representations but 
for the most simple (paracanonical) labeling scheme which, 
unfortunately, is not invariant with respect to the contragre
diency transformation of the tensor operators and states. 
This construction includes the following three steps: the ex
pansion of the general isoscalar factors in terms of the 
boundary ones, the expression of the boundary orthonormal 
isofactors as a ratio of the numerator and denominator (un
der square root) polynomials (these two steps are solved or 
discussed in Paper I), and the explicit expression of the inde
composable numerator-denominator polynomials. (An al
ternative construction includes the definite bilinear combi
nations of isofactors and the inverse orthogonalization 
coefficients. In the different situations the direct or inverse 
approach may be more convenient.) Here the last problem is 
solved with the numerator-denominator functions that ap
pear being related to the auxiliary functions A" (~bde) of Ref. 
4, where partitions A. may be represented as rectangles (with 
possible deficient squares in the last row or column) mea
sured by the current numbers ofthe multiplicity labels from 
the beginning and from the end. Contrary to the case of the 
canonical G-functions,4.5 there is no problem associated with 
the multiplicity of the irrep A. in the decomposition of the 
direct product of irreps f.lXv of U(t). However, the new 
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classes of sums over partitions f.l and v appearing here and in 
Refs. 4 and 5 still wait for their interpretation. 

The construction of the orthogonalization coefficients 
for the canonical tensor operators of SU (3) (respectively, 
the boundary canonical isofactors depending also on eight 
parameters) may be the last step in the explicit construction 
of the canonical orthonormal isofactors of SU ( 3 ). In a sub
sequent paper we hope to present also the explicit orthogon
alization coefficients for the Elliott-Draayer states of the 
noncanonical chains of subgroups with the one-dimensional 
multiplicity labels and the final overlap coefficients related 
to the Saalschutzian 4F3 ( 1) series. 
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The matrix representation of U4 in the U2 X U2 basis and some isoscalar 
factors for Up+q ~ Up XUq 
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Vector coherent state theory is applied to the noncanonical chain V p + q ! V p xV q' Some 
matrix elements of V 4 generators in the V 4 :J V 2 X V 2 basis are derived by using K-matrix 
theory. Some transformation coefficients between V 4 :J V 2 X V 2 :J V I X V I and 
V 4 :J V3 :J V 2 :J VI basis vectors are obtained. Finally, analytical expressions ofisoscalar 
factors for Vp+ q :J Vp XVq for coupling {MIO} X {M20} to {M ;M;O} are derived by using 
these coefficients and isoscalar factors for V n :J V n _ I . 

I. INTRODUCTION 

The matrix representation of the canonical basis span
ning finite-dimensional irreps of V n has been thoroughly 
discussed in the study of many-body problems. 1-4 In many 
applications, however, it is necessary to choose a noncanoni
cal basis for the unitary group V p + q adapted to the sub
group V p xV q' The usefulness of such a basis has been dis
cussed by many authors.5

-
7 

In Refs. 5 and 6, Klimyk et al. used the theory of the 
principal non unitary series representations of an appropri
ately chosen semisimple Lie group to calculate matrix ele
ments of V p + q generators and some simple coupling coeffi
cients. However, these matrix elements obtained in this way 
are nonunitarized. The unitarization can only be carried out 
for each individual case separately. In their series of papers 
~>Dly the irrep {MI,O,M2} of V p + q with MI >O>M2, where 
0= (0, ... ,0), were considered. 

Recently, a vector coherent state (VeS) theory and a 
simpleK-matrix technique have been established by Deenen, 
Quesen, Rowe, and many others. 8

-
11 The combination of 

these two advances has proved to be a powerful tool in deriv
ing matrix elements of generators of semisimple Lie groups 
from ladder representations of specific subgroups. 

In this paper, we will briefly discuss the ves representa
tion of V p + q in the 0 p xV q basis. As a simple example some 
reduced matrix elements of V 4 generators in the V 4 :J V 2 
X V 2 basis are obtained. Then, we will derive some transfor
mation coefficients between V 4 :J V 2XV2 :J VI XVI and 
V 4 :J V3 :J V 2 :J V I basis vectors. Finally, analytical ex
pressions of isoscalar factors for V p + q :J V p xV q for cou
pling {MIO} X {M20} to {M; M; O} will be derived by using 
these coefficients and isoscalar factors for V n :J V n _ I . 

II. VCS REPRESENTATION OF Up +q IN Up XUq BASIS 

The up + q Lie algebra can be written abstractly as 

{Eij;l<i,j<p + q}, (2.1) 

with the commutation relation 

[Eij,E'k] = E;Jjjl - EJ/j;k' 

We decompose it into the up 61 uq subalgebra 

{C~/3 = Ea/3;I<a,{J<p} 

and 

(2.2) 

(2.3a) 

{C!v = E,w;p + 1 <jL,v<p + q}, 

with a set of raising (lowering) operators 

{Aij = Eij;l<i<p,p + l<i<p + q}, 

and a set of lowering (raising) operators 

{Bj ; = Eji;l<i<p,p + l<i<p + q}, 

(2.3b) 

(2.3c) 

(2.3d) 

with respect to the up (uq) subalgebra. Evidently, Aij with 
1 <i<p and p + 1 <i<p + q forms an Abelian algebra, and 
satisfies the condition 

A ij = Bj ;. (2.4) 

From Eq. (2.2) we obtain the following set of commuta
tion relations: 

[C~p,C~'/3'] =8fJa'C~, -8alj'C~'/3' i=porq, 

[C ~P'C !v] = [Aij,At, ] = [BjoBJt ] = 0, 

[C ~p,Aij] = 8p;Aaj, [C~p,Bj;] = - 8a;Bjp , (2.5) 

[C !v,Aij] = - 8,..jA;v' [C!v,Bji] = 8vjB,..o 

[Aij,BJt] = 8i/ C f.. - 8;,. C Jj. 
Given a generic irreducible ladder representation {M} p + q' 

where {M}p+q = {Mlp+qM2p+q" 'Mp+qp +q}' and satis
fies the betweenness condition MI >M2 > ... 

p+ q p+ q 

>Mp + q p + q' a up highest (uq lowest) weight space is de
fined by all the states belonging to the maximal up (minimal 
uq) subrepresentation {m}p({m'}q), 

M;p+q = m;p (1 <i<p), 

(1 <i<q). 

(2.6a) 

(2.6b) 

Let { I {m} p {m'} q; 1]) } denotes an orthonormal basis for 
this representation. The up + q ves wave function is defined 
byll 

'II(Z) = L I{m} p {m'} q;1]) ({m}p {m'} q;1]lez
'
A I'll), 

'1 

where I'll) is any state of the unirrep {M}p+q' 

z'A =zjiAij' 

(2.7) 

(2.8) 

where (and in the following equations) the repeated sub
scripts should be summed, and zij are p X q complex variables 
used as coordinates for the factor space V p + q !Up X V q • 

Vsing the results given by Ref. 11, we readily obtain the 
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following yeS representation of the up + q algebra: 

a 
r(Aij) =-, 

aZji 

r (c p ) - <v(p) a 
a{J - @ atJ - ZjtJ -- , 

aZja 

reB ) - <V( p) <v(q) a 
ji - Zjt @ ti - Z/i@ jf - ZjtZlLi --, 

aZlLt 

(2.9) 

where 'liijP)(1<JJ<p) ('li1;!(1 + p<p"v<.p + q» spans an 
intrinsic up (uq ) algebra only acting on the up highest (uq 

lowest) weight space I {m} p {m'} q; TJ). 
In order to construct an orthonormal Bargmann basis 

I{M}p{M'}q; TJ) that reduces the stability subalgebra up 
$ uq , we need first to construct orthonormal polynomials 

Z ~~ (z) in (Zji)' which transforms as the components of an 
irreducible tensor {- n}={ - na, - na_ 1 ,,,., - nJ un
der up and {n}={n l ,n2,,,., na} under uq with a 
= mine p,q). Then, the orthonormal Bargmann basis is de

fined byll 

(zls{M}p{M'}q; TJ) 

= [z{n}(z)XI{m}p{m'}q)]~{M}p{M\ (2.10) 

where 5 - ({n} p) indicates the two kinds of up $ uq multi
plicity that can arise in the decomposition up + q ! up $ uq • 

The branching rule for V p + q ! V p xV q has been given 
by Ref. 12 using the tensor method; the more simplified form 
given in Ref. 7 can be stated as follows: Given a fixed irrep 
{A} ofVp+q and a fixed irrep {Jt} ofVp contained entirely 
in {A}, the subduction series are 

{A}! {Jt} ® ({A} - {Ii}) = ~ rAIlV{Jt} ® {v}, 

(2.11) 

where the deleted portion {A} - {Ii}, which is a "skew tab
leau" in the sense defined by Robinson,13 forms a irrep for 
the subgroup V q' and r AIlV is the multiplicity of occurrence 
of{v} in {A} - {Ii}' 

III. APPLICATION TO THE U4 :::> U2 XU2 :::> U,XU, 
CHAIN 

As a simple nontrivial example, we will discuss the 
V 4 :::> V 2 XV2 :::> VI XVI chain in this section. We set the 
U2 $ U2 and U I $ U I subalgebras as follows: 

uil):Eij (i,j = 1,2), 

ui2 ):Ellv (li,v=3,4), 

u\l):EII , ul2):E33· 

( 3.1a) 

The remaining generators of U4 can be put in the form of 
tensor operators: 

T {IOHO - J}·{E.·i = 1 2 J' = 34} 
It v • lJ' , , " 

T {O-IHIO}·{E.·i = 1 2 J' = 3 4} a f3. JI' , , ,. 
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(3.1b) 

(3.1c) 

A. VCS representation 

The U4 ! U2 $ U2 ! U I $ U I yes wave function can be 
written as 

(3.2) 

where 

X = Z3IE13 + Z41EI4 + Z32E23 + Z42E24 

=ZIE 13 + Z2E I4 + Z3E23 + Z4E24' 

the state 

{MIM~3M4} ) 
{MIM2} {M3M4} , 

m m' 

which satisfies 

E.. I {MIM 2 } 

lJ m 
{M3M4

}) = 0, for i = 1,2, j = 3,4. 
m' 

(3.3 ) 

The yeS representation ofu4 ! U2 $ U2 can be obtained by 
using Eq. (2.9): 

and 

r(E31 ) =ZI('li l1 - 'li 33 ) +Z3'1i21-z2'1i34-ZIZ·a 

+lzl z21a4' 
Z3 Z4 

r(E32 ) = ZI 'Ii 12 + Z3( 'Ii 22 - 'Ii 33) - z4'1i 34 - Z3Z·a 

_I ZI Z21 a
2

, 

Z3 Z4 
r(E41 ) =Z2('li II - 'li 44 ) -ZI'li43 

+ I ZI Z21 aI, 
Z3 Z4 

nE13 ) = aI' r(E23 ) = a3, r(EI4 ) = a2, 

nE24 ) = a4, 

nEIl) = 'Ii 11 - zlal - Z2a2 = 'Ii II + 'Ii~~I, 

nE22 ) = 'Ii 22 - Z3a3 - Z3a4 = 'Ii 22 + 'Ii~~I, 

nE21 ) = 'Ii 21 - ZIJ 3 - Z2J4 = f&' 21 + f&'~~I, 
nE12 ) = 'Ii 12 - Z3al - Z4J2 = 'Ii 12 + 'Ii~~I, 

nE33 ) = 'Ii 33 + zlal + Z3a3 = 'Ii 33 + 'Ii~~I, 
nE44 ) = 'Ii 44 + Z2a2 + Z4a4 = 'Ii 44 + 'Ii~I, 

nE34 ) = 'Ii 34 + ZIa2 + Z3a4 = 'Ii 34 + 'Ii~~I, 
nE43 ) = 'Ii 43 + Z2JI + Z4a3 = 'Ii 43 + 'Ii~~I. 

(3.4a) 

(3.4b) 

The orthonormal Bargmann basis can be written as 
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(zl{n.n2}{M;Mi}{MiM~};mm') 

= [z{n,n,}(z) X I {M.M2}{M3M 4}) ]~"!.iMi}{MjM';}. 

(3.5) 

The orthonormal polynomials 

can be constructed as follows: 

Z {n,n,} (z) 
-m1m:! 

=ff(/f~~.)n,-m'z;n,-n'z~,-m, • 2 -, I 
z z In, 
Z3 Z4 

(3.6) 

whereff is the normalization factor. Using the explicit form 
of /f~~. given by Eq. (3.4b), we finally obtain 

z~':::;m, (z) = [ (n. - n2 + 1)!(m2 - n2)!(n. - m 2)!(m1 - n2)!]112 
- (n 1 + 1)!n2!(n1 - m.)!(n. - n2)! 

XL (n. - ml) z'[',-n,+m,- n, +kZ~'- m,- kz~,-m,-kz! I z. z21 n, • 

k k (n. - m 2 - k)! (m2 - n2 + k)! Z3 Z4 
(3.7) 

It can easily be proved that 

2 
~ /fco./f,?o. 
~ Ij }l 

i,j= • 

4 
~ /f,?o./f'?o. 
~ Ij jl (3.8) 

i.j= 3 

/f~~. 

/f~~. 

B. The matrix representations 

In order to obtain the matrix representations of this chain, we use the simple K-matrix theory summarized in Ref. 11. It is 
the transformation K that maps the VCS representations ofu4 l U2 E& U2 to an equivalent representation r = K -. r K that is 
unitary with respect to the Bargmann inner product. Because the set of operators (A ij) forms an Abelian algebra, we can set 
K = Kt. Thus, the K2 matrix elements can be obtained by using the simple equation of Rowe, 11 

K2Zi = [A,zi ]K2, (3.9) 
"'-

where A is the combination of Casimir invariants 

(3.lOa) 

with the eigenvalue 

A = ![M.(M. + 1) + M 2(M2 - 1) +M3(M3 + 1) + M4(M4 - 1)] 

- HM; (M; + 1) +Mi(Mi -1) +Mi(Mi + 1) +M~(M~ -1)] 

+ n1(n. + 1) + n2(n2 - 1) + n2(n. + 1) - ~(n. + n2)(n. + n2 - 1). (3.lOb) 

When M. = M2 or M3 = M 4, the reduction U4 l U2 XU2 is 
multiplicity-free. In this case the K 2 ( {M ; M i}{M 3 M ~} ) 
submatrix is one-dimensional and can be obtained recursive
ly by using Eq. (3.22) of Ref. 11: 

K2({M;Mi}{MiM~}) 

(M. - M + 1)!(M2 - M)! = , b~=~=M 
(M; -M+ 1)!(Mi -M)! 

(3.lla) 

K2({M;Mi}{M3M~}) 

_ (M - M 3)!(M - M4 + 1)! 
- , b~=~=M 
(M-M3)!(M-M~ + I)! 

(3.llb) 
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For the generic irrep {M.M2M 3M 4} ofU4, the nonmultipli
city-free case will occur. By solving the recursion relation of 
Eq. (3.25) given by Ref. 11 with the initial value 

(3.12a) 

We can successively obtain the K2 submatrices 

K ~IO}{IO} ({M. - IM2}{M3 + IM4}) = M. - M3 + 1, 

K ~IOHlO} ({M. - IM2}{M3M 4 + 1}) = M. - M4 + 2, 

K~IO}{IO} ({M.M2 - I}{M3 + IM4}) = M2 - M 3, 

K~IO}{IO} ({M.M2 - I}{M3M 4 + 1}) = M2 - M4 + 1, 

(3.12b) 

and 
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K~l1}{l1} ({MI - 1M2 - IHM3 + IM4 + 1} 

= H(M2 - M4)(MI - M2)(M3 - M4 + 2)(MI -M3 + 1) 

+ (MI -M3)(MI - M2 + 2)(M3 - M4)(M2 - M4 + 1) 

+ (MI - M2)(M3 - M4)(MI - M4 + 2)(M2 - M3 - 1) 

+ (MI -M2 + 2)(M3 -M4 + 2)(M2 -M3)(MI - M4 + 1»)/(M3 -M4 + 1)(MI - M2 + 1). 

Kho}{20} ({MI - 1M2 - I}{M3 + IM4 + 1}) 

= H (MI - M2 )(M3 - M4)(MI - M4 + 3)(M2 - M3) + (MI - M2)(M3 - M4 + 2)(MI - M3 + 2) 

X (M2 - M4 + 1) + (MI - M2 + 2) (M3 - M4) (M2 - M4 + 2) (MI - M3 + 1) + (MI - M2 + 2) 

X (M3 - M4 + 2)(M2 - M3 + 1)(MI - M4 + 2»)/(M3 - M4 + 1)(MI - M2 + 1), 

K~20}{1I} ({MI - 1M2 - I}{M3 + IM4 + 1}) = K~11}{20} ({MI - 1M2 - IHM3 + IM4 + 1}) 

= - (MI -M2 +M3 -M4)[(MI -M2 + 2)(M3 -M4 + 2) 

X(MI-M2)(M3-M4»)1/2/2(MI-M2+ 1)(M3-M4+ 1). 

The results will be more complicated with the increase of n I 
and n2' 

I 
/ {MIM2MM} {MIM2MM}) 
\ {Mi'M;HM3'M;} IIzil {M;MiHM;M;} 

(3.12c) 

In the following we will concentrate on multiplicity-free 
cases. The reduced matrix elements of Eji with j = 3,4 and 
i = 1,2 can be derived by using the following equations II: 

= ({n; n;}lIzII{n ln2}) UH,(MI - M2),~(nl - n2), 

/ {MIM2MM} {MIM2MM} ) 
\ {Mi'M;HM3'M,n IIEjili {M;Mi}{M 3Mn 

K( {Mi' M ;}{M3'M;}) 

K( {M; M i HM;M ~}) 

/ {MIM2MM} {MIM2MM}) 
X\ {M;'M;HM3'Mn IIzll {M;MiHM;M~} , 

/ {MMM3M4} {MMM3M4} ) 
\ {Mi'M;}{M3'Mn IIEjili {MiMi}{M 3M;} 

K({Mi'M;HM3'M;}) 

K({M; M iHM 3M ~}) 

(3.13a) 

/ {MMM3M4} {MMM3M4}) 
X\ {Mi'M;HM3'M;} IIzll {M;MiHM;M~} , 

(3.13b) 

and 

/ {MIM2M3M4} {MIM2M3M4}) 
\ {M;MiHM;M~} IIEijil {M;'M;HM3'HM;} 

X!(Mi' -M;>,!;!(M; -Mi), 

X~(n; - n; »U(Od(n l - n2), 

X!(M;'-M;),~;!(M; -M;),!(n; -n;», 

(3.14a) 

/ {MMM3M4} {MMM3M4}) 
\ {M;'M;HM3'M;} IIzll {MiMiHM;M~} 

= ({ni ni}jjzll{n ln2}) U(O,!(n l - n2),!(Mi'M;>,!; 

!(M; - Mi ),~(ni - ni» 

X UWM3 - M4),!(n l - n2),!<M3' - M;),!;!(M; 

(3.14b) 

where the U-coefficient is a Racah W-coefficient in unitary 
form, and l4 

[ 
(nl + 2)(n l - n2 + 1) ]112 

= 0 I ,0 , 
n,+ n, n,n, (n

l
-n

2
+2) 

+0 ,0 ,[ (n2+ l)(n l -n2+ 1) ]1/2. 
n,n, n,+ In, (n

l 
- n

2
) 

(3.15 ) 

The reduced matrix elements of Eij with i = 1,2 and j = 3,4 
follow from Hermitian conjugation 

= ( _ )1 + 112(M, -M,+M2' -M"+Mj-M'+M4'-M» [ (M;' - M; + I)(M3' - M; + 1) ] 112 

(M; -Mi + I)(M; -M; + 1) 

/ {MIM2M3M4} {M1MzM3M4} ) 
X\ {Mi'M;HM3'M;} IIEijil {M;MiHM3M~} . 

(3.16 ) 
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The Eq. (3.14) can be written more explicitly by using the results given by Eq. (3.15): 

( 
{MIM2MM} {M1M2MM}) 

{M;'M~}{M~M:} Ilzll {M;M~}{MjM~} 

= 

[ 
(MI -M2 +M; -M~ - n. + n2)(M. -M2 -M; +M~ + n. - n2 + 2)(n. + 2) ]112, 

4(M; -M~(n.-n2+2) 

if{M;'Mn = {M; -1M;}, {M~M.n = {Mj + IM~}, 

-[(M; -M~ +n.-n2+M.-M2+4)(M; -M~ +n.-n2-M. +M2+2)(n. +2)].12, 

4(M; - M~ + 2)(n. - n2 + 2) 

if{M;'Mn = {M;M; - n, {M;M;} = {Mj + IM~}, 

[ 
(M; -M; + n. - n2 +M. -M2 -:- 2)(~; - M~ + n. - n2 -M. +M2)(n2 + 1) ]112, 

4(M. -M 2 )(n.-n2) 

if{M;'Mn = {M; - 1M;}, {M~M;} = {MjM~ + n, 

[ 
(MI-M2-M; +M~ +nl -n2)(M1-M2+M; -M; -nl +n2+2)(n2+ 1) ]112 

4(M;-M~+2)(nl-n2) , 

if{M;'M~} = {M;M~ - n, {M~M;} = {MjM~ + n 

( 
{MMM3M4} {MMM3M4}) 

{M~'M~}{M~M:} IIzll {M;M~}{MjM~} 

[ 
(M3-M4-nl +n2+Mj -M~ +2)(M3-M4+nl-n2-Mj +M~)(n2+ 1) ]112, 

4(Mj - M~ + 2)(n l - n2) 

if{Mi'Mn = {M; - 1M;}, {M;M;} = {Mj + IM~}, 

[ 
(M3-M4+n.-n2-Mj +M~ +2)(M3-M4-n. +n2+Mj -M~)(n. +2) ]112, 

4(Mj - M~ )(n. - n2 + 2) 

if{M;'Mn = {M;M~ - n, {M;M;} = {MjM~} + n, 

[ 
(Mj -M~ +M3 -M4 + n. - n2 + 2)(n. - n2 + Mj -M~ -M3 +M4)(n2 + 1)]112, 

4(n. - n2)(Mj - M~) 

if{M;'Mn = {M; -IM~}, {M;M;} = {MjM~ + n, 

[
(n l -n2+Mj -M~ +M3-M4+4)(nl -n2+Mj -M~ -M3+M4+2)(nl +2)]112, 

4(n l -n2+2)(Mj -M~ +2) 

where {MjM~} = {n 1n2} in Eq. (3.17a) and 
{M;M~} = {n\n2} in Eq. (3.17b). 

IV. SOME ISOSCALAR FACTORS FOR UpH :J UpXUq 

(3.17a) 

(3.17b) 

For two rowed irreps {M\Mi>O} of U4, the reduction for U4 1 U2 XU2 is multiplicity-free. The basis vectors of 
U4 :J U2 XU2 :J U\XU\canbeexpandedintermsofU4 :J U3 :J U2 :> U\canonicalbasisvectorswithoneofthetwosets 
ofthe U2 :> U\ labels fixed: 

{M1M2OO} ) 
M\ -s+ kM2 - kO} 
M\-rM2 -s-t} , 

m 

(4.1 ) 
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whereA k (rst,MIM 2; m') is the transformation coefficient; the U3labels can be determined by actingE33 andE44 on Eq. (4.1). 
Furthermore, Acting E34 on Eq. (4.1), we have 

Ak(rst,MIM2;r + t) 

= ( _ )k ff [ (kS) (a - s + 2k + l)(a - s + k)! (r _ s + k)!(a + k + t + 1 )!(s _ k + t)!] 112, 
(a - r + k)!(a + k + 1)1 

where a = MI - M 2, and ff IS a normalization factor. Using the identity 

± (S) (a-s+2k+ l)(a-s+k)!(r-s+k)!(a+k+t+ 1)!(s-k+t)! 

k=O k (a-r+k)!(a+k+l)! 

(r-s)!(a + t + 1)!(r+ t + 1)!t! 
= 

(a-r+s)!(r+t-s+ I)! 
we obtain the special transformation coefficients with m' = r + t. 
Ak (rst,MIM 2;r + t) 

= ( _ )k+t.(rst;M,M,) 

(4.2) 

(4.3) 

x [ (s) (a - s + 2k + 1) (a - s + k)!(r - s + k)!(a + k + t + 1 )!(s - k + t)!(a - r + s)!(r + t - s + 1 )!] 112, 

k (a-r+k)!(a+k+ 1)!(r-s)!(a+t+ 1)!(r+t+ 1)!t! 

where 6. (rst;MIM 2) is an appropriate phase factor. Acting E32 on Eq. (4.1), we get 

Ak(r+ Ist,MIM2;r+t+ 1) = _ A k (rst,MIM2;r+t) [ (r-s+k+ l)(r+t-s+2)(a-r+k)]II2. 
(r + 1 - s)(r + t + 2)(a - r + s) 

Similarly, acting E42 on Eq. (4.1), we obtain 

Ak (rs + It,MIM2;r + t) 

_ -A ( MM' +t) [ (s+ l)(a-s+2k)(s-k+t+ l)(a-r+s+ l)(r-s+ 1) ]112 - k rst, I 2,r , 
(a - s + 2k + 1) (a - s + k) (r - s + k) (r + t - s) (s - k + 1) 

A (rst+ I,M M;r+t+ 1) = A (rst,M M;r+t) [(a+k+t+2)(s-k+t+ l)(r+t-s+2)]1/2, 
k 12k I 2 (a + t + 2)(r + t + 2)(t + 1) 

(4.4 ) 

. (4.5) 

(4.6a) 

(4.6b) 

where the results obtained from Eqs. (3.13 )-(3.17) are used in deriving Eqs. (4.5) and (4.6). Thus, the overall phase factor 
6. (rst,MIM 2;r + t) can be chosen as ( _ )s- '. 

Next, coupling two symmetric basis vectors given by Eq. (4.1), and using the Racah factorization lemma, we have 

[ U4 I {MIO} {M20}] [PI P21 {m3m4}] 
U

2
XU

2 
{MI - PIO}{PIO} {M2 - P20}{P20} ql q2 m3 Ao( PIOO,MIO;ql)Ao( P200,M20;q2) 

[ 
MI M2] I {M;M~} 

= '} Ak(mlm2m3m4' M;M~;m3) } 
"( MI -PI +ql M2 -P2 +q2 {m l + m2 + m3 -M~ + kM~ - k 

X [ MI - PI + ql M2 - P2 + q21 {m l + m2 + m3 - M ~ + kM ~ - k] 
MI - PI M2 - P2 {m lm2} , 

where 

and 

( 

{M;M~OO} 

Ak(mlm2m3m4,M;M~;m3) = {mlm2}{m3m4} 

m m3 

[ PI P21 {m3m4}] ,etc. 
ql q2 m3 

are isoscalar factors for Un :J Un _ I . 

According to the above phase choice, we have 

Ao(IOO,MO;q) = ( - 1 y. 

{M;M~OO} ) 
{m l + m2 + m3 -M~ + kM~k} , 

{m l m2 } 

m 

(4.7) 

(4.8) 

(4.9) 

Because the isoscalar factors for Up + q :J Up xU q and Un :J Un _ I are p, q, and n independent, using the analytical 
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continuation and the known isoscalar factors for Un:::> Un _ 1;5 from Eq. (4.7) we obtain the isoscalar factors for 
Up + q :::> Up xU q of the following type: 

[ 
Up+q I {MIO} {M20} I {M;MiO} ] 

Up XUq {MI - PIO}{PIO} {M2 - P20}{P20} {mlm20}{m3m40} 

=(_)MI-m,-m4+P'2m,-m4(m3_m4+1)! I 2 I 2' I I I' 
, [(2M' -2M' +2)(M -M')'(m -M +p)' 

(PI + P2 + m3 - m4 + 2)!!(m3 - m4 + PI - P2)!! 

«m, +m3-M;)!(M; -m l -m4)!)-I(PI +P2-m3-m4)!!(ml-Mi +m4)! ]112 

X (m3 - m4 + P2 - PI)!!( M; - MI)!(MI - PI - m2)!(m, + m3 - Mi + 1)!(m3 + 1)! 

X L( _ )k+x+y+z' z!(m3 -z)!(M; -MI +PI-z-x)!(M,-Mi -PI +k+z+x)! 

kxyz X!Y!(PI -z-x)!(z- y)!(m l + m 2 + m3 - MI - Mi + PI + k -z- x)! 

(m l + m2 + m3 -MI -Mi +PI + k -y)!(MI -PI - m 2 + y)! x--------------------------------------------------------------------
(MI -PI - Mi +z+x)!(m l -MI +PI - y)!(MI -PI - Mi + k + y)!(M; -Mi + k + 1)! 

[ ( 
m4) (m, + m2 + m3 - 2Mi - 2k + l)(M; - Mi - m4 + 2k + 1)(M; - Mi - m4 + k)! 

X k k!(m2+m3-Mi +k)!(MI-Mi +k-PI +z)!(M; -ml-m2-m3+Mi -k)! 

X(MI-p,-Mi +z+k)!(M; -m l -m4 +k)!(m l +m2+m3-2Mi +k)! ]
112 

( 4.10) 

v. CONCLUDING REMARKS 

Using the ves theory and K-matrix technique, we ob
tain some matrix elements for U4 :::> U2 XU2 when this re
duction is multiplicity-free. However, for the general Up + q 

:::> Up xU q basis, the results will be very complicated. First
ly, the complication will arise in the construction of ortho
normal polynomials Z~ - n}~n}(z). Another difficulty will 
occur when the reduction Up + q ! Up xU q is nonmultipli
city-free. In this case, the analytical forms of matrix ele
ments of raising (lowering) operators cannot be achieved; 
and these matrix elements can only be calculated numerical
ly. 
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The concept of a versal deformation of a Lie algebra is investigated and obstructions to 
extending an infinitesimal deformation to a higher-order one are described. The rigidity of the 
Witt algebra and the Virasoro algebra is deduced from cohomology computations for certain 
Lie algebras of vector fields on the real line. The Lie algebra of vector fields on the line that 
vanish at the origin also turns out to be rigid. All the affine Lie algebras are rigid; this is 
derived from the cohomology of their maximal nilpotent subalgebra. On the other hand, the 
maximal nilpotent subalgebras in both the Virasoro and affine cases are not rigid and have 
interesting nontrivial deformations (in fact, most vector field Lie algebras are not rigid). 

I. INTRODUCTION 

It is known that in characteristic zero a semisimple Lie 
algebra has no nontrivial deformations. I The same is true for 
infinite-dimensional classical Lie algebras from the "Cartan 
series." We say that those Lie algebras are rigid. However, in 
nonzero characteristics, both semisimple and Cartan type 
Lie algebras have nontrivial deformations, as was shown by 
Rudakov (1971)2 and Dzumadil'daev (1980)? For some 
other modular Lie algebras there are also interesting re
sults.4 It is known that solvable and nilpotent Lie algebras 
have very many nontrivial deformations. All infinitesimal 
deformations (defined later) of the maximal nilpotent subal
gebra of simple finite-dimensional Lie algebras are known 
(Leger-Luks5

), but the infinitesimal deformations for some 
other of their subalgebras are impossible to classify (Piper, 
1971).6 

In infinite dimension, we consider Lie algebras having a 
triangular decomposition:7 affine algebras, Virasoro alge
bra, and their nilpotent subalgebras. 

In this paper I am going to present my results on the 
deformations of these infinite-dimensional Lie algebras. 

II. PRELIMINARIES 

For computing deformations, we need cohomology the
ory. We should mention that although a highly developed 
general theory existed, there were very few computations. 
The situation changed in the late 1960s, after the important 
Russian works of Gel'fand and Fuks on the cohomology 
with trivial coefficients of Lie algebras of vector fields on a 
smooth manifold.s In 1976 the cohomology of the maximal 
nilpotent subalgebras of affine algebras with trivial coeffi
cients was also computed (Garland-Lepowsky9). 

(i) For computing deformations, we have to compute 
cohomology with coefficients in the adjoint representation. 

Let L be a Lie algebra (finite or infinite dimensional). 
Let us define a Lie superalgebra structure on the cochain 
complex C . (L;L). For a E CP (L;L), hE C'l (L;L), define 
ab E Cp+q-I(L;L) by 

ab(gw··,gp+q_l) 

: = ~ sgn(a)a(b(g; , ... ,g; ),g}, , ... ,g}, ), 
"" 1 q 1 p- 1 

(T 

where a runs over all the shuffle permutations with 

i l < ... <iq andjl < ... <jp_I' Put 

[a,b]: = ab - ( - 1)(p-l)(q-l) ba. 

The differential of degree 1 acts on brackets by the rule: 

d([a,b]) = [da,b] - (- 1)p-1 [a,db]. 

It is easy to verify that the cochain complex C . (L;L) is a 
differential Lie superalgebra. The superbracket multiplica
tion can be lifted to the cohomology space: 

HP(L;L) ®Hq(L;L) -HP+ q- I(L;L) 

(see Ref. 10 for details). 
(ii) Recall the intuitive definition of a deformation of a 

Lie algebraLo. It is a family of Lie algebrasL, with the same 
underlying vector space, and with the bracket 

fl, (x,y) = flo(x,y) + rp(t) (x,y) 

= [x,y] + rp1t + rp2t2 + "', 
where x,y E Lo, rp(t) = ~i"= It ;rp;, and flo (x,y) is the origi
nal bracket in Lo. Obviously rpiE C 2 (Lo;Lo) and the Jacobi 
identity means 

- drp = Hrp,rp] , 

or for each k, 

- 2Idrpk = I I [rp;orpj] mod(tk+ I), 
k k i+j=k 

wheredand [ , ] where defined in (i). (This is the so-called 
"deformation equation.") 

A deformation is said to be of order k if the Jacobi identi
ties are satisified mod (tk + 1 ). A deformation of order 1 is 
called an infinitesimal deformation. 

III. VERSAL DEFORMATIONS 

First we give a general definition of Lie algebra deforma
tions. There are four steps in the generalization (for details 
on this see Refs. 10, 11 ) . 

(i) Consider L, as a Lie algebra over K«t). 
(ii) Generalize over K [[tl' ... ,t,]]. 
(iii) Let the parameter space A be a local finite-dimen

sional algebra. We say that LA is a deformation of the Lie 
algebra L, parameterized by a local finite dimensional alge
bra A if LA is a Lie algebra structure over A on L ® K A such 
that the Lie algebra structure on 
L = LA ® AK = (L ®A) ® AK is the given one on L. 
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(iv) Let the parameter space be a complete local algebra 
A (A = lim A /m~, where A /m~ are local finite dimensional 
for each n). A deformation of L parametrized by a complete 
local algebra A is a projective limit of deformations of L, 
parametrized by A /m~. Two deformations, LA and L ~, 
parametrized by A are called equivalent if there exists a Lie 
algebra isomorphism over A of L A on L ~ , inducing the iden
tity of LA ® A K = L on L ~ ® A K = L. "'-

Define a functor from the category C of complete local 
algebras into the equivalence classes of deformations of L, 
parametrized by A. 

The generalizations (i)-(iv) are necessary in order to 
define the so-called versal deformations, which induce all 
the other deformations of a given Lie algebra. A 

Definition: A deformation L R of L parametrized by RE2 
is a versal deformation if for any LA' parametrized by AEC, 
there exists a morphism fiR -A such that (i) LR ® RA is 
equivalent toLA; (ii) if the map mR/m~ -+mA/m~ induced 
by fis unique. 

Theorem 1.1: If H 2 (L;L) is finite dimensional then 
there exists a versal deformation. 

Proof" The statement follows from a general theorem of 
Schlessinger. 12 See the details in Ref. 10. 

Remark: Suppose A = C[tl, ... ,tn]l/. Then the deforma
tion equation is the following (see Ref. 11): 

2 ') (dqJa )t a + I I [qJ.B,qJy] t.Bt y=O (mod I). 
I~I lal>I • .B+y=a 

For lal = 1 we get dqJa = o for each a, whichmeansthatqJa 
has to be a cocycle. 

Proposition: The elements of H 2 (L;L) correspond bijec
tively to the nonequivalent infinitesimal deformations. 

Proof" This well-known fact can be proved by direct 
computation. 

Corollary:TheconditionH 2(L;L) = o is sufficient for L 
to be rigid (but not necessary). 

IV. OBSTRUCTIONS 

After defining the nontrivial infinitesimal deformations, 
the next natural question arises: Is it possible to extend an 
infinitesimal deformation to a deformation of higher order? 
The answer is "no" in general. To extend it (represented by a 
cocycleqJl) to second order, parametrized by C[t]l(t 3), it is 
necessary and sufficient that [qJl' qJtl is cohomologous to 0, 
which means that it must be a coboundary. The Jacobi iden
tity of order 2 is 

- 2 dqJ2 = [qJl' qJtl· 

If qJ2 is a cochain such that this identity is satisfied, then 
we can define a deformation of order 2 with the bracket 

/-L. = /-Lo + qJlt + qJ2t 2, 

where qJ2 is well defined up to a two-cocycle. The cohomo
logy class of [qJI' qJI] is thefirst obstruction to forming a one
parameter family of deformations whose first term is coho
mologous to qJI' Ifit vanishes, another obstruction may show 
up at the next level. To extend it to a third-order deformation 
parametrized by C [ t] / ( t 4) , it is necessary and sufficient that 
[ qJl' qJ2] is also cohomologous to zero. If qJ3 is a cochain such 
that 
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cochain such that 

- 2 dqJ3 = [qJl' qJ2] + [qJ2' qJtl, 

(the class [qJl' qJtl is zero), then we can define a deforma
tion of order three with the bracket 

/-L. =/-Lo + qJlt + qJ2t2 + qJ3t3. 

Here, qJ3 is also defined up to a two-cocycle. The cohomo
logy class of [qJl' qJ2] is the second obstruction to forming a 
one-parameter family of deformations, whose first term is 
cohomologous to qJ I' 

In general, let us define in H . (L;L) higher operations, 
called Massey operations. These operations of order n are 
partially defined and they are well-defined modulo those of 
order (n - 1). It is enough to define them on the homoge
neous elements. For YI E H 2 (L;L) and Y2 E H 2(L;L) the 
Massey operation of order 2 is the superbracket. Suppose 
that for YI E H 2(L;L), Y2 E H 2(L;L), and Y3 E H 2 (L;L), 
[Y;'Yj] = O. Then for the cocycles X; representing 

Y;, [x;Xj] = dXij' where xij are one-cochains. Then the Mas
sey operation of order 3, [YI'Y2'Y3] takes value in the factor 
space 

This cocycle is not well defined and depends on the choice of 
X ij' but its image in the factor space is well defined. 

In general, Massey operations are defined on n classes of 
any cohomology space Hk, (L;L), Hk, (L;L), ... such that 
the operations of smaller order are all cohomologous to 
zero. 10,13 More generally, Massey operations can be defined 
in H . (L;A), where A is any L module. In the case A = L, 
the Massey operations take value in H 3 (L;L), and they are 
closely connected with the obstructions to "expanding" an 
infinitesimlll deformation of the Lie algebra. 

Theorem 1.2: If all the Massey products from H 2 (L;L) 
of an infinitesimal deformation are cohomologous to zero 
then there exists a formal deformation of the Lie algebra L, 
continuing the given infinitesimal deformation. 13 (The con
verse is obviously true. ) 

Remark: Whether this series converges or not remains a 
question. 

After finding the obstructions, we can compute a versal 
deformation for the given Lie algebra step by step. A versal 
deformation of order one is given with the help of infinitesi
mal deformations and is parametrized by K[tl, ... ,tn ]I(m2), 
where m is the maximal ideal in K[tl, ... ,tn ]: 

/-L. =/-Lo + qJltl + ... + qJntn' 

Let us try to extend this deformation to a versal defor
mation of order 2 parametrized by K[tI, ... ,tn]lI where I 
contains m3

• The bracket should be of the form 
n 

/-L. = /-Lo + I qJ;t; + I qJijt;tj' 
;=1 

with the conditions that 
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(see Refs. 10 and 11 ). The conditions for the coefficients of a 
versal deformation can be obtained from the deformation 
equation step by step. 

V. VIRASORO ALGEBRA AND ITS SUBALGEBRAS 

Consider the complexification .!f of the Lie algebra of 
polynomial vector fields on the circle: 

ek -+ (exp ikrp)~, 
drp 

where rp is the angular parameter. The Lie algebra .!f is 
called the Witt algebra. It is well known 14 that .!f has a 
unique nontrivial one-dimensional central extension. The 
extended Lie algebra 2> is called the Virasoro algebra. 

Theorem 2.1: For the maximal nilpotent subalgebra LI 
of the Virasoro algebra, 

dim~(LI;LI) =2q-I, 

and the space Hq (L I;L I) is generated by elements of weight 
- (3q2 - q)/2 + i, where q> 0, i = I,2, ... ,2q - 1. 

Proof There are two alternate proofs. The first prooflo 

uses Feigin-Fuks spectral sequences IS and Goncharowa's 
result 16 on the cohomology with trivial coefficients (see also 
Ref. 17). The second proof is similar to the procedure to 
determine the cohomology of maximal nilpotent subalgebra 
of a complex semisimple Lie algebra with coefficients in an 
irreducible representation, see Ref. 18 for details. 

Corollary: The Lie algebra LI has three nonequivalent 
infinitesimal deformations. Denote the cocycles represent
ing the different cohomology classes by a, {3, and y, where a 
isofweight - 2,{3ofweight - 3, and yofweight - 4. Such 
cocycles are given explicitly in Ref. to. 

Theorem 2.2: The Witt algebra and the Virasoro algebra 
are rigid. 

Proof This follows from Ref. 16 and Theorem 2.1. 
Theorem 2.3: For the Lie algebra L I , the infinitesimal 

deformation of weight - 2 can be extended to a real defor
mation. The one with weight - 3 can be extended to a defor
mation of order 2, but not of higher order, and the infinitesi
mal deformation of weight - 4 cannot be extended at all. 

Proof It follows from computing the possible Massey 
operations. 10 A nice realization of the extended deformation 
of weight - 2 is the following. Denote by LI (t) the Lie alge
bra of vector fields (x2 + t) rp ( t) (d / dx). Define a linear iso
morphism E,: LI-+LI (t) by the formula 

E, (ei ) = (x2 + t)xi - I (! ) = ei + tei _ 2' 

Then 

[ei,ej ], =E,-I [E, (ei),E, (ej )] 

defines a deformation of LI of weight - 2. 
Theorem 2.4: Let Lk denote the subalgebra of the Witt 

algebra with the basis ej =xj+l(d/dx),j=k, k+ 1, .... 
The cohomology spaces Hq(Lk;Ls) are finite dimensional 
for each positive integer k and s: 

dimHq (Lk ; L.)<.,k dim Hq (Lk+ I: C) 

+ (k + 1 - s)dim Hq(L k : C). 

Proof The cohomology H . (Lk;L.) can be computed 
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with the help of the spectral sequence, associated to the fil
tration 

Ls::J Ls+ I ::J Ls+ 2 ::J ... 

in the coefficient module. 19 

Corollary: Each of the Lie algebras L K, k> 1 has a finite 
number of nonequivalent deformations. 

Remark: The upper bound seems to be rather crude be
cause for q = 1 and k = s it gives 

dimH I(L k ;L k )<.,k 2 +3k+ 1, 

while a direct computation shows that the precise dimension 
of this cohomology space is k. 

Theorem 2.5: For the Lie algebra Lo of vector fields on 
the line, vanishing at the origin, 

Hq (Lo;Lo) = 0, for each q> 1. 

Particularly, the Lie algebra Lo is rigid. 
Proof It follows from constructing the corresponding 

spectral sequence and the results for trivial coefficient coho
mology: 

Hq(Lo) = {C, 
0, 

for q = 0,1, 

for q> 1. 

VI. AFFINE ALGEBRAS AND THEIR SUBALGEBRAS 

Let 9 denote an affine Kac-Moody Lie algebra (twisted 
or untwisted) and g+ denote its maximal nilpotent subalge
bra (g = 9 _ ED h ED g +' see e.g., Ref. 20). R,ecall that the one
dimensional cohomology space with coefficients in the ad
joint representation corresponds to the exterior derivations 
of the given Lie algebra. 

Theorem 3.1: A basis in the space of exterior derivations 
of the Lie algebra g+ is the following: 

hi: g-+ [hi,g], i= 1, ... ,n - 1, 

T.: tiS + I (!!...), i = 0,1,2 ... , 
, dt 

where s is the order of the exterior automorphism of the 
corresponding finite-dimensional simple Lie algebra. 

Proof Let 9 = ED i> 0 gi be a nilpotent graded Lie algebra 
and B = EDB j a graded 9 module. The space of k chains 
C ~m) (g;B) is spanned by monomials of the form 

gl/\ ... /\ gk ® b, 

where gse gi,' be Bj , i l + ... + ik + j = m. Denote by 
Fp Clm)(g;B) thesubspaceofC~m)(g;B) generatedbymon
omials with i l + ... + ik <., p. Obviously, {Fp} is a decreas
ing filtration. Let us apply the spectral sequence correspond
ing to this filtration to the computation of the homology of 
g+ with coefficients in the coadjoint representation g'!r 
(which is equivalent to the computation of the cohomology 
of g+ with coefficients in the adjoint representation). For 
each of the affine Lie algebras the terms and differentials of 
this spectral sequence can be explicitly determined.21 

Examples of infinitesimal deformations of the Lie alge
bra g+: 

(i) If aeHI(g+;g+) and {3eH I(g+;C) then a{3 
e H 2 (g +;g + ). The number of such deformations is 
dimHi(g+;g+)·dimHi(g+;C). (In Theorem 3.1 we saw 
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that the first factor, and hence the product, is infinite.) 
(ii) Let 1 <.i<.n, where n is the rank of g. Define a defor

mation of g+ inside g: ei deforms into ei + th, the other 
additive generators of g + do not change. The number of such 
deformations is n. 

(iii) Let 1 <.i, j<.n, such that in the Cartan matrix 
aij = - 1. If aij = aji , choose i <j. The Lie algebra g+ again 
deforms inside g, with ei deforming into ei + th, and [eiJej ] 

into [ eiJej ] - thj' while the other additive generators do not 
change. The number of such deformations is the number of 
nonzero pairs (aij,aji) with i#I 

Theorem 3.2: For all affine Lie algebras g except AI: 
(i)All the homogeneous infinitesimal deformations of g+ 
Jtlay be extended to real deformations. 

(ii) The space of infinitesimal deformations, 
H 2 (g +;g + ), is spanned by deformations described in (i), 
(ii), and (iii). Thus all deformations arise from these infini
tesimal ones. 

Proof· There are two methods. The first proof uses filtra
tion in the cochain complex and the corresponding spectral 
sequence. 21 The other method22 uses results for the maximal 
nilpotent algebra n + of finite-dimensional semisimple Lie 
algebras. We know H . (n+;s) where s is the adjoint repre
sentation of the finite-dimensional semisimple algebra s. 
Consider the exact sequences of n + modules: 

O ..... n+ ..... s ..... sln+ ..... O, O ..... h ..... sln+ ..... n~ ..... O 

(h is the Cartan subalgebra of s). These sequences allow us 
to reduce the computation of H 2 (n +;n +) to that of 
H I(n+;n~ ) which can be computed directly. Generalizing 
this method for the infinite dimensional affine algebras, we 
get the statement of Theorem 3.2. 

Theorem 3.3: The case of A 1 is an exceptional case be
cause there are two additional infinitesimal deformations 
not listed in (i), (ii) [type (iii) does not exist]. These two 
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infinitesimal deformations cannot be extended to real defor
mations of g+, even not to order 2 (because their Massey 
square is nonzero). 

Proof: By direct computation with the help of the de
scribed spectral sequence.21 The generalization of the finite 
dimensional method22 does not work for this particular case. 

Theorem 3.4: All the affine Lie algebras are rigid. 
Proof: It follows from Theorem 3.2 for g#AI and by 

direct computation for g = A I. For an independent proof see 
Ref. 23. 
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Six-dimensional solvable Lie algebras over the field of real numbers that possess nilradicals of 
dimension four are classified into equivalence classes. This completes Mubarakzyanov's 
classification of the real six-dimensional solvable Lie algebras. 

I. INTRODUCTION 

On the strength of the Levi theorem, the Lie algebras fall 
into the following three categories: The semisimple algebras, 
the solvable algebras, and the semidirect sums of solvable 
and semisimple algebras. A list is available of the semisimple 
Lie algebras of a finite dimension; this result is due to Cartan. 
Recently, mainly because of the cosmological applications, 
one observes a growing interest in the field of the real Lie 
algebras that also possess a nonsemisimple structure. Jacob
son's monograph' offers the enumeration of the solvable al
gebras of low dimensions. However, it is not an easy task to 
find a classification method to extend directly to the case of 
higher-dimensional solvable algebras. In 1962, Mubarak
zyanov attempted to obtain such a method.2

,3 Then he suc
cessfully applied it for algebras of dimension less than five. 3 

Over the next few months he completely solved the classifi
cation problem for five-dimensional solvable algebras4 and 
partially for six-dimensional solvable algebras.5 

In this paper we consider the problem of finding all 
equivalence classes for the six-dimensional solvable Lie alge
bras N6 over the field JR of real numbers. Since the dimension 
of a nilradical NR of N is dim NR;;;'~ dim N (see Ref. 3), 
there are four possibilities to consider: Nilpotent six-dimen
sional algebras· and solvable algebras that contain five-, 
four-, or three-dimensional nilradicals. In a little-known dis
sertation,6 on nilpotent Lie algebras, Umlauf classified nil
potent algebras of dimension six over the field of complex 
numbers. A similar classification of nilpotent six-dimension
al algebras was performed by Morozov7 (over any field of 
characteristic 0) and, independently, by Skjelbred and 
Sunds (over JR). Algebras N6 that contain five-dimensional 
nilradicals were classified in the paper mentioned above by 
Mubarakzyanov into 99 equivalence classes.5 Algebras N6 
that contain three-dimensional nilradical are decompos
able.2

,5 Therefore, all we have to do to complete the classifi
cation of six-dimensional solvable algebras, is to classify the 
algebras that contain nilradicals of dimension four. 

In the following, a method to obtain the solvable alge
bras is presented. We notice4 that Mubarakzyanov solved 
the problem of obtaining Ns by a similar method. However, 
he did not use the notions of derivation and semidirect sum 
explicitly; they are convenient in performing the classifica
tion of Lie algebras.9-11 In Sec. III an application to six
dimensional algebras is given. There are 27 algebras of di
mension six that contain Abelian nilradicals of dimension 
four; they are summarized in Tables I and II. Tables III, IV, 
and V provide algebras of dimension six that contain non
Abelian nilradicals of dimension four. We use the results of 

Sec. III in another paper in which nine-dimensional algebras 
that admit a nontrivial Levi decomposition are expressed in 
terms of six-dimensional solvable algebras and three-dimen
sional simple algebras. " 

II. A METHOD TO OBTAIN THE SOLVABLE ALGEBRAS 

A solvable Lie algebra N has a decomposition of the 
form 

N=NR-+-X, 

satisfying 

(1) 

[NR,NR J CNR, . [NR,X J ~NR, [X,x J CNR, (2) 

where NR denotes nilradical of N, the vector space X is 
spanned by remaining generators and -+- denotes the direct 
sum of vector spaces. Let us define the commutators of the 
[NR,xJ type by 

[x,n] = D(x)*n, (3) 

where xEX, nEN, and D(x) is a linear mapping, D(x): 
NR3n->D(x)*nENR. 

The Jacobi identity for the triples {x, n" n2 } implies that 
D(x) are derivations in NR, D(x)EDer(NR), 

D(x)*[n"n2] = [D(x)*n"n21 + [n"D(x)*n2], (4) 

for every x in X, and n" n2 in NR. Since xf!NR, these deriva
tions are not nilpotent and, as a consequence, they are outer 
(=noninner) in NR. Every nilpotent algebra has an outer 
derivation. '2 However, nilpotent algebras are known, called 
characteristically nilpotent, that possess only nilpotent deri
vations; 13,'4 these are not nilradicals of any solvable Lie alge
bra. 

The Jacobi identity involving two x's and one n implies 

[D(x,),D(x2) 1 = adNR ([x"x2]), (5) 

where adNR is the restriction of the adjoint representation to 
NR: adNR(n;)*n=[n;on]NR' Therefore, we have 
[D(x;),D(xj)]EInn(NR), for every x;EX,xjEX where 
Inn (NR) denotes the algebra of inner derivations in NR. For 
the Abelian nilradical, it follows that [D(x;) ,D(xj )] = O. 

What changes can be made in the linear mapping 
D(x)EDer(NR)? Let {n"n2, ... ;x,,x2""} be a basis of 
NR -+- X, where n,ENR and x;EX. Consider 
x k = ~aikxi + ~f3;kn;, where A = (a;k) is nonsingular. 
This gives the new basis {Xk} of X and changes 
D(xi ) EDer(NR ) to the following D(xk )EDer(NR): 

D(xk) = Ia;kD(x;) + 2}3;k adNR(n;). (6) 

A change of basis in the nilradical nk = I.T;kn;, where 
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T = ('Tik) is the automorphism, will change every D(xi ) to a 
similar matrix TD(xi ) T- ' . 

If the nilradical NR of a solvable algebra is given, the 
classification problem reduces to the one of finding the deri
vations of the nilradical that are not nilpotent and that satis
fy Eq. (5). These derivations define the commutators of the 
[NR,x] type. Finally, the structure of the subspace X, i.e., 
commutation relations [X,x] can be found. 

III. A CLASS OF SOLVABLE ALGEBRAS 

Now, we shall determine all real solvable algebras 
N = NR -i- X such that dim NR = 4 and dim X = 2. The di
mension of the center of such the algebra is 

dim ZeN) <;2 dim NR - dim N = 2 (7) 

(see Ref. 15). The algebras that possess a two-dimensional 
center are decomposable into a direct sum of lower-dimen
sional algebras. 15 Therefore, in the following, the classifica
tion problem is solved for the cases dim ZeN) = 0 and 
dim ZeN) = 1, respectively. 

We start with a nilpotnet algebra that forms the nilradi
cal NR. There are the following three nilpotent algebras of 
dimension four to be considered: The Abelian algebra 
4A I , A 4." and A 3,1 (!j A I; in our notation we follow the 
scheme of Patera et al.: the term A rJ dentoes an r-dimension
al algebra ofjth type and the term nA I denotes the n-dimen
sional Abelian algebra. 16 

To specify the commutators of the [NR,X] type of the 
pair {D(x , ), D(x2)} of the following type has to be given: 
(a) D(x , ) andD(x2 )-derivations in the nilradical. (b) Ev
ery linear combination aD(x I) + /3D(x2); where a, /3ER 
and a 2 + /32=1=0, are non-nilpotent. The operators (matri
ces)D(x , ) andD(x2 ) that possess the property (b) shall be 
called, after Mubarakzyanov, nil-independent matrices. 

If the structure of the nilradical is given, then we have as 
many nonisomorphic algebras N = NR -i- X as there are 
equivalence classes of {D(x I)' D(x2)}. The expression 
"equivalence classes" should be understood in the sence 
that: 

(A) The pair 

{aIlD(x l ) + a 2ID(x2) + adNR (n),a 12D(x , ) 

+ a 22D(x2) + adNR (n')}, 

where a lla 22 - a 2Ia 12 =1=O,nENR, and n'ENR, is equivalent 
to {D(x , ), D(x2)}. 

(B) Thepair{TD(x, ) T -1,TD(x2) T- ' }, where Tis the 
automorphism of NR, is equivalent to {D(xI)' D(X2)}' 

Let us consider the Abelian nilradical NR = 4A I' Then 
every linear transformation sending NR into NR is an outer 
derivation in NR. We are allowed to choose nil-independent 
pairs of{D(x I)' D(X2)} in the following form: 

(8) 
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( 

( 0 J (r J a'+p'#O, 
(9) 

(' 0 J (~a J (10) 

(' 0 J ( -1 

(a 0 J( 0 

(a a J( 0 

/3 

Jr 
-1 

a r 
0 

/3 

; J a#O, 

J 
J 
J 

-1 

/3 

a 

(11 ) 

a/3 =1=0, (12) 

a 2 + /32=1=0, 

(13) 

a2 + /3 2 =1=0, 

(14) 

(15) 

(16) 

(17) 

(18) 

-1), (19) 
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r -} ( r ~ ) a'+fJ'#O, , f + ~z#O, 
1 

(20) 

(a 0 ~} ( J a/3 #0, 
r 0 

1 
(21) 

( ~fJ). (i 
-1 

J r /3 #0, 
a ~ 

/3 
(22) 

(~ 0 a ~} ( fJ J (23) 

(7 a _} (0 J (24) 

( - 1 ; ~fJ). ( r J fJ #0, 
(25) 

(: 
-1 

-} (1 J (26) 

for algebras that contain the cet;lter of dimension zero, and 

1346 

( a 0 J (fJ J a'+fJ'#O, 
(27) 

( ~ J (a J (28) 

( 0 0 J C 0 J (29) 

J. Math. Phys., Vol. 31, No.6, June 1990 

( J( -1 

J 0 0 
(30) 

1 a 

( 0 J( J 0 
(31) 

( -} ( /3 J a 
a Z + /3z#O, 

1 
(32) 

( 0 a ~} ( 0 J (33) 

r 0 -} (0 J (34) 

for algebras that contain one-dimensional centers. The re
strictions on the parameters in the matrices given above are 
made both to avoid decomposability into a direct sum of 
lower-dimensional algebras, and to obtain the dimension of 
the center of the algebra equal to 0 or 1, as required. Every 
pair of matrices given above defines a different algebra. 

If one assumes dim ZeN) = 0 then a basis of X can be 
found such that [X,x] = O. Therefore, X = 2Al is the com
plement of the nilradical in N6 , and decomposition (1) be
comes the semidirect sum of the ideal NR and the subalgebra 
X: N = NR&2A l • For algebras that have a nonzero center, 
there is [X,X] #0, in general. However, some simplifica
tions of the commutators [xl,XZ] can be made (see below). 

Our results are summarized in Tables I and II where 27 
algebras of dimension six are given that contain an Abelian 
nilradical and a center of dimension of 0 and 1, respectively. 
In the tables are given the names of the corresponding alge
bra and all the nonzero commutators. We use the names 
N:~"', wherej = 1, ... ,27 denotes the consecutive number of 
the type and the superscripts, if any, give the parameters on 
which the algebra depends. The basis of nilradical is denoted 
by {n l, ... ,n4}, and the additional basis elements are denoted 
by Xl and X 2• We write commutators in the shortened form 
[n lx 2 ] instead of [nl>x2 ], 

Let us consider algebras that contain a non-Abelian nil
radical A4•1 • The algebra A4•l is defined by the following 
nonvanishing commutators: [n 2,n4 ] = n l and [n 3,n4 ] = n2 , 

where {n l , ... ,n4 } form the basis of A 4•1 • Suppose 
D(x)*n; = ~~k;nk' where D(x)EDer(A4•1 ). Therefore, the 
matrix of D(x) is 
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TABLE I. Real solvable Lie algebras of dimension six that contain the Abelian nilradical of dimension four and the center of dimension zero. {n I ..... n.} form 
a basisfor the nilradical and {XI' x2} are the remaining basis elements. 

Name 

Na/Jr 
6.2 

a2 + /3 2 #-0 

N~.3 

N~.9 

N~.II 

N't.": 
a2+/3 2 #-0 
r+~#-O 

N~ 
a/3 #-0 

N~.17 

[xlntl = ani' 
[X2ntl = /3n l• 

[xlntl = ani' 
[x2ntl = /3n l• 
[x2n.) = n. 

[xlntl = n l • 

[X2ntl = ani + n2• 
[x2n.) = n. 

[xlntl = n l • 

[X2ntl = n2' 
[x2n3) = an3 + /3n •• 

[xln l ) = anI> 

[xln.) = n •• 

[xln l ) = ani' 
[x ln3) = n3 + n •• 
[x2ntl = n l + n2• 

[xlntl = anI> 
[x ln3) = n3 + n •• 
[x2ntl = ynl + n2• 

[xlntl = n l • 

[x2n2) = n2• 

[xlntl = n l • 

[X2n2) = n2 + n3• 

[xlntl = ani' 
[xln.) = n •• 
[x2n3 ) = n4 

[xlntl = n2• 

[X2ntl = nl> 
[x2n4) =an4 

[xlntl = nl + n2' 
[x ln3) = n3 + n4• 
[x2ntl = an2 + n3 - /3n •• 
[x2n3) = - nl + /3n2 + an •• 

[xlntl = anI> 
[xln.) = - n3• 
[x2n3 ) = n3• 

[xln l ) =an l• 

[xln.) = - n3 + yn •• 

[xlntl = nl • 

[x ln3) = an3 + /3n •• 
[x2nl ] = ynl + n2• 
[x2n3] = .5n3• 

[xln l ] = n2• 

[xln.] = - n3 + an •• 
[x2n3] = /3n3• 

[xlntl = ani + n2• 
[xln.] = - n3• 

[xlnd = n2• 
[x ln3] = an3 + /3n •• 
[x2n l ] = n l • 

[x2n3] = 7"13' 
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Nonzero commutation relations 

[x ln2) = 7"12' 
[x2n2) = .5n2• 

[Xln2) = n2• 
[X2n2) = yn2• 

[Xln2) = n2. 
[x2n2) = an2• 

[x l n2 ) = n2• 

[X2n2) = - nl> 
[x2n.) = an. 

[x ln3) = n3 + n •• 
[x2ntl = /3n l• 

[x ln2) = an2• 

[xln.) = n •• 
[x2n2) = n2• 

[x ln2) = an2• 

[xln.) = n •• 
[x2n2) = - n l + yn2• 

[x l n2 ) = n •• 

[x2n3) = n3 + n •• 

[x l n2 ) = n •• 

[X2n3) = n3 + an •• 

[x ln2) = nl + /3n •• 
[x2ntl = nl> 

[x ln3) = n3 + n •• 
[X2n2) = n2• 

[x l n2 ) = n2• 

[x l n4 ) = n4• 

[x2n2 ) = n •• 
[x2n.) = - n2 

[x ln2 ) = yn2' 

[x2nl ) =/3n l• 
[X2n.) = n. 

[x ln3) = yn3 + n •• 
[x2ntl = /3nl> 

[Xln2] = n2. 
[xln.] = - /3n3 + an •• 
[x2n2] = - nl + yn2• 
[x2n.] = .5n. 

[x ln3] = an3 + n •• 
[x2ntl = n l • 

[x2n.] = /3n. 

[x ln2] = an2• 
[x2n3 ] = n3• 

[x ln2] = - nl> 

[xln.] = - /3n3 + an •• 
[x2n2 ] = n2• 

[x2n.] = 7"1. 

[xln.) = n •• 
[x2n3) = n3 

[x l n3 ) = n •• 

[x2n3 ) = n3• 

[x l n3 ) = n •• 

[x2n3 ) = n3• 

[x2n2) = n2 

[x l n3 ) = n3• 

[x2n2 ) = n3• 

[xln.) = n •• 
[x2n3) = an3• 

[x ln3 ) = n •• 

[x2n2) = .5n2• 

[x2n2] = n2• 

[x l n3 ] = n •• 

[x2n.] = n. 
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TABLE I. (Continued.) 

Name 

N •. to [xtn,] = n2 + n3' 
[x tn3 ] = n •• 
[x2n2] = n2. 

01 2 013 
022 012 
o 2022 - Oll 
o 0 

Nonzero commutation relations 

[x tn2 ] = - n t + n •• 

[xtn.] = - n3• 
[x2n3 ] = n3• 

(35) (~ 
0 

0 
0 

0 

0i3 
0 
-1 
0 

Suppose now that, 

[X2n,] = nto 
[x2n.] = n. 

~) U 
0 

0 

0 

[D(x l ),D(X2) ]EInn(A4•1 )· 

Oi3 

6: ) 0 
(36) 

2 

0 -1 

(37) 

Let us take D(x l ) = (Oik) and D(x2) = (o;d in the 
form given by (35). The matrices D(x l ), D(x2) should be 
nil-independent. Therefore, let us assume Oil = Oi2 = 1 and 
022 = oil = O. Furthermore, we may add an inner deriva
tion to D(x); more precisely, let us define 

XI ..... XI + (JJ - 014)n2 - 024n3 + 012n4, 

and 

Then one has Oi3 = - 013 and - 2034 = 3034' Every pair 
(36) of nil-independent derivations {D(x l ), D(x2)} that 
satisfies (37) is equivalent to the following diagonal pair: 

X2 ..... X2 - Oi4 n2 - Oi4 n3 + Oi2 n4' 

where 

W==013034 - Oi3 034' 

so that the resulting derivations D(xI)' D(x2) have the form 

o 
-1 

TABLE II. Real solvable Lie algebras of dimension six that contain the Abelian nilradical of dimension four and the one-dimensional center. 

Name 

N~o [x,n2] = an2• 

a2+/3
2oF O [x2n2] = /3n2• 

N~2t [x,n2] = n2, 

[X2n3] = n3• 

N~.~2 [x,n,] = n" 
E=O.I [x2n2] = n2, 
a 2 + E'oF O 

N~~3 [x,n,] = n,. 
E=O,I [X2n,] = n2• 

[x,x2] = En, 

N •. 2• [x,n3] = n3 + n •• 
[x,x2 ] = n, 

N:1, [x,n2] = an2• 

a2 + /3 2"10 [x2n,] = /3n2• 
[x,x2 ] = n, 

N:.2• [x,n,] = an3 + n •• 
[X2n2] = n2• 

N~.27 [x,n,] = n2• 
E=O.1 [x2n,] = n3, 

1348 J. Math. Phys .• Vol. 31. No.6. June 1990 

Nonzero commutation relations 

[x,n.] = n., 

[x2n,] = n" 

[x,n,] = n., 
[x2n.] = n., 

[x,n3] = n., 
[x,x2] = En, 

[x,n2] = n2• 

[x2n2] = - n" 

[x,n.] = n., 

[x,n3] = n •• 

[x2n,] = n" 

[x,n.] = - n3 + an •• 
[x,x2] = n, 

[x,n3] = n., 
[x2n.] = n •• 

[x2n2] = an2• 
[x,x2 ] = n, 

[x,n,] = n., 
[x2n,] = an •• 

[x,n.] = - n3• 
[x2n.] = n., 

[x,n.] = - n3 • 

[x,x2 ] = En, 

P. Turkowski 
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TABLE III. Real solvable Lie algebra of dimension six that contains the 
non-Abelian nilradical A •. ,. 

ments are O. The properties of the derivation algebra 
Der(A3•1 EIlA I ) have been discussed in Ref. 17. The matrix 
D(x)EDer(A 3,1 EIlA I ) is 

Name Nonzero commutation relations 

N'.28 [n2n.l = n,. [n3n.l = n2• cr 
1512 1513 6~) [x,n,l =n,. [x,n31 = - n3• [x,n.l = n •• 
1522 1523 (39) 

[x2n21 = n2• [x2n31 = 2n3• [x2n.l = - n. 1532 1533 
o . 

1542 1543 154 

Furthermore, [D(xI)' D(x2 )] = 0, and this implies 
adNR ([X I,x2]) = adNR (anI)' Hence, we have [XI' 
x 2 ] = an I' a is an arbitrary constant. Let {x I' x2} be another 
basis of X, where XI = XI and x2 = X 2 - ani' Then 
D(x l ) = D(x l ),D(x2 ) = D(X2)' and [X I,X2 ] = O;X = 2AI 
becomes the complement of the nilradical in the algebra N6 • 

Therefore, pair (38) defines the semidirect sum of A4,I and 
the Abelian 2A I . This is the only six-dimensional algebra 
that contains the nilradical A4,1; for the commutation rela
tions see Table III. 

Then, let us define X = X - c5 13n2 + c5 12n3 which, on the 
strengthofEq. (6), reduces 15 12 and 1513 inD(x) to zero. The 
nil-independent derivations D(x l ) and D(x2 ) of this form, 
that satisfy Eq. (5), are equivalent to the following: 

( ° J ( 0 1 J a'+p'#O, 

Finally, let us consider the algebras that contain a nilra
dical A3,I EIlA I • The algebra A3,I EIlAI has basis {n l , ... ,n4 } 

such that [n2,n3] = n I and all other products of base ele-

TABLE IV. Real solvable Lie algebras of dimension six that contain the non-Abelian nilradicalA3., eA, and the center of dimension zero. 

Name 

N~9 [n2n31 = n,. 
a2+p2#O [x,n,l =n,. 

[x2n,] = n,. 

N:.30 [n2n31 = n,. 
[x,n,] = 2n,. 
[x,n.l = an •• 

N'.J! [n2n31 = n,. 
[x,n21 = n2• 
[x2n31 = n3• 

N'6.32 [n2n31 = n,. 
[x,n.l =n,. 
[x2n31 = (I - a)n3• 

N'.33 [n2n31 = n,. 
[x,n,l = n,. 
[x2n31 = n3 + n •• 

N~3' [n2n31 = n,. 
[x,n31 = n •• 
[x2n2] = an2• 

N6!1, [n2n31 = n,. 
a2 +p2#O [x,n.l = an •• 

[x2n31 = n3• 

N •. 3• [n2n31 = n,. 
[x2n,l = 2n,. 
[x2n.] = n, + 2n. 

N~37 [n2n31 = n,. 
[x,n2] = n3• 
[x2n,] = 2n,. 
[x2n31 = - an2 + n3. 

Nonzero commutation relations 

[x,n2] = n2• 
[x2n31 = n3• 

[x,n21 = n2. 
[x2n21 = n3• 

[x,n31 = - n3• 
[x2n.l = n, + n. 

[x,n21 = n2• 
[x2n,] = n,. 
[x2n.l = n. 

[x,n21 = n2• 
[x2n.l = n. 

[x,n,l =n,. 
[x2n,l = (1 + a)n,. 
[x2n31 = n3• 

[x,n21 = n3• 
[x2n,l = 2n,. 
[x2n.l =pn. 

[x,n21 = n3, 
[x2n2 1 = n2, 

[x,n3] = - n2• 
[x2n21 = n2 + an3, 
[x2n.l = 2n. 

[x,n.l = an •• 
[x2n.] =pn. 

[x,n31 = n3• 

[x2n.l = n. 

[x,n3 1 = - n3• 
[x2n21 = an2• 

[x,n31 = - n2, 
[x2n21 = n2, 

[x,n3 1 = - n2• 
[x2n31 = n3, 

[x,n.] = n" 

(40) 

(41) 

, 
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TABLE V. Real solvable Lie algebras of dimension six that contain the non
Abelian nilradica1A 3., EDA, and the one-dimensional center. 

Name Nonzero commutation relations 

N6•38 [n2n3 ] = n" [x,n,] =n" [x,n2] = n2, 

[x2nd = n" [x2n3 ] = n3, [x,x2] = n, 

N6•39 [n2n3 ] = n" [x,n2] = n3, [x,n3 ] = - n2' 
[x2nd = 2n" [X2n2] = n2, [x2n1 ] = n1, 

[x,x2] = n, 

N6.41J [n2n3] = n" [x,n2] = n1, [x,n1 ] = - n2, 
[X2n,] = no, [X,X2] = n, 

-I J (0 ) (42) 

( -I J ( a I-a J (43) 

( oJ(o:J (44) 

( 0 J (+a a I J (45) 

1 - I J r I J a'+p'#O, 

1350 
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-1 

-1 

J r I J 
J r a -a J 
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(46) 

(47) 

(48) 

for algebras that contain the center of dimension zero, and 

( 0 J ( 0 I J (49) 

( I - I J r J (50) 

( I - I J ( 0 0 J (51) 

for algebras that contain one-dimensional centers. Our re
sults are summarized in Tables IV and V in which the alge
bras that have nil radical A 3,1 €I) A 1 and the center of dimen
sion 0 and 1, respectively, are given. 

ACKNOWLEDGMENTS 

I am grateful to M. Heller for reading the manuscript. 
This work was supported in part by the Polish Interdis

ciplinary Research Project CPBP 01.03. 

'N. Jacobson, Lie Algebras (lnterscience, New York, 1962). 
2G. M. Mubarakzyanov, Sbornik Aspirantskikh Rabot. Mat. Mech. Phys. 
(lzdat. Kazan. Univ., Kazan, 1962), p. \03. 

lG. M. Mubarakzyanov, Izv. Vyssh. Uchebn. Zaved. Mat. 32,114 (1963). 
'G. M. Mubarakzyanov, Izv. Vyssh. Uchebn. Zaved. Mat. 34, 99 (1963). 
5G. M. Mubarakzyanov, Izv. Vyssh. Uchebn. Zaved. Mat. 35,104 (1963). 
6K. A. Umlauf, Uber die Zusammensetzung der Endlichen Continuierli
chen Transformationsgruppen, Insbesondre der Gruppen vom Range Null 
(Breitkopf and Hartel, Leipzig, 1891). 

7V. V. Morozov, Izv. Vyssh. Uchebn. Zaved. Mat. 5,161 (1958). 
"T. Skjelbred and T. Sund, On the Classification of Nilpotent Lie Algebras, 
preprint, Univ. Oslo Mathematics No.8 (1977). 

9p. Turkowski, J. Geom. Phys. 4,119 (1987). 
lOp. Turkowski, J. Math. Phys. 29, 2139 (1988). 
lip. Turkowski, "Structure of Real Lie Algebras," submitted to J. Math. 

Phys. 
"N. Jacobson, Proc. Am. Math. Soc. 6, 281 (1955). 
"J. Dixmier and W. G. Lister, Proc. Am. Math. Soc. 8, 155 (1957). 
lOG. Favre, C. R. Acad. Sci. Paris Ser. A-B 274, A1338 (1972). 
'5G. M. Mubarakzyanov, Izv. Vyssh. Uchebn. Zaved. JVlat. 55, 95 (1966). 
'6J. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhau~, 1. Math. Phys. 

17,986 (1976). 
I7G. F. Leger, Proc. Am. Math. Soc. 4, 511 (1953). 

P. Turkowski 1350 



                                                                                                                                    

Nonexistence and existence of various order integrals for two- and three
dimensional polynomial potentials 

Paul w. Cleary 
Division of Mathematics and Statistics, Commonwealth Scientific and Industrial Research Organization, 
Private Bag 10, Clayton, Victoria 3168, Australia 

(Received 9 May 1989; accepted for publication 7 January 1990) 

The nonexistence of integrals of the motion, which are sixth and fourth degree polynomials in 
the velocities, was established for a range of polynomial potentials. The first known systematic 
search for sixth-order integrals was performed for cubic and quartic polynomial potentials. It 
revealed that there exist no nondegenerate cases with such integrals for either potential. 
Similarly, there exists no nondegenerate fifth or sixth degree polynomial potentials possessing 
quartic invariants. A complete list of three-dimensional cubic potentials with quadratic 
integrals is given. All these integrable three-dimensional potentials can be interpreted as 
orthogonal superpositions of known integrable two-dimensional potentials possessing 
quadratic integrals. They correspond to 3 of 11 possible coordinate systems in which three
dimensional potentials separate. 

I. INTRODUCTION 

In many dynamical problems, it is useful to know if the 
system is integrable or possesses integrals of the motion inde
pendent of the Hamiltonian. Direct methods are used for the 
explicit calculation of the invariants. This enables the compi
lation of collections of standard form potentials that possess 
extra integrals. These can then be referred to when studying 
a particular system to provide useful information about its 
dynamics. This problem has been examined for two-dimen
sional polynomial potentials of degree 4 or less possessing 
integrals that are quartic or less in the velocities. 1-4 These 
and other results are summarized in the review article by 
Hietarinta.5 

There are only three independent integrable cubic po
tentials. They are x 3 + 3xy + ay3, 2x3 + xy2, and 16x3 

+ 3xy2. All other integrable cubic potentials can be ob
tained from these by combinations of rotations, scalings, and 
reflection. The first pair have quadratic second integrals 
while the last one has a quartic integral. 

In this paper, we give a range of higher-order results for 
two-dimensional potentials possessing second integrals and 
a number of null results concerning the nonexistence of cer
tain order integrals for a range of different polynomial po
tentials. We also present a complete list of all three-dimen
sional cubic potentials with one or two quadratic integrals. 
The integrable three-dimensional cubic potentials were 
found to be closely connected to the above integrable two
dimensional cubic potentials. 

II. INTEGRALS FOR TWO-DIMENSIONAL POLYNOMIAL 
POTENTIALS 

Polynomial potentials arise in many problems, particu
larly when truncated Taylor series expansions are used to 
facilitate analytic study. It is therefore useful to examine the 
integrability of such potentials. We will look for integrable 
cases of the homogeneous discrete-symmetric polynomial 
potentials: 

[n/2) 
Vn = L Bkxn-2ky2k. 

k=O 
(1) 

The calculation of integrals of the motion by direct methods 
requires a particular form to be chosen for the integral. We 
look for integrals that are mth order in the velocities. That is, 
oftheform 

m m-p 

1m = L L J;,q(x,y)xPyq, (2) 
p=Oq=O 

where f pq are arbitrary functions of x and y. Calculations of 
integrals quartic or less in the velocities (m<:4) have been 
carried out by various authors 1-5 for quartic and lower-order 
polynomial potentials (n <: 4). 

In this paper we give the results of a continuing search 
for new integrable cases with either higher-order integrals or 
potentials (n > 4 or m > 4). All known integrable cases of 
polynomial potentials of the form ( 1) have integrals of order 
2 or 4 but none of order 3. We consider it more likely that any 
higher-order integrals will be sixth order rather than fifth 
and therefore concentrate our search on even-order inte
grals. 

A. Quadratic integrals 

The conditions required to be satisfied for the existence 
of quadratic integrals are given in Dorizzi et al. 1 A systemat
ic search revealed that all potentials of the form (1) of any 
degree, possessing integrals quadratic in the velocities, be
longed to one of three classes. 

(i) When n is even, V= (x2 + y)n/2 =,n. This is axial
ly symmetric and possesses the obvious angular momentum 
integral L; = (yx - xy)2. 

( ii) The combinatorial potentials 
[n/2) 

Un = L 2"-2kC~-kxn-2kyk 
k=O 

have integrals 

In =y( yx -xy) + y 2Un_ 1. 
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This class of potentials was found by Ramani et al.6 

(iii) The potentials 
[n/2] 

Wn = L C ~ _ 2k xn - 2k yk 

k=O 

have integrals 

I n = nxy + (x + y)" - Wn • 

These potentials are separable in coordinates u = x + y and 
v = x - y, giving Wn = a(un + vn). The first two nontrivial 
members W3 and W4 were found by Aizawa and Sait<)1 and 
Bountis et aJ.8 

The three classes of potentials given above are the only 
homogeneous discrete-symmetric polynomial potentials of 
any degree to possess quadratic second integrals indepen
dent of the Hamiltonian. For any even degree potential there 
exist three integrable cases with quadratic integrals. For any 
odd degree potential there are only two. 

B. Quartic integrals 

There exist a number of integrable cubic V3 and quartic 
V4 potentials with quartic integrals.5

•
6 The next two general 

homogeneous potentials V5 and V6 were examined for the 
existence of integrable cases with quartic integrals. The re
quired conditions for the existence of such an integral are 
given in Grammaticos et al. 2 

A complete systematic search, using the computer alge
bra package REDUCE, was performed. For this order integral 
there are two sets of compatibility relations. Both produce 
large numbers of equations that need to be satisfied by the 
coefficients in the potential and those in the integral. Each 
such equation can usually be solved, leading to a situation 
where either some condition A is true or some other condi
tion B is true. The resulting multiply branched set of possible 
solutions has a tree structure, every branch of which must be 
explored for a possible solution. 

After systematically examining all possible solutions of 
the equations produced by the compatibilty relations, we 
report that there exist no nondegenerate integrable quintic 
or sixtic polynomial potentials. All the degenerate subcases, 
where the integral is the square of well-known quadratic in
tegral, were recovered. 

C. Sixtic integrals 

The conditions that need to be satisfied to ensure the 
existence of a sixth-order integral are given in Appendix A. 
The degree of complexity involved in finding higher-order 
integrals increases exponentially with the order m of the in
tegral. This case involves solving a complex hierarchy off our 
successive tiers of coupled partial differential equations. 

Any solution must satisfy three different sets of compat
ibility relations. These lead to an even more complex tree 
structure than the one for the fourth-order integral case. 
Again the search was performed on a computer using RE

DUCE. The coefficient functions in (A3) were used in their 
full generality. A partial study, by fixing the degree of these 
functions or using lower degree polynomials, would not be 
particularly revealing. To our knowledge this is the first 
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brute force search to be carried out for sixth-order integrals 
for any nonlinear system. 

The complete systematic search for sixth-order inte
grals was carried out for the general cubic and quartic poly
nomial potentials V3 and V4 • We report that no such inte
grals exist for either class of potential aside from the known 
lower-order results, all of which were again recovered as 
degenerate subcases. 

III. INTEGRALS FOR THREE-DIMENSIONAL CUBIC 
POLYNOMIAL POTENTIALS 

The simplest nontrivial three-dimensional potential is a 
cubic polynomial potential that is discrete symmetric in z. 
Most of the rotational degrees of freedom are removed from 
the system by rotating the potential so that the coefficient A4 
of the x 2y term is zero. The potential is scaled so that the 
coefficient of x3 is unity. The reduced potential is then of the 
form 

V = x3 + A)xr + A2 y3 + A3 yr + A5Xy2, (3) 

where the coefficients A; are all real. By choosing A4 = 0 we 
eliminate dozens of potentials that are merely rotations of 
the more fundamental potentials which remain. Since the 
potential is homogeneous it cannot be simplified by transla
tion. 

The conditions that need to be satisfied for a three-di
mensional potential to possess an additional integral qua
dratic in the velocities are given in Appendix B. We find that 
there exist only five distinct classes of potentials of the form 
(3) with one or two additional quadratic invariants. 

(i) The potential 

V = x3 + 3xy2 + A)xr + A3yr 

+[(A~-Ai)/A)A3]T, (4) 

has one integral independent of the Hamiltonian 

I) = A3(A3X -A) y)2 + 2(A3X -A) y)3. (5) 

This potential can be reduced to the separable form 

V=~Ai +A~ [(lIA)U3+ (lIA3)V3+ ur], (6) 

by the rotation 

u = (lI~A i + A ~ )(A)X + A3Y), 

v = (lI~A i + A ~ )(A3X -A) y). 

The integral becomes I) = A3V2 + 2~A i + A ~ v3. 

(ii) The subcase of ( 4) with A) = 3, 

V = x3 + 3xy2 + 3xz2 + A3Yr 

+ [(A~ -9)/3A3]y3, 

is integrable, conserving the integral 

12 = 3A3 yz + 9xz + 27x2z + 181L3xyz 

(7) 

(8) 

in addition to the case (i) integral I) in (5). After separating 
out the v dependence from (6) the remainder of the potential 
corresponds to the two-dimensional potential j u3 + ur, 
which is already known to be separable in coordinates u ± z. 
Both the y = 0 and z = 0 projections of the potential (7) 

Paul W. Cleary 1352 



                                                                                                                                    

belong to the class of integrable two-~imensional potentials 
s 3 + 3s"l + arl (Ref. S). The three-dimensional potential 
(7) can therefore be regarded as an orthogonal superposi
tion of two different copies of this two-dimensional poten
tial. 

(iii) The subcase of potential (i) with A I = 1/2 

V = x 3 + 3xy + ~ xr + A3yr 

+ (U 3 - 1/U3 ) T, (9) 

is also integrable conserving the integral 

12 = Szz(x + U 3y) - Sr(x + U 3y) 

+ (4A ~ + 1 )Z4 + 4r(x + U 3 y)2, (10) 

in addition to the case (i) integralIl in (5). After separating 
out the v dependence in (6) the remaining part of this poten
tial corresponds to the well-known integrable two-dimen
sional potential2u3 + ur, which separates in parabolic co
ordinates. The y = 0 projection of the potential (9) is the 
integrable two-dimensional potential 2S 3 + srl and the 
z = 0 projection belongs to the class of integrable two-di
mensional potentials S 3 + 3sr/ + ar/. The three-dimen
sional potential (9) can again be regarded as a superposition 
of these two integrable two-dimensional potentials. 

(iv) The potentials withAl = As andA2 = A3 = o are of 
the form 

(11 ) 

and are axisymmetric. One coordinate therefore separates 
out in cylindrical polar coordinates and the angular momen
tum integral Lx = yz - zyis conserved. One subcase of this 
potential possesses another quadratic integral. 

(v) This integrable potential, with A I = 1/2, was first 
found by Grammaticos et al.9 by setting r/ = y2 + r in the 
corresponding two-dimensional potential 2x3 + xr/. The 
third invariant is 

13 =yxy + zxz - x( yz + r) 
+ (y2 + r) (4x2 + y2 + r). (12) 

The above collection is the complete set of all real poten
tials of the form (3) possessing one or two quadratic inte
grals independent of the Hamiltonian. Makarov et al., 10 us
ing a quantum mechanics formalism, found that after 
suitable rotations all three-dimensional potentials possess
ing two additional integrals separated in 1 of 11 different 
coordinate systems. Three of the cases given above, (ii), 
(iii), and (v), correspond to rotations of systems that sepa
rate in rectangular, parabolic cylindrical, and parabolic ro
tational coordinates, respectively. There are no integrable 
potentials of the form (3) that separate in any of the other 
eight coordinate systems. 

Furthermore, we find that an integral exists only when 
one or both of the y = 0 or z = 0 projections of the potential 
has the form of one ofthe two known integrable two-dimen
sional potentials with quadratic second integrals, t 3 + 3t7]2 
+ a7]3 and 2t 3 + t7]2, or is axisymmetric. The integrable 

three-dimensional potentials can then be regarded as orthog-
onal superpositions of these integrable two-dimensional po
tentials. Not all superpositions, however, are integrable. 
There are four possible combinations of the above two-di-
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mensional potentials. The fourth one r + xy /2 + 3xz'l 
+ A2 T + A3 yr conserves no integrals for any values of A2 
or A3 except for the Hamiltonian. It also does not separate in 
any of the 11 coordinate systems of Makarov et al. 10 Dorizzi 
et al. II used the reverse approach of superimposing integra
ble two-dimensional even quartic potentials, in conjunction 
with singularity analysis, to obtain a new integrable three
dimensional even quartic potential. 

The only other integrable two-dimensional cubic poten
tial 16S 3 + 3S7]2 has a quartic second integral. That only 
superpositions of integrable two-dimensional potentials ap
pear to give integrable three-dimensional potentials suggests 
that such potentials as 

and 

x 3 + 3xy + fi, xr + A2 T + A3 yr, 

x 3 + ~ xy2 + -ti xr + A2 T + A3 yr, 

x 3 + fi, xy2 + 3xr + A2 y3 + A3 yr, 

x 3 + fi, xy2 + ~ xr + A2 y3 + A3 yr, 

x 3 + fi, xy2 + fi, xr + A2 y3 + A3 yr, 

may be the only candidates for three-dimensional cubic po
tentials with quartic integrals. 

Consider the nonhomogeneous three-dimensional cubic 
potential 

V = !(x2 + cr Y + air) - a(2x3 + xy + xr), (13) 

where a, cr, and ai are all arbitrary. The cubic terms belong 
to case (v). When ai = cr the potential is axisymmetric and 
the angular momentum integral Lx = yz - zy is conserved. 
By setting 7]2 = Y + r in the two-dimensional integrable 
Henon-Heiles potential 

V = ~ (x2 + a/7]2) - a(2x3 + X7]2), 

Grammaticos et al.9 were able to show that this axisymmet
ric subcase of ( 13) was integrable. They obtained the second 
integral by substituting the expression for 7]2 into the two
dimensional integral given by Chang et al. 12 

If we remove the axisymmetric requirement by letting 
aii=u 2 then the more general second integral 

12 = (4u 2 _1)[y2+u 2 y2] + (4w2-1)[r+w2r] 

+ alae y2 + r) (4x2 + y2 + r) - 4 y(xy + crxy) 

_ 4z(xz + w2xz) + 4x( y2 + Z2)] 

is conserved for the unrestricted potential ( 13). This poten
tial is not integrable since Lx is no longer conserved. How
ever, it is interesting that the second integral 12 exists in more 
general circumstances than the axisymmetric one that was 
originally used to generate it. 

Finally, consider the potential 

V=~(X2+y2+!Z2) 

- ( ~I x 3 + ~3 T + Asx2 y+A~y2), 
satisfying the conditions 

AI As A6 -=-=-
As A6 A3 

It can be reduced to V = at 3 + (t 2 + 7]2) + ! rbyrotation, 
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where a = - 2(A; + A ~ )3/2/(3AsA6)' and therefore has 
the three independent energies as integrals 

KI = iJ2 + 7]2, K2 = t2 + 52 + as 3, K3 = z? + l r-. 
The above potential also has a fourth independent integral 

K4 = - (AaX - As Y) [z? - ! r-] + zz(A~ - As Y). 
(14) 

Solving the third equation of motion gives z = ~2K2 
cos ~ (t + a). The first two equations of motion when com
bined yield the solution 

w = AaX -AsY = B sin(t + fl)· 
When the coefficient of r- is 1/4, the x and Y motions are 
locked together in the above way. The fourth integral can 
then be written as 

K4 = K3(B 12)sin(a - fl) 

and depends only upon the phase difference a - fl, the am
plitude B of the harmonic motion of wand the decoupled 
oscillator energy K 3• For any value of the coefficient of r
other than 1/4, the right-hand side of (14) is an explicit 
function of t and consequently K4 is not constant. Only when 
the harmonic oscillations of AaX - As Y and z are locked to
gether in a 2: 1 resonance is K4 conserved. The first three 
integrals all commute pairwise. Here, K4 commutes with K2 
but not with either KI or K3. So there are three independent 
commuting invariants. 

IV. CONCLUSION 

A complete list of all two-dimensional discrete-symmet
ric polynomial potentials of any degree possessing quadratic 
integrals is given. They all belong to three distinct previously 
known classes. There are no other such potentials with qua
dratic integrals. 

The nonexistence of any cubic or quartic polynomial 
potentials with sixth-order integrals was established by the 
first known systematic search for such integrals. All pre
viously known results for lower-order integrals were recov
ered as degenerate subcases. A similar search of fifth and 
sixth degree polynomial potentials showed that there exist 
no nondegenerate cases of either potential possessing quartic 
integrals. 

The existence of quadratic integrals for three-dimen
sional discrete-symmetric cubic polynomial potentials was 
examined. Five classes of potentials were identified. This list 
is complete. They are either axisymmetric or can be consid
ered as orthogonal superpositions of known integrable two
dimensional potentials with quadratic second integrals. This 
behavior suggests that there will at most be five and probably 
fewer classes of three-dimensional cubic potentials with 
quartic integrals. 

APPENDIX A: SIXTH-ORDER INTEGRALS FOR TWO
DIMENSIONAL POTENTIALS 

Direct methods require specific forms for the integrals 
to be chosen. We will examine integrals of the motion that 
are sixth-order polynomials in the velocities. In two dimen
sions they have the form 
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K = alx
6 + asxS y + a~4 y + a~3 T + a~ Y + a.,xy 

+ a4y6 + blx4 + b4x
3 Y + b~2 Y + bsiT + b3y4 

(Al) 

where (a;. i = 1, ... ,7), (b i , i = 1, ... ,S), CI, c2, C3 , and h are 
all arbitrary functions of x and y. Requiring that its time 
derivative dK I dt vanishes and equating the coefficients of all 
the velocity terms to zero gives a hierarchy of four tiers of 
coupled POEs. We denote the partial derivatives of the a;'s, 
b;'s, and c;'s with respect to x and Y by the subscripts x 
and y, respectively. Here, Vx and Vy are the x and y partial 
derivatives of the potential V. The first tier consists of eight 
coupled linear POEs: 

al,x = 0, a2,x + as, y = 0, a3,x + a6, y = 0, 

as,x + al,y = 0, a6,x + a2,y = 0, (A2) 

a7,x + a3,y = 0, a4,x + a7,y = 0, a4,y = 0, 

with solutions 

a l = ao + aly + a 2y + a3Y + a4y4 + asY + a6y6, 

a2 = a2x2 + 3a3x2 y + 6a4x
2 Y + 10asX2 Y + ISaaX2 y4 

+ agx + 2a~y + 3aloXy2 + 4a llxy + Sal~y4 
+ a 13 + a 14 y + alsy2 + a 16 y + a17y4, 

a3 = a4x
4 + Sasx4 y + ISaaX4 y2 + a loX3 + 4a llX

3 y 

+ lOal~3 Y + a lsx2 + 3alaX2 y + 6a17x2 Y + al~ 
+ 2a2oXY + 3a2lxy + a 22 + a 23 y + a 24 y, 

a4 = a 27 + a 2aX + a24x2 + a2lx3 + a l,x4 

+al~+aaX6, (A3) 

as = - alx - 2a~y - 3a3xy - 4a4xy 

- Sasxy4 - 6aaXY - a7 - agy - a 9y - alOy 

- all y4 - a 12 y, 
a6 = - a 3x

3 
- 4a4X

3 y - 1 Oasx
3 Y - 20aaX3 Y - a~2 

- 3aloX2 y - 6a llX
2 Y - lOaI~2 Y - a 14x - 2alsxy 

- 3alaXY - 4a1,xy - a lg - a l9 y - a20Y - a 2l y, 

a7 = - asr - 6a~ y - a llx
4 - Sal~4 Y - a laX3 

- 4a 17X3 Y - a 2oX2 - 3a21x2 y - a 23x 

- 2a24XY - a 2S - a26Y· 

The second tier consists of six coupled POE's: 

b2,x + b4,y = 4a2Vx + 3a6 Vy, 

bs,x + b2,y = 3a6Vx + 4a3Vy, 

b3,x + bs,y = 2a3Vx + Sa7Vy, 

These lead to the first compatibility relation 

(a7 Vx + 6a4 Vy ) xxxxx - (2a3 Vx + Sa7 Vy ) xxxxy 

(A4) 

+ (3a6 Vx + 4a3 Vy ) xxxyy - (40 2 Vx + 3a6 Vy ) xxyyy 

+ (Sas Vx + 2a2 Vy ) xyyyy 

- (6a I Vx + as Vy ) yyyyy = 0. (AS) 

This must be expanded and all the coefficients of xm yn terms 
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equated to zero, leading to usually about 30-100 relations 
between the a;'s and the coefficients in the potential. The 
third tier of four coupled PDEs is 

cl,x = 4bl Vx + b4Vy, c2,x + C3,y = 2b2Vx + 3bsVy, 

c3,x + CI,y = 3b4Vx + 2b2Vy, C2,y = bsVx + 4b3Vy. 

(A6) 

They lead to the second compatibility relation 

(bsVx + 4b3Vy )xxx - (2b2Vx + 3bs)xxy 

+ (3b4Vx +2b2Vy )xyy - (4b lVx +b4 Vy )yyy =0. 
(A7) 

The fourth tier oftwo coupled PDEs is 

hx =2cIVx +c3Vy, hy =c3 Vx +2C2Vy, (AS) 

leading to the third compatibility relation 

(2c lVx +clVy)y - (c3Vx +2c2Vy )x =0. (A9) 

Note that the solutions from the previous tier of PDEs 
feed back into the rhs's of the next tier ofPDEs at each step. 
This makes the solving of these consecutive groups of equa
tions extremely difficult and tedious. If the potential satisfies 
all the conditions arising from the expansions of the compat
ibility relations (A5), (A7), and (A9) then the potential is 
integrable. The integral is then found by consecutively solv
ing all the remaining equations (A 4), (A6), and (AS). 

APPENDIX B: QUADRATIC INTEGRALS FOR THREE
DIMENSIONAL POTENTIALS 

Direct methods require specific forms for the integrals 
to be chosen. We will examine integrals of the motion that 
are quadratic polynomials in the velocities. In three dimen
sions they have the form 

K =go*2 +gljP +g/Z2 + Ilxy + Izxz + hYz + h, 
(Bl) 

where go, gl' g2' II' 12' 13' and h are all functions ofx,y, and 
z. Requiring that its time derivative dK / dt vanishes and 
equating the coefficients of all the velocity terms to zero 
gives 13 coupled PDEs. The first ten are 

ago = 0 agl = 0 ag2 = 0 
ax 'ay 'az ' 

agl + all =0, ag2 + alz =0, 
ax ay ax az 

a/3 + alz + all = 0, 
ax ay az 

all + ago = 0, (B2) 
ax ay 

aJ2 + ago = 0, ag2 + ah = 0, ah + ag I = 0, 
ax az ay az ay az 

and have solutions 
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go = a I y2 + a 2 Y + a3r + a4z + a 5 yz + a 6, 

gl = a lx
2 + fllx + fl2Z2 + fl3Z + fl4XZ + fls, 

g2 = fl2y2 + fl6Y + a 3x2 + fl7X + flsxy + fl9' 
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II = -2alxy-asXZ-p4yz-a~ 

-Ply+Par+ (Yl +Y2)Z-Y3' 

Iz = - asxy - 2a3xz - Ps yz - a 4x 

-P~+P4r - Y2Y- Y4' 

h = - {l4XY - {lp,Xz - 2{J2 yz - P3 Y 

- {l6Z + a sx
2 - Ylx - Ys· 

The remaining three PDEs are 

hx = 2goVx + II Vy + IzVz' 

hy =/IVx + 2glVy + hVz, 

hz =IzVx + hVy + 2g2Vz, 

(B3) 

(B4) 

where the SUbscripts x, y, and z denote partial derivatives 
with respect to x, y, and z, respectively. These equations lead 
to the following three compatability relations 

f,.(Vxx - Vyy ) +2(gl-go)VxY+hVxz -IzVyz 

+( all -2 ago) Vx +(2 agl _ all) v 
ax ay ax ay y 

+ ( ah _ alz ) v = 0 
ax ay z , 

h( Vyy - Vzz ) + Izvxy - II Vxz + 2( g2 - gl) Vyz 

+ ( alz _ all) Vx + ( a.t; _ 2 ag I) V (B5) 
ay az ay az y 

+ (2 ag2 _ ah ) v = 0 
ay az z , 

Iz(Vxx - Vzz ) +hVxy + 2( g2 -go)Vxz-/lvyz 

+ ( alz _ 2 ago) Vx + ( ah _ all) v 
ax az ax az y 

+ (2 ag2 _ alz ) Vz = o. 
ax az 

If the potential Vsatisfies the conditions in (B5) then other 
integrals aside from the Hamiltonian exist and the equations 
(B4) can be solved for hex, y,z), giving explicit expressions 
for the integrals. 
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A famous theorem by Poincare and Bertrand formally describes how to interchange the order 
of integration in a double integral involving two principal-value factors. This theorem has 
important applications in many-body physics, particularly in the evaluation of response 
functions (or "loop integrals") at either zero or finite temperatures. Of special interest is the 
loop containing an integration with respect to the energy of two causal propagators. It is 
shown that such a response function with two boson or two fermion lines behaves statistically 
like a boson, while the response function containing a boson and a fermion behaves like a 
fermion. Examples are given of typical loop integrals occurring in the solution of Dyson's 
equations for nuclear matter in the presence of delta, nucleon, and pion interactions. A "form 
factor" that is essential for the convergence of the nucleon-pion loop integral is chosen to have 
little effect on the analogous nucleon-delta loop integral. The Poincare-Bertrand (PB) 
theorem is then generalized to multiple integrals and higher-order poles. From the 
generalization of the theorem to triple integrals, it is shown that causality is rigorously 
maintained, at zero temperature, for convolutions with respect to the time of products of 
Green's functions and thus for Dyson's equations. Also, for finite temperature, the three
propagator loop integral satisfies the statistics appropriate for the loop as a whole, in direct 
analogy with the result for the two-propagator loop. The intimate connection between the PB 
theorem and analyticity (or causality) is clearly demonstrated. Although this work considers 
explicitly only nuclear physics examples, the results are relevant to other fields where many
body theory is used. 

J. INTRODUCTION where g; denotes principal value. Note that the last term on 
the rhs of Eq. (1.1) results from reversing the order of inte
gration. 

In the theory of dispersion relations, one frequently has 
to deal with multiple integrals involving products of 
Schwartz distributions (e.g., delta functions or principal
value terms). In evaluating such integrals, one must be very 
careful about reversing the order of integration. , For exam
ple, in a double integral it is permissible to interchange the 
order of integration for a product involving two delta func
tions or for a product containing a delta function and a prin
cipal-value singularity. However, as a result of an important 
theorem by Poincare and Bertrand (PB), in certain prod
ucts involving two principal-value factors the order of inte
gration cannot be freely switched; in particular, the PB 
theorem states ',2 that 

dx dy /(x,y) JOO g; foo g; 
-00 (x-u) -00 (y-x) 

[f
OO foo g; g; ] = dy dx /(x,y) 

- 00 - 00 (x - u) (y - x) 

-tf2/(u,u), (1.1) 

The most familiar example from many-body theory that 
involves a double principal value occurs when computing 
loop corrections (bubble diagrams) to single-particle propa
gators. 3- 8 Generally, one can write the loop as a frequency 
integration of two casual Green's functions (Feynman prop
agators) 

LAB(W) = -if:oodW'GA(W')GB(W+W'), (1.2) 

The Feynman propagators are used because they are directly 
related to the quantum mechanical observables. Frequently, 
other propagators such as the retarded Green's function are 
used when calculating particular classical quantities (poten
tials, for example), which are then used in a quantum or 
relativistic theory. The correct propagator for quantum 
fields (requiring holes traveling backward in time) is the 
Feynman propagator.9 However, as discussed in Sec. II, the 
formalism developed here is quite general and also applies to 
advanced and retarded Green's functions. 
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Since "free" propagators are usually proportional to 
functions of the form 

1 f}J 
j<±l(W) = ..... 

w2 _ a2 ± i~ 6-0+ (W2 _ a2 ) 

=+= i1T~(W2 - a2 ), (1.3) 

it is clear that the PB theorem is relevant for computing first
order loops (i.e., loops containing only free propagators). 
However, even for such simple loops, one must be very care
ful about introducing multiple principal-value factors. In 
particular, the limit indicated in Eq. (1.3) is not valid if 
another principal-value term is already present in the inte
gral. In Appendix C, we show how the PB theorem allows 
one to generalize Eq. (1.3) to first-order loops containing 
two free propagators. Fortunately, all of this complication is 
not really necessary for first-order loops since such integrals 
can be very simple evaluated by other methods (usually 
complex contour integration).5,6,8 The most significant ap
plication of the PB theorem involves the more general case, 
where the dressed and/or finite-temperature propagators no 
longer have the simple form ofEq. (1.3), but from the spec
tral representation, the real and imaginary parts satisfy a 
causal dispersion relation.s [See, e.g., Eq. (2.5a).] 

In this case, the PB theorem can be used to show that 
LAB (w) also satisfies a similar dispersion relation. In Ref. 3, 
this very important causality relation is implemented in the 
development, at zero temperature, of a self-consistent nu
clear transport theory. Here we concentrate on various gen
eralizations such as the finite-temperature dispersion rela
tion, the case of multiple principal-value integrals, and the 
case of higher-order poles. 

Also, as we shall discuss in subsequent sections, there is 
an intimate connection between the PB theorem and analy
ticity. Thus any result obtained using the PB theorem can 
usually be derived from standard complex variable theory, 
for which it is especially useful to introduce the spectral rep
resentations of the Green's functions. s Nevertheless, many 
of the most important results of this paper are easier to ob
tain using the PB theorem rather than the complex variable 
theory. In particular, the statistical properties offinite-tem
perature loop integrals containing two- and three-particle 
causal propagators follow, in a straightforward way, from 
the PB theorem. These relations are not as simply derived 
using complex variable theory, mainly because the spectral 
representation of a causal Green's function has a rather com
plicated structure. S Moreover, as one tries to evaluate even 
more sophisticated types of many-body diagrams (e.g., 
loops containing more than three particles), complex vari
able manipulations become increasingly unwieldy. In con
trast, the advanced and retarded Green's functions have 
much more tractable spectral representations,S thereby al
lowing one to easily simplify expressions involving these 
propagators. Again, because we are mainly interested in dis
persion relations in quantum field theory, our focus is on 
causal Green's functions; then integrals containing these 
functions provide a real "showplace" for the applicability of 
the PB theorem. Thus the PB theorem is seen to be an impor
tant tool for formally manipulating complicated many-body 
diagrams which involve causal propagators.3 Simple nonrel-
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ativistic prototypes of such diagrams are evaluated in Sec. II. 
The remainder of this paper is structured as follows. In 

Sec. II we derive general finite-temperature equations for 
two-propagator response functions. In this section, we also 
present some numerical results of calculations in nuclear 
matter using propagators arising in the solution of Dyson's 
equations. Then in Sec. III we generalize the PB theorem to 
the case of more than two integrals. Using the PB theorem 
involving three integrals, we derive dispersion relations for 
time-convoluted products of Green's functions, for Dyson's 
equations, and for the three-propagator loop integral. Next, 
in Sec. IV we generalize the double-integral PB theorem to 
the case of higher-order singularities. Appendices A and B 
contain mathematical details of the derivations contained in 
Secs. III and IV, respectively, and Appendix C contains a 
nonrigorous, but intuitive derivation of the PB theorem. 
Also, as mentioned, Appendix C gives a generalization of 
Eq. (1.3) to the case in which two free propagators are pres
ent in a loop integral. 

Finally, we emphasize that while the main thrust of our 
work pertains to nuclear or particle physics, many of the 
results should be applicable to other specialties, e.g., con
densed matter physics. In particular, the work in Secs. II and 
III that pertains to finite-temperature Green's functions 
should be of interest in the general theory of response func
tions. s 

II. THE PB THEOREM AND ITS APPLICATION TO 
FINITE-TEMPERATURE RESPONSE FUNCTIONS 

A. General remarks 

It is instructive to illustrate the usefulness of Eq. (1.1) 
with a simple example. Consider two functions related by the 
Hilbert transform 

1 fao f}J hex) = - dy g( y). 
1T - ao (y - x) 

(2.1) 

Next, construct the function 

g(u) = - dx hex), 1 fao f}J 

1T -ao (x-u) 

which from Eqs. (1.1) and (2.1) becomes 

1 fao Jao g(u) = r _aog(y)dy _aodx 

f}J f}J 
X -g(u). 

(x-u) (y-x) 
(2.2) 

Since we have 

dx =0, f ao f}J f}J 

-ao (x-a) (x-b) 
(a and b real), (2.3) 

the first term in Eq. (2.2) vanishes and we obtain 

g(u) = - g(u) = - dx hex). 1 fao f}J 

1T -ao (x-u) 
(2.4) 

Thus two functions g and h related by Eq. (2.1) must also 
satisfy the "inverse" relation (2.4). 

The well-known results (2.1) and (2.4) for Hilbert 
transforms1

0-
12 are ~sually proved from complex variable 

theory by letting x ..... z = x + iy and requiring that 
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'11( +) (z) = h(z) + ig(z) be an analytic function in the up
per-half z plane. The proof of the PB theorem that has been 
given by Muskhelishvili2 [hence, also, the reciprocal 
theorem (2.4) on Hilbert transforms] makes no explicit re
course to complex variable theory. However, by a theorem 
due to Titchmarsh13 we know that the existence ofthe Hil
bert transforms (2.1) and (2.4) implies the analyticity and 
causality of the functions involved. [The causal behavior can 
be seen by assuming that x is an energy (frequency) variable 
and Fourier transforming to a time representation.] An
other way to view the analyticity of '11 ( + ) (z) is to note that 
it can be expressed as a Cauchy integral: 

'11( + )(z) =...!.. f'" dx g(x) 
1T - '" (x - z) 

when z is in the upper half-plane or approaches the real axis 
from above. The above function is manifestly analytic in the 
upper half-plane. Similarly, the function 

'11( -) (z) =...!.. fO<> dx g(x) 
1T - '" (x - z) 

for z belonging to the lower half-plane or approaching the 
real axis from below is an analytic function throughout the 
entire lower half-plane. Thus we see that there is an intimate 
connection between the PB theorem and analyticity. 

B. Finite-temperature response functions 

We next use the PB theorem to obtain a dispersion rela
tion for integrals of products of Green's functions.4.5 Such a 
relation is useful in evaluating the nuclear response func
tions occurring, e.g., in pion-nucleon-delta interac
tions. 3

•
7

.
14 We begin with a single finite-temperature, causal 

propagator satisfying the well-known dispersion relationS 

If'" 9 Re(Ga (w» = - dw' -,--
1T -'" (w -w) 

X Im(Ga (w'»7Ja (w') 

and 

{
tanh(W - /-La )/2kB T, 

7Ja (w) = 
coth(w - /-La )/2kB T, 

forbosons, 

for fermions, 

(2.5a) 

(2.6) 

where k B is the Boltzmann constant, T is the temperature, 
and/-La is the chemical potential. In Eqs. (2.5a) and (2.6), a 
labels the type of particle (pion, nucleon, delta, etc.). In the 
zero-temperature limit, we have 

7Ja (w) --+sgn(w - /-La)' (2.7) 

From Eqs. (2.1) and (2.4), we find that 

1 f'" 9 Im(Ga (w»7Ja (w) = - - dw' ---
1T -'" (w'-w) 

XRe[ Ga (w'». (2.5b) 

We note that G a (w) is not an analytic function in either the 
upper or lower half-w planes.s However, defining 

g(w) =7Ja(w)lm[Ga (w)] (wreal), 

hew) = Re[ Ga (w)] (w real), 

we know from the discussion in Sec. II A 13 that the functions 

'11( ±) (w) = hew) ± ig(w), 
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continued to the complex w plane, are analytic in the upper 
(lower) half-planes. Of course, one can always construct the 
retarded and advanced Green's functions,15 which are ana
lytic in the upper and lower half-planes, respectively. How
ever, for reasons discussed in Sec. 19 we prefer to work with 
the causal Green's function. 

The response function is proportional to the integralS 

IIap(w) = jJ~ '" dw' Ga (tV + w')Gp (w') (2.8) 

where for now we suppress other integrations. 
Also, one can Fourier transform to functions of time 

using 

Ga (w) = (21T) - J~ '" dr ei<UTGa (r) 

and identical equations for Gp and flaP' Here we assume 
stationary or steady-state motion with Ga (t - t') 
=Ga(t,t'). We then find that 

or 

which nicely demonstrates that flaP is indeed a "loop" when 
represented by the Feynman diagram of Fig. 1. 

The imaginary part of II ap (w) is 

However, we can evaluate the first term in the integrand of 
Eq. (2.9) using Eq. (2.5a), giving 

f'" '" dw' Re[ Ga (w + w') ]Re[ Gp (w')] 

=- dw dw 1 f'" 'f'" 9 r _ '" _ '" a (wa - W' - w) 

Xf'" dw' 9 f'" dwp 9 
- '" (Wa - W' - w) - '" (wp - w') 

(2.10) 

where we have reversed the w' and Wa integrations since 
there is only a single principal-value term. 1 If we apply Eq. 
(1.1) to the w' and wp integrations in Eq. (2.10), we obtain 

Davies, Davies, and White 1358 



                                                                                                                                    

Leo eo dol Re[ Ga (OJ + OJ'» Re[ Gp (OJ')] 

1 Jeo Jao Jeo fJJ fJJ = --.2 dOJa 1m Ga (OJa )71a (OJa ) dOJp 1m Gp (OJp )711' (OJp) dOJ', , 
11 - eo - eo - eo (OJa - OJ - OJ) (OJp - OJ ) 

+ Leo eo dOJa 1m Ga (OJa )71a (OJa)lm Gp (OJa - OJ )711' (OJa - OJ). 

which from Eq. (2.3) reduces to 

Leoeo dOJ' Re [Ga (OJ + OJ'» Re[ Gp (OJ'» 

= Leo eo dOJa f: eo dOJp I5(OJa - OJ - OJp)lm [Ga (OJa >] 

X 1m [ G p (OJ P >] 71 a (OJ a ) 711' (OJ P ) . (2.11 ) 

Then substituting Eq. (2.11) into Eq. (2.9), we find that 

1m naP (OJ) = Leoeo dOJa f: 00 dOJp I5(OJa - OJ - OJp) 

X [71a (OJa )71p (OJp) - 1] 1m [Ga (OJa >] 

Xlm[Gp(OJp>]. 

In the zero-temperature limit [Eq. (2.7)] we have 

Im[naP(OJ) ] 

-- - 2feo dOJafeo dOJp I5(OJa - OJ - OJp ) 
T-O _ 00 - 00 

where 

X [O(OJa -I'-a )O(I'-p - OJp ) 

+ O(OJp -I'-p )O(I'-a - OJa >] 

X 1m [Ga (OJa >] 1m [Gp (OJ,8l ], 

O(x) = [1, for x>O, 
0, for x<O. 

(2.12) 

(2.13 ) 

In the integrand of Eq. (2.13) the only contributions are 
from particle-hole terms, not particle-particle or hole-hole 
terms.5 (Of course, for finite temperatures, the hole-particle 
boundaries are smeared, so that this distinction does not ap
ply.) 

From Eqs. (2.5a) and (2.8) we then obtain 

1 feo feo fJJ Re naP (OJ) = - - dOJa dOJp ------
1T - eo - eo (OJa - OJ - OJp ) 

X 1m [Ga (OJa ) ] 1m [Gp (OJp)] 

X [71a (OJa ) - 711' (OJp >], 
which has the limit 

Re[nap (OJ>] 

X [O(OJa -I'-a )O(I'-P - OJp ) 

- O(I'-a - OJa )O(OJp -1'-1')] 

Xlm[ Ga (OJa ) ]Im[ Gp (OJp )]. 

(2.14 ) 

(2.15 ) 

We again note the presence of only particle-hole terms in the 
integrand as T -- O. 

We now construct a dispersion relation for naP (OJ) that 
is analogous to Eq. (2.5a) for a single Green's function. 
Thus we need to find a function 71aP (OJ) such that the rela
tion 

1 foo fJJ Re[naP(OJ)] = - dOJ'-,--
1T - eo (OJ - OJ) 

X 1m [naP (OJ')] 71ap (OJ') (2.16a) 

is satisfied. From Eqs. (2.12), (2.14), and (2.16a) we find 
that 

( ) 
71p (OJp) - 71a (OJa ) 

71ap OJa - OJp = 
71a (OJa ) 711' (OJp) - 1 

(2.17) 

and from Eq. (2.6) it follows that 

if a and /3 are particles with like statistics, 
(2.18 ) 

if a and /3 are particles with unlike statistics. 

FIG. 1. A Feynman diagram for a two-propagator response function. The 
dashed line represents the external propagator into which the loop integral 
( X Ip12) is inserted as a "self-energy," e.g., in the solution of Dyson's equa
tion. 
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The result (2.18) is very satisfying since it demonstrates that 
statistically two bosons or two fermions behave like a boson, 
while a boson and a fermion behave like a fermion. Also, we 
have 

71aP (OJ) -- sgn(OJ -I'-a + I'-p). (2.19) 
T-O 

Notice that Eqs. (2.18) and (2.19) involve only the differ-
ence of the chemical potentials. The inverse relation of Eq. 
(2.16a) can be obtained from Eqs. (2.1) and (2.4), namely, 

1 feo fJJ Im[naP (OJ) ]71aP (OJ) = - - dOJ'-,--
1T -eo (OJ -OJ) 

X Re[ naP (OJ'>]. (2.16b) 
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Again, we know from Titchmarsh's theorem13 that if we de
fine the functions 

X( ± lew) = Re[ lla,8 (w)] ± i'1]a,8 (w) 

X Im[lla,8 (w)] (real w) 

and then let w become complex, x< ± ) (w) are analytic in the 
upper (lower) half-planes. Also, we observe that in Eqs. 
(2.14), (2.15), and (2.17)-(2.19) there is an asymmetry 
between a and /3 which arises from the asymmetry in the 
original defining equation (2.8). 

The above formalism is very general and applies to prop
agators other than the causal Green's functions. In particu
lar, for the retarded and advanced Green's functions we have 
'1] = + 1 and '1] = - 1, respectively. Then from Eqs. (2.12) 
and (2.14), we see that the real and imaginary parts of 
llaP (w) vanish if both propagators are advanced or both are 
retarded. This again is a reflection of the physics, which dic
tates that only particle-hole combinations are allowed for 
the response function. However, one could have a nonvan
ishing retarded-advanced loop and from Eq. (2.17) we find 
that 

_ { + 1 for a retarded, 
'1]ap - _ 1 for a advanced, 

C. Calculations in nuclear matter 

/3 advanced, 

/3 retarded. 

We now calculate typical response functions in nuclear 
matter for the case in which we have nucleon-delta-pion 
interactions.3.7.14,16,17 The resulting loop integral shown in 
Fig. 1 is then used as a self-energy insertion into another 
propagator, as represented by the dashed line. The full lines 
of the loop can represent a (nucleon, delta) combination, 
where the dashed, external line is a pion. Similarly, one could 
have nucleon-pion lines in the loop and a delta particle for 
the external propagator. Other combinations are, of course, 
possible and are being considered,3,14 but the nucleon-delta 
and nucleon-pion loops are the most important physical 
processes. 16.17 

Consider now the bare nucleon-delta (Nil.) loop for 
which we rewrite Eq. (2.8), showing explicitly all the mo
mentum integrations3 

llN/1 (p) =;f d 4qf2(2q + p)GN( p + q)G/1 (q), 

(2.20) 
where p= (w,p) and q= (w',q) are four-vectors. A "form 
factor" f has been introduced in order to assure convergence 
of the nucleon-pion loop integral,3 although, as we shall see, 
its effect on the nucleon-delta loop is minimal. Explicitly, we 
use the functions l4 

1 - nN(p) nN(p) 
GN ( p) = + , (2.21a) 

W-EN(p) +iE W-EN(p) -iE 

G/1(p) = [W-E/1(p) + !ir/1 (w)] -I, 
!(p) =/3I(p4 +...t 4), 

where 

nN(p) = {exp[(EN(p) -JLN)lkBT] + 1}-1 

~ O{JtN - EN(p», 
T_O 

EN(p) = (/f/2m:e)lpI2 + mN + V~), 

E/1 (p) = (/f/2m!) Ipl2 + m/1 + Viol, 

(2.21b) 

(2.22) 

(2.23a) 

(2.23b) 

(2.24) 

(2.25) 

and m N and m /1 are the free-space masses of the nucleon and 
delta, respectively. The effective masses m:e and m!, as well 
as the potentials V~) and Viol, depend upon the nuclear 
density. 14 The constant /3 is determined by settingf = 1.0 for 
the on-shell reaction Il.~N + 1T in free space, and...t = 1.5 
XmN' 

Two different forms were assumed for the width 
r/1(w): 

(2.26) 

where riO) = 115.0 MeV, the delta width in free space, and 

_ [g/1 (w), if g/1 (w)..;riO), 
r/1(w) - (0) (0) (2.27) 

r/1' if g/1(w»r/1, 

with 

(}(w-m -m )(f*)2{2m [w-(2m w_m2 +m2)1/2]3/2}m 
( ) N '" N N N '" N 

g/1 W = (2.28) 
61Tm2 [2m w _ m 2 + m2 ] 1/2 

'" N N '" 

f* is the nucleon-delta-pion coupling constant l4,17 and m", 
is the free-space mass of the pion. The chemical potential JL /1 
in Eq. (2.26) is the same as that for the nucleon, i.e., 

(2.29) 

where k F is the Fermi momentum. (For k F = 1.333fm - 1 , 
J.L/1 =J.LN-;:::;923 MeV.) The second form, Eq. (2.27), is ob
tained by integrating the free-space nucleon-pion self-ener
gy loop and has the correct gradually increasing threshold 
behavior [in contrast to the step function discontinuity at 
w = JL/1 in Eq. (2.26)].14 In Eq. (2.27) r /1 (w) vanishes for 
energies below mN + m", -;:::; 1077 MeV; for energies above 
this value, it increases monotonically until W-;:::; 1244 MeV, 
after which r /1 (w) remains constant at the free-space value 
riO). Thus at high energies the two prescriptions are identi
cal. 
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The full self-energy insertion for the pion propagator is 
givenbyl:(p) = IpI2UN/1(p):3,14 

UN/1 (p) = U~l (p) [1 + (8~/9m:ekF )g~ U~l (p)] -I, 
(2.30) 

where g~ = 1.6 is the Migdal parameterl7 and 

U~l (p) = llN/1 (p) + IIN/1 ( - p). (2.31 ) 

In Eq. (2.20) two different options are used in calculating 
II N/1 ( p): f = 1.0 and f having the cutoff behavior given by 
Eq. (2.22). However, whenf =1= 1.0, the PB derivation given 
in Sec. II B is no longer valid and Eq, (2.16a) is not true. 
Nevertheless, we impose the following prescription to assure 
exact causality.3 First, we calculate the imaginary part of 
"N/1(P) from an equation analogous to Eqs. (2.12) and 
(2.13), namely 
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" 
:3 3 
n 
<I 
z 2 
~ 

.§ 

o ..
o 

p =1.3 

2 

-- ENERGY-DEPENDENT WIDTH 
_._. ENERGY-DEPENDENT WIDTH 

(1=1.0) 
........... CONSTANT WIDTH 
----- CONSTANT WIDTH (f-1.0) 

4 6 B 

OJ x 10-2 (MeV) 

10 

FIG. 2. The bare Im[ U<;/l] function, calculated from Eqs. (2.31) and 
(2.33), for p = 1.3 fm -I as a function of {(). The form factor is calculated 
from Eq. (2.22) except for the cases denoted by 1= 1.0. 

Im[llN~(p)] = fd4qI2(2q+p)lm[GN(p+q)] 

Xlm[G~(q)] [llN(P+q)1h(q) -1]. 
(2.32) 

Then we calculate the real part of llN~ (p) from Eq. 
(2.16a), so that exact causality is recovered. We emphasize 
that the precise form of Eq. (2.32) is extracted from Eq. 
(2.12), which was obtained by the derivation using the PB 
theorem fori = 1.0. This prescription, while ad hoc, is physi
cally reasonable. It can be shown that Eq. (2.32) reduces to 

Im[llNa(m,p) ] 

= 2r LX> q2dq[2nN(q) - 1] 

X [llN(EN(q»ll~ (EN(q) -m) - 1] 

xL~ Idx Im[ G~(EN(q) -m,[q2 + p2 _ 2qpx] 112)] 

x/2 [2EN(q) -m,2q - pl. (2.33) 

5.3 

4.3 
N 
> 

3.3 .. 
~ 

'" I 2.3 2 
" ~ 1.3 
:3 
n 

0.3 
<I 
z 
~ -0.7 .. 
It: 

-1.7 

-2.7 

---------- / 
/ 

p=1.3 

0 2 

- ENERGY-DEPENDENT WIDTH 
-.-. ENERGY-DEPENDENT WIDTH 

(f= 1.0) 
....... CONSTANT WIDTH 
----CONSTANT WIDTH (f= 1.0) 

4 6 
OJ X 10-2 (MeV) 

B 10 

FIG. 3. The bare Re[ U<;/l] function, calculated using Eqs. (2.16a) and 
(2.31), for p = 1.3 fm -I as a function of {(). The form factor is calculated 
from Eq. (2.22) except for the cases denoted by 1 = 1.0. 
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8 

-
~ 4 .. 
J .s 3 

~ 
2. 2 
.§ 

2 4 8 

'" x 10-2 (MeV) 

8 10 

FIG. 4. Comparison of the bare Im[ U<;/l] function (solid line) with the 
Im[ UNA] function (dotted line) calculated from Eq. (2.30) for p = 1.3 
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InEq. (2.33), note that q= Iql andp= Ipi are not four-vec
tors, a convention we will maintain for the remainder of this 
section. 

We now present some zero-temperature results. Calcu
lations of U k?l (m,p) are shown in Figs. 2 and 3 for the con
stant width prescription (2.26) and the energy-dependent 
width prescription (2.27). For each of these cases, we also 
showl = 1.0and/calculated from Eq. (2.22). !tis seen that 
the form factor has little effect on the nucleon-delta loop, 
which is understandable since it is parametrized to have the 
value of 1.0 for four-momenta which give the most signifi
cant contributions to the integral. Notice, too, that for the 
energy-dependent width option, the 1m ( U k?l ) vanishes for 
m $160.0 MeV, whereas for the constant width option it 
goes to zero for small energies only at m = 0, with a slope 
given by a well-known phase-space factor. 14 We see, too, that 
for a given form factor option, the curves from Eqs. (2.26) 
and (2.27) are identical for large m. In Figs. 4 and 5 we show 
comparisons of the bare U k?l function, with the full U N~ 
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FIG. 5. Comparison of the bare Re[ U<;/l] function (solid line) with the 
Re[ UNA] function (dotted line) calculated from Eq. (2.30) for p = 1.3 
fm - 1 with gA = 1.6. We use the energy-dependent width option and 

1#1.0. 
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function calculated from Eq. (2.30): The main difference 
between these functions is that the (i) value for the peak of the 
imaginary part of U Nt. is about 25 MeV higher than that for 
U ~l. We see that U Nt. is somewhat "smoother" that U ~l, 
which is expected from the general form of Eq. (2.30).18 
Also, note that the real and imaginary parts of U ~l or U Nt. 

have the types of shapes one expects for functions which 
satisfy dispersion relations. 19 Finally, we remark that the 
functions G t. , n Nt.' U ~l , and U Nt. have been calculated for 
only the first iteration of Dyson's equations, using Eqs. 
(2.20)-(2.28). In the full solution of the equations, one per
forms a complete self-consistent calculation, iterating until 
convergence is achieved. 14 

tions.2 This is discussed in more detail in Appendix B. [See, 
also, the discussion ofEq. (4.15).] 

A. Multiple Integrals 

Consider first the case of triple integrals and define 

A3 (u) = J &' dxJ &' dy 
(x-u) (y-x) 

xJ &' dzJ;(x, y,z) , (3.1) 
(z-x) 

B3 (u) = JdzJdyJ &' 
(x- u) 

&' &' 
X dxJ;(x,y,z). (3.2) 

(y-x) (z-x) 
III. GENERALIZATION OF THE PB THEOREM TO 
MULTIPLE INTEGRALS AND APPLICATIONS 

At least two generalizations of the PB theorem exist. 

In Eq. (3.2) we expand the principal-value terms in partial 
fractions:2 

B3 (u) = JdzJdyfdX{ &' &' 
(x-u) (u-y) (u -z) 

X 
&' &' &' 

(x-y) (y-u) (y-z) 

One is for triple and higher-order integrals and the other is 
for higher-order poles. In this section we shall study (i) the 
generalization to multiple integrals and (ii) the applications 
of the triple-integral formula to certain nuclear many-body 
relations and to separable products of sin and cos functions. 
Then in Sec. IV we shall give a generalization of the double
integral theorem to higher-order poles. In Secs. III and IV it 
is implicitly assumed that a principal-value product such as 
&' j[ (x - u)( y - x)] may be expanded in partial frac-

+ (X~Z) (Z~U) (Z~y)]J;(X'y,z), 
(3.3) 

I 
which clearly can be rewritten as 

B3 (u) = J &' dzJ &' dyJ &' dxJ;(x, y,z) 
(u - z) (u - y) (x - u) 

+JdzJ &' &' dyJ &' dxJ;(x,y,z) 
(y-u) (y-z) (x-y) 

+ J &' dzJ &' dyJ &' dxJ;(x, y,z). 
(z-u) (z-y) (x-z) 

(3.4) 

We now interchange the order ofintegrations in Eq. (3.4), so that the x integration becomes the outermost integration and the 
z integration becomes the innermost integration. Clearly, for the first term in (3.4) the order can be interchanged directly, 
with no additional terms, since the denominators of the principal-value terms are independent of one another.2 Then using Eq. 
(1.1), we transform the second term of Eq. (3.4) as follows: 

J
dzJ &' &' dyJ &' dxJ;(x,y,z) 

(y-u) (y-z) (x-y) 

= J &' dyJ &' dzJ &' dxJ;(x,y,z) - rrJ &' J;(x,u,u)dx 
(y-u) (y-z) (x-y) (x-u) 

= J &' dyJ &' dxJ &' dzJ;(x, y,z) - rrJ &' dxJ;(x,u,u) 
(y-u) (x-y) (y-z) (x-u) 

= J dx J &' &' dyJ &' dzJ;(x,y,z) - 'filJ &' dzJ;(u,u,z) - 'filJ &' dxJ;(x,u,u). 
(y-u) (x-y) (y-z) (u-z) (x-u) 

(3.5) 

Similarly, the third term ofEq. (3.4) becomes 

f 
-&'--dzJ &' dyJ &' dxJ;(x, y,z) 
(z - u) (z - y) (x - z) 

= fdyfdZ &' &' f &' dxJ;(x,y,z) + rrf &' dxJ;(x,u,u) 
(z-u) (z-y) (x-z) (x-u) 

= fdyfdz &' [ &' - &' ]f &' dxJ;(x,y,z) + 'filf &' dxJ;(x,u,u) 
(y-u) (z-y) (z-u) (x-z) (x-u) 
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= f fjJ dyfdxfdZ[ fjJ - fjJ ] fjJ h(X,y,z) 
(y-u) (z-y) (z-u) (x-z) 

-~f fjJ dY[h(y,y'Y)-h(U,y,U)]+~f fjJ dXh(X,U,u) 
(y-u) (x-u) 

= fdxfdyfdZ fjJ fjJ fjJ h(X,y,z) 
(z - u) (z - y) (x - z) 

-~f fjJ dy[J;(y,y,y) -h(u,y,U)] +~f fjJ dXh(X,U,U), 
(y-u) (x-u) 

(3.6) 

where we note that in the second step we have made a partial fraction expansion of [ (z - u) (z - y) ] - I , an expression which 
is again used in the fourth step after reversing the x andy integrations in the first term. Next, we substitute Eqs. (3.5) and 
(3.6) into Eq. (3.4) to obtain 

B3(u) = f fjJ dxf fjJ dyf fjJ dZh(x,y,z) + fdxf fjJ fjJ dyf fjJ dZh(X,y,z) 
(x-u) (u-y) (u-z) (y-u) (x-y) (y-z) 

+ fdxfdyfdZ fjJ fjJ fjJ h(x,y,z) - ~f fjJ dZh(u,u,z) 
(z - u) (z - y) (x - z) (u - z) 

- ~ f (y~ u) dY[h( y,y,y) - h(U,y,u)]. 

We observe that in the first three terms ofEq. (3.7), there is 
no loss in generality in putting all of the principal values into 
the innermost (z) integration. Then with the same partial 
fraction expansion that was used in converting Eq. (3.2) to 
Eq. (3.3), we recombine the principle values in the first two 
lines ofEqs. (3.7) and find that 

A3(u) = B3(u) + D3(u), 

where 

D3(u) = ~f fjJ dx[J;(x,x,x) 
(x - u) 

- h(u,x,U) - h(u,u,x)]. 

(3.8) 

(3.9) 

Equation (3.8) is the appropriate generalization of the PB 
theorem to triple integrals. This is a lengthy derivation, but it 
does demonstrate the two main ingredients necessary for 
evaluating higher-order integrals: the original PB theorem 
( 1.1) combined with expansions in partial fractions. 

In general, we define the functions 

fjJ 
X---

(x3 - XI) 

(3.11) 

(3.12) 

In Appendix A, we prove that for order n + 1 if one defines 
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(3.7) 

In (X I,x2""Xn) = f fjJ dXn + 1 
(xn+ I - XI) 

Xin + I (X I,x2, .. ·,Xn 'Xn + I ), (3.13) 

which is used to construct D n (u), then the following recur
sion relation holds: 

Dn+l(u) =Dn(u) + (- )n~fdXnfdXn-I'''f dX2 

x[ n fjJ /"+1 (U,X2,X3""'Xn,u) 
n (u -xj ) 

j=2 

(3.14) 

where a single fjJ in the numerator now denotes the principal 
values for all relevant terms. From Eqs. (3.9), (3.13), and 
(3.14), we obtain an explicit expression for D4 (u): 

D4 (u) = - ~fdxfdY fjJ fjJ [h(u,x,y,u) 
(x-u) (y-u) 

+h(u,u,x,y) +h(U,X,u,y)] +~fdxfdY 
fjJ fjJ 

X [h(x,y,x,x) +h(x,x,x,y)] 
(x-u) (y-x) 

-~fdxfdY fjJ fjJ h(Y,y,x,y). 
(y-u) (y-x) 

(3.15) 

A general formula for Dn (u) can be derived, but it is compli
cated and of little practical value. The recursion relation 
(3.14) is considerably more useful, especially in deriving 
expressions for Dn (u) for relatively small n. 
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We end this formal subsection with the following com
ments. One might wonder whether a generalization of the 
PB theorem exists for integrals of the form 

A ~ (u) = f f!ll dxlf f!ll dX2 
(xl-u) (X2- XI) 

xf f!ll dx .. ·f f!ll dx 
(x3 - X2) 3 (Xn - Xn _ I) n 

Xfn (X I ,x2, .. ·,xn ) 

and we note that for eachj from 2 to n we have the principal 
value f!ll I(x} - xj _ I ), whereas the corresponding denomi
natorofEq. (3.10) we have f!ll I(xj - XI)' Unfortunately, it 
does not seem possible to generalize the PB theorem to prin
cipal-value integrals of this type. Moreover, as we showed in 
Sec. II, perhaps the main advantage of the PB theorem is that 
it allows one to obtain integrals having all principal-value 
terms in the same integral. Obviously, this is not going to be 
possible for A ~ ( u ); thus there does not seem to be any press
ing physical application for integrals of this type. 

B. Applications 

1. Convolutions with respect to time 
It is well known that a convolution with respect to time 

of two functions has a Fourier transform which is the simple 
product of the Fourier transforms of the functions, each 
evaluated at the same frequency or energy.3 In this subsec
tion we derive dispersion relations for functions of the form 
It «(i)h «(i). 

First, let h; «(i) and g; «(i) be functions which are Hil
bert transforms of one another according to Eq. (2.1). Also, 
note the relation 

Jco f!ll 
----------d(i) = 0 

- co «(i) - (i)a) «(i) - (i)p) «(i) - (i)y) 

«(i) a ,(i) p ,(i) y real) . (3.16) 

[See Eq. (A4) in Appendix A.] Then evaluate 

1 fco f!ll F2«(i)0) =- hI «(i) )h2«(i) )d(i), 
1T' - co «(i) - (i)o) 

(3.17) 

which from Eqs. (2.1), (3.1), (3.2), (3.8), and (3.9) can be 
reexpressed as 

F2«(i)0) = ~ f: co d(i)" g2«(i)") f: co d(i)' gl «(i)') 

X J co d(i) f!ll 
- co «(i) - (i)o) «(i) - (i)') «(i) - (i)") 

+- d(i) [gl «(i)g2«(i) 1 Jco f!ll 
11' - co «(i) - (i)o) 

-gl«(i)g2«(i)0) -gl«(i)0)g2«(i)]. (3.18) 

Using Eqs. (2.1) and (3.16), we find that 

- d(i)[h l «(i)h2«(i) - gl «(i)g2«(i)] 1 Jco f!ll 
1T' - co «(i) - (i)o) 

= - gl «(i)0)h2«(i)0) - hI «(i)0)g2«(i)O) , (3.19) 

a result that is also valid if the functions have other (hidden) 
coordinates or indices; there is a matrix multiplication or an 
integration implied in the products hI «(i) ) h2 «(i) ), 
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g I «(i) )g2 «(i) ), etc. Here we just focus on the frequency (or 
energy) dependence. 

Next let 

h;«(i) = Re[G;«(i)}] (real (i), 

g;«(i) = l1/«(i)Im G;«(i) (real (i), 

(3.20a) 

(3.20b) 

so that the real and imaginary part of G/ «(i) satisfy the dis
persion relations (2.5). Substituting Eqs. (3.20) into Eq. 
(3.19), we obtain 

- d(i){Re[ GI «(i) ]Re[ G2«(i)] 1 f"" f!ll 
1T' - "" «(i) - (i)o) 

- 111 «(i) )112 «(i) )Im[ GI «(i) ]1m [ G2«(i) n 
= - {111 «(i)o)lm[ GI «(i)o) ]Re[ G2«(i)0)] 

+ 112 «(i)o)lm [ G2«(i)0) ]Re[ GI «(i)o) n (3.21a) 

or, from Eqs. (2.1) and (2.4), 

- {111 «(i))lm[GI «(i) ]Re[G2«(i)] 1 f"" f!ll 
1T' - "" «(i) - (i)o) 

+ 112«(i) )Im[ G2«(i) ]Re[ GI «(i) n 
= Re[ GI «(i)o) ]Re[ G2«(i)0)] 

-111 «(i)o)112 «(i)o)lm[ GI «(i)o)] Im[ G2«(i)0) n. 
(3.21b) 

Equations (3.21) are general results that apply to either 
zero-temperature and finite-temperature Green's functions. 

Also, Eqs. (3.21) can be derived from analyticity con
siderations. In particular, from Eqs. (2.1) and (3.20) and 
the Titchmarsh theorem,13 we know that the function 

(3.22) 

is analytic in the upper-half complex (i) plane. Then a prod
uct of such functions 

t/J12«(i) = t/JI «(i)t/J2«(i) 

will have identical analytic behavior and Eqs. (3.21) follow 
immediately from complex variable theory. 10 In this section, 
we have derived Eqs. (3.21) only from Eq. (3.9), the gener
alization of the PB theorem to triple integrals, without ex
plicit use of the Titchmarsh theorem and the complex vari
able theory. However, as was emphasized in Sec. II, there is 
an intimate relationship between the ordinary PB theorem 
(for double integrals) and analyticity. The present example 
for triple integrals again underscores the deep connection 
between the principal-value theorem and the analytic prop
erties of the functions. 

We now specialize Eqs. (3.21) to the case 

11 «(i) =111 «(i) = 112 «(i) , 

[11«(i)]2 = I, 

(3.23a) 

(3.23b) 

which applies to zero-temperature Green's functions, with 
the same chemical potential. Equations (3.21) then reduce 
to 

1 fco f!ll 11«(i)o)lm[GI «(i)0)G2«(i)0)] = -- d(i) 
1T' - co (m - mo) 

XRe[ GI «(i) G2«(i)], 
(3.24a) 
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1 f'" fjJ Re[G\(w)G2 (wo)] = - dW7J(W) 
'IT - '" (w - Wo) 

xlm[G\(w)G2 (w)]. (3.24b) 

Thus if the zero-temperature causal propagators G \ (w) and 
G2 (w) satisfy the dispersion relations (2.5), their product 
must satisfy the same dispersion relations. Moreover, this 
result immediately implies the general relations 

[ 
n ] 1 f'" fjJ 7J(wo)lm II Gj(wo) = - - dw 

j= I 'IT - '" (w - Wo) 

X Re[JXGj (W)]. (3.25a) 

(3.25b) 

Note that in Eqs. (3.25) the subscriptj can label different 
Green's functions, or for some or all of the Green's functions 
it can be the same index. 

Also, it should be emphasized again that the products 
occurring in Eqs. (3.25) are convolutions if one can perform 
a Fourier transformation to the time variable.3 For example, 
define 

Cn(t-f')=Cn(t,f') = 1 IGI(t,fl)dfl (2'IT)n - I 

xI G2(tI,f2 )df2 I G3 (t2,f3 )df3 

x···I dfn_ 1 Gn (tn-\ ,f'), 

where we have assumed stationary or steady-state motion 
with G; (t,f ') = G; (t - f '). It can then be shown that the 
Fourier transform of Cn is given by 

Cn (w) = (2'IT) - J dre;t>JTCn (r) = JXGj(W), 

which is the product appearing in Eqs. (3.25). In such a 
convolution one expects that each factor in the product 
should have the same chemical potential. 3 [See the discus
sion below regarding Eq. (3.26).] 

2. Dyson's equations 

We now apply Eqs. (3.25) to the zero-temperature Mig
dal parametrization of Dyson's equation for the pion propa
gator,3,14 namely, 

D( p) = [1 + -,/(f-/m"YlpI 2uNa (p)Do( p)] -IDo( p), 
(3.26) 

wherep == (w,p) is a four vector,f- is the nucleon~elta-pion 
coupling constant, and 

Do(p) = (p2 - m! + iE) -I (3.27) 

is the free-particle causal propagator for the pion. As we 
remarked at the end of Sec. II, UNa is determined by a sec
ond Dyson equation involving the exact delta propagator;3 
the iterated solution of these coupled integral equations is 
presently being investigated. 14 Here, the function UNa ( p) is 
approximated from Eq. (2.30) using the bare function 
U';l (p), which is calculated from Eqs. (2.31), (2.32), and 
(2.16a). Also, from Eqs. (2.18) and (2.29) we have 

"INa (W) -+ sgn(w) 
T-O 

and U ~l ( p) behaves like a Green's function whose chemi
cal potential is zero. Thus U ~l and Do each have the same 
chemical potential: ""11" = O. Then note the in each of Eqs. 
(2.30) and (3.26) there is the product ofafunction with the 
inverse of another function, giving rise to an infinite series of 
products of the form 

n 

II G/w), 
j=1 

each factor of which has ""11" = O. If we apply Eq. (3.25) to 
each of these products, we find a satisfying result, namely 
that U~l (p), UNa (p),Do( p), andD( p) all obey the same 
dispersion relation. Thus Dyson's equation for the pion, Eq. 
(3.26), is rigorously causal. The same result also pertains to 
Dyson's equation for the delta particle. 

3. Triple-propagator loop Integral 

Next, we examine the structure of the following contri
bution to the self-energy of a particle with either Bose or 
Fermi statistics: 

La{3y(w) = J:",I:", Ga(wa)Gp(wp ) 

XGy(wa + wp + w)dwa dwp. (3.28) 

(See Fig. 6.) The contribution (3.28) arises for any particle 
that has a dominant three-particle decay mode. Since each 
Green's function obeys the dispersion relations (2.5), direct 
application of the PB theorem for triple integrals, Eqs. (3.8) 
and (3.9), yields an expression for Re[ L apy (w)] in terms of 
only the imaginary parts of the individual Green's functions, 
namely, 

Re[LaPY(w)] = ~Joo dwaJ'" dwpf'" dwy Im[Ga (wa ) ]lm[Gp(wp))lm[Gy(wy)) 
'IT - 00 - 00 - 00 (w + Wa + wp - w y ) 

X [7Ja (wa )7Jp (wp )7Jy (Wy) - 7Ja (wa ) - 7Jp (wp ) + 7Jy (wy )]. (3.29a) 

Also, the imaginary part of La{3y (w) can be written as 

1m [Lapy (w)) = I:", dWa I: 00 dwp Im[ Ga (wa )] 1m [Gp (Wp)) 1m [Gy (Wa + Wp + w)) 

X [7Jp (wp )7Jy (Wa + Wp + w) + 7Jy (Wa + Wp + W )1Ja (wa ) - 1Ja (Wa )1Jp (wp) - 1]. (3.29b) 
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Then from Eqs. (3.29), we see that La/Jr({U) obeys the dispersion relation 

g; foo ,lm[LaPr({U')]d{U' 
Re[LaPr({U)] =- TJa/Jr({U) , , 

1T -00 ({U-{U) 
(3.30) 

where 

(3.31) 

for three bosons or two fermions and one boson, 

for three fermions or two bosons and one fermion. 
(3.32) 

Thus the contribution to the self-energy has the same statis
tics as the loop as a whole (or as the external propagator 
shown in Fig. 6). Note, also, that the net chemical potential 
iSPr -Pa -PP' analogous to Eqs. (2.18) and (2.19) for 
the two-propagator loop integral. We can also treat two of 
the particles in Fig. 6 as a loop in parallel with the third since 
we have clearly demonstrated that a loop obeys a dispersion 
relation similar in form to its constituents. Then the results 
of Sec. II are directly applicable and we obtain an alternative 
derivation of Eqs. (3.29 )-( 3.31). Of course, this is just an
other way of stating that the PB theorem for triple integrals 
can be derived from the ordinary double-integral result. 

4. Simple example of separable products 

Finally, we examine triple integrals in whichh (x, y,z) is 
a separable function of sin and cos functions, e.g., 

hex, y,z) = sin x siny sin z. 

For such a function, one uses the well-known Hilbert 
transforms1o

•
11 

cos U = - dx sin x, 
1 foo g; 
1T - 00 (x - u) 

1 foo g; 
sin u = - - dx cos X. 

1T - 00 (x - u) 
(3.33) 

In Table I we present the results obtained from Eqs. (3.9) 
and (3.33) for various separable functions. In each of the 
cases tabulated, D3 (u) is identically equal to A3 (u) defined 
inEq. (3.1), which from Eq. (3.8) meansthatBn(u) van
ishes; however, this is not a general feature (as we shall see 
from the examples in Table II). 

FIG. 6. A Feynman diagram for a three-propagator response function. The 
dashed line represents the external propagator into which the loop is insert
ed. 
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IV. GENERALIZATION OF THE PB THEOREM, FOR A 
DOUBLE INTEGRAL, TO HIGHER-ORDER POLES 

In this section we will generalize the PB theorem l ,2 to 
higher-order poles. We first give the definition of a single 
higher-order principal value in a one-dimensional inte
gral:20-22 

f
OO g; 

dx lex) 
-00 (x-u)n 

()n-I foo 
=- lim dx 

(n - 1)! .--0+ - 00 

[
d(n-I) (x-u) ] 

X dx(n-I) «x _ U)2 + ~) fix) 

1 foo g; d (n - I) 

= dx lex). 
(n - 1)! - 00 (x - u) dx(n-I) 

(4.1 ) 

Note that in Eq. (4.1) we have reduced the expression for a 
higher-order pole to that of a single pole, which is a trick we 
will continue to use throughout this section. Also, we shall 
assume that/(x), or lex, y), is always finite as x, y-> ± 00, 

so that boundary terms vanish, e.g., when integrating by 
parts. The results of this section will clearly be valid for lim
its other than ± 00 provided that the corresponding bound
ary terms are zero. If the boundary terms do not vanish, then 
the contributions from such terms must be added onto the 
appropriate equations.20 However, for most applications of 
physical interest, one does not have to be concerned about 
this problem. 

Next, we will prove several important relations. Consid
er the integral 

TABLE I. Evaluation of D3 (u) for various products of sin and cos func
tions. 

j;(x,y,z) 

sin x sin y sin z 
sin x sin y cos z} 
sin x cosy sin z 
sin x cos y cos z 

cos x siny sin z 
cos x siny ~s z} 
cosxcosysmz 
cos x cos y cos z 

~ cos u cos 2u 

- ..!.. sin u cos 2u 
2 

~ cos u(3 - 2 cos2 u) 

- ! sin u(3 - 2 sin2 u) 

- ..!.. cos u cos 2u 
2 

~ sin u cos 2u 
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I'(x) = dy I( y) JOO 9 

- 00 (y - x) 

= lim + y I(y), 
(J

X-E iOO) d 
E~O + _ 00 x + E (y - x) 

(4.2) 

which we differentiate with respect to x to obtain 

dl'(x) = lim {-~[/(x-E)+/(X+E)] 
dx E~O+ E 

+(Jx-E+ioo )( : )2/(Y)}. 
-00 X+E Y X 

(4.3) 

We then integrate Eq. (4.3) by parts, giving 

dI'(x) = Joo dy 9 dl( y) 
dx - 00 ( y - x) dy 

or, in general, from Eq. (4.1), 

d(n-I)I'(X)=(n_l)!Joo dy 9 I(y) 
dx(n-I) -00 (y_x)n 

Joo 9 d(n-I)/(y) 
= dy . -00 (y-x) dy(n-I) 

(4.4) 

Suppose that lin Eq. (4.2) depends on x as well as y, i.e., 

Joo 9 
l"(x) = dy I(x,y). -00 (y-x) 

Then by the Leibnitz theorem23 we find that 

d(n-I)l"(x) 

dx(n - I) 

(4.5) 

- ~ C n - I d (r!) J\ , 
n-I Joo 9 a(n-I-r)/,,(x y) 

- r-:-o r _ 00 Y . (y _ x)'+ I ax(n - I - r) 

= nile ~ - I Joo dy 9 
r=O -00 (y-x) 

[
a(r) a(n-I-r) ] 

X air) ax(n-I-r)/(x,y) , (4.6) 

where 
C~ = N!lr!(N - r)! 

is the usual binomial coefficient. Also, let 

J
OO 9 

lex) = dy I(x, y) -00 (y_x)m 
(4.7) 

and, from Eqs. (4.1), (4.5), and (4.6) we obtain 

d(n-I)l(x) 1 n-I Joo 9 
----'-~= L C n

-
I dy---

dx(n-I) (m-l)! r=O r -00 (y-x) 

where 

F (x ) _ 1 n ~ len - I 

nm ,y - ( _ 1 )'( _ 1)' """ r n . m . r=O 

a (n - I - r) a (m - I + r) 
X I(x,y). 

ax(n-I- r) aim-I + r) 
(4.11) 

Equation (4.10) involves only first-order poles, so that we 
can apply the ordinary PB theorem (1.1) to obtain 

A(u) = B(u) - -rrFnm (u,u), (4.12) 

with thefunctionB(u) given by 

J
oo Joo 9 9 

B(u) = dy dx--- Fnm(x,y). 
- 00 - 00 (x - u) (y - x) 

(4.13) 

Comparing Eqs. (1.1), (4.9), and (4.13), we see that 
the final step in the generalization of the theorem is to prove 
that 

J
OO Joo 9 9 B(u) = dy dx I(x,y), 

-00 -00 (x_u)n (y_x)m 
(4.14) 

which is derived in Appendix B. 
We emphasize that the proper defining equations for 

A(u) and B(u) are Eqs. (4.9) and (4.14), respectively. 
However, it is clearly much easier to evaluate these functions 
using Eqs. (4.10) and (4.13) since the integrations by parts 
have been done in order to convert all principal values to first 
order. We note, also, that2 

9 9 9 [9 9] 
(x-u) (y-x) = (y-u) (x-u) - (x-y) ; 

(4.15 ) 

this relation was also used in Sec. III and can be formally 
justified by using the limiting procedure indicated in Eq. 
(4.1). Equation (4.15) is in some sense a trivial identity 

TABLE II. Evaluation of A(u), B(u), and Fnm (u,u) defined in Eqs. (4.9), 
(4.14), and (4.11), respectively, for the various!. (x,y) functions given in 
Eq. (4.17). The first four lines are for the ordinary PB theorem (1.1). 

n m j(x, y) A(u)/r B(u)/r -Fnm(u,u) 

J; ! cos 2u - sin2 u 

h -! sin 2u 0 -! sin 2u 

1; -! sin 2u 0 -! sin 2u 

J. -! cos 2u ! - cos2 
U 

[
a(n-I-r) a(m-I+r) ] 

X ax(n-I-r) ay(m-I+r) I(x,y). (4.8) 2 J; - sin 2u 0 - sin2u 
h - cos 2u 0 - cos2u 

Now we consider the double integral 1; - cos 2u 0 - cos2u 
J. sin2u 0 sin2u 

J
oo 9 Joo 9 A(u) = dx . dy I(x,y) -00 (x_u)n -00 (y_x)m I. -!sin2u 0 -! sin 2u 

12 -! cos2u - cos2 u 

2 

JOO 9 
= dx lex), -00 (x_u)n 

(4.9) 
1; -!cos2u -! sin2 u 

J. ! sin 2u 0 ! sin 2u 

which, from Eqs. (4.1) and (4.8), becomes 2 2 J; - cos 2u 0 - cos 2u 

J
oo 9 Joo 9 

A(u) = dx dy Fnm(x,y), -00 (x-u) -00 (y-x) 

h sin 2u 0 sin 2u 
1; sin 2u 0 sin 2u 
J. cos2u 0 cos2u 

(4.10) 
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since it is valid as an algebraic expression and must, there
fore, be valid if we exclude the values where the denomina
tors vanish. The same remark applies to the general expres
sions (Al) and (A2) of Appendix A and Eq. (B11) of 
Appendix B. From Eq. (4.15), Eq. (4.13) becomes 

( 4.16) 

which is considerably easier to use than Eq. (4.13) since 
each integral contains only one principal value. 

Finally, we present some simple examples ofEq. (4.12) 
for ditferent/(x, y) functions. Consider the separable func
tions 

II(x,y) =sinxsiny, 12(X,y) =cosxsiny, 

J;(x,y) = sin x cosy, ~(x,y) = cos x cosy. (4.17) 

From Eqs. (3.33) and (4.17), we evaluate A (u), B(u), and 
Fnm (u,u) for various cases and list the results in Table II. 
[As mentioned, A (u) can be evaluated using either of Eqs. 
(4.9) or (4.10); similarly, B(u) can be evaluated using Eqs. 
(4.14), (4.13), or (4.16).] It is then easily verified that Eq. 
( 4.12) is satisfied for each case tabulated. 
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APPENDIX A: DERIVATION OF THE MULTIPLE· 
INTEGRAL RECURSION RELATION 

In this Appendix we first give the expansion in partial 
fractions of the function 

LVI (x -xj )] -I, 
which is then used to derive the recursion relation (3.14). 

It is well known that 

1 n K ~n) 
n = L ' 
II ( ) 

j= I (x - x j ) 
X-Xj 

j=1 

where 

K}n) = II (X j -Xj) . 

[ 

n ]-1 
J= I 
j~j 

(AI) 

(A2) 

Thus Eq. (AI) enables one to convert an integral containing 
products of principal values to a sum of terms, each of which 
contains only one principal value. Also, we recall the well
known result 

---dx = 0 (a real), fco &' 

- co (x - a) 
(A3) 

which ,when combined with Eq. (AI), gives 

fco &' 
_ co n dx = 0 (x j all real). 

II (x -Xj) 

(A4) 

;=1 

Equations (2.3) and (3.16) are special cases ofEq. (A4). 
We return to the discussion in Sec. III concerning Eqs. 

(3.10)-(3.14). Note that Eq. (3.12) is merely a definition of 
Dn (u). In Eqs.( 1.1), (3.9), and (3.15) Dn (u) is given for 
the cases n = 2, 3, and 4, respectively. Our aim here is to 
derive a general recursion relation between D n + I (u) and 
Dn (u). We begin by reducing the n + 1 problem to nth or
der via the definition in Eq. (3.13) and, also, 

An (u) =An+ I (u) = Bn (u) + Dn (u), (AS) 

whereBn (u) is given by Eq. (3.11), but with/" defined in 
terms of/,,+ I viaEq. (3.13). We reexpressEq. (3.11) as 

As in Sec. III, a single &' symbol in the numerator denotes the principal value of all possible terms. The 
In + I (x ltx 2, .. ·,xn,xx+ I ) function in Eq. (3.13) is assumed to be an arbitrary, but well-behaved function of its arguments. 

From Eqs. (Al) and (A2), Eq. (A7) can be rewritten as 

H(X2,x3'''''Xn ) = ( - )n+ If dXI[ ~ + jt
2 

&' n ]/" (XI,x2""'Xn ), 

(xl-u) II (u-xj ) - (XI-Xj)(Xj-u) II (Xj-Xj ) 
j=2 j=2 

j~j 

which from Eq. (1.1) and (3.13) becomes 
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n )_1] II (Xi - X.) 
j= 2 J 

j¥i 

(AS) 

Ifwe then substitute Eq. (AS) into (A6), we note that the xn+ I integration can be moved all the way to the left, so that 

lin(u) = (- )n+1 fdxn+lf dxn··J dX2 f dXI !?Jl [ ~ 
(Xn+I-XI) (xl-u) II (u-x.) 

j=2 J 

+ i~2 n /n+ I (XI,X2,···,xn,xn+ I) + X(u), (A9) n !?Jl ] 
- (Xl -Xi)(Xi - U) II (Xi -X) 

j=2 

j#i 

with 

X(u) = ( - )n~ f dxn·· J dX2[ n!?Jl In + I (U,x2,x3'···'Xn,u) 
II (u-x.) 

)=2 J 

(A10) 

Next, we observe that all the principal-value terms in Eq. (A9) can be recombined, using Eqs. (AI) and (A2), giving 

lin (u) = {fdXn+ IfdXn·· ·fdXI !?Jl In+ I (XI,X2,· ·'Xn'Xn+ I)} + X(u); 
(XI - u)(X2 -XI)···(Xn -XI)(Xn+ 1 -XI) 

however, from Eq. (3.11) we see that 

lin (u) = Bn+ du) + X(u). (A12) 

Finally, from Eqs. (3.12), (AS), and (A12) we obtain 

Dn+ I (u) = Dn (u) + X(u), (A13) 

which is Eq. (3.14) if we remove the overbar from Dn (u). 
[We use the overbar here to emphasize that Dn (u) is evalu
ated using Eq. (3.13), so that the n + 1 problem is reduced 
to nth ordera la Eqs. (3.13) and (AS).] 

APPENDIX B: PARTIAL FRACTION EXPANSION FOR 
HIGHER-ORDER POLES AND PROOF OF EO. (4.14) 

We begin by deriving another important partial fraction 
identity and then proving Eq. (4.14), which completes the 
generalization of the PB theorem to higher-order poles. 

A. Partial fraction expansion of the function 
(x _z)-n( y_x)-m 

We desire to expand the function (x - z) - n( y - x) - m 
in summations involving the combinations 
(y - z) -n,(x - z) -m'and (y -z) -"'( y-x) -"". First, 
we construct the integral 
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(All) 

f
OO foo 1 !?Jl. 

J(z) = dx dy lex, y), (B1) 
_ 00 - 00 (x - z)n (y _ x)m 

where z is complex and/(x, y) is a function that is complete
ly arbitrary except for the requirements that it is differentia
ble according to Eq. (4.11) and that the integral be conver
gent.2 We note that 

1 (_)n-I a<n-I)( 1 ) 
---- -- (B2) 
(x-z)n - (n-1)! ax<n-I) x-z 

and, from Eq. (4.1), !?Jl I(x - u)n obeys the same equation, 
namely20 

!?Jl (_)n-Ia<n-I)[ (x-u) ] 
(x - u)n = (n - 1)! ax<n- I) (x _ U)2 + ~ , (B3) 

with the limit € ..... 0 + always understood. Thus the algebra 
for X - I is exactly the same as that for !?Jl Ix - I and from Eqs. 
(4.9) and (4.10), we see that 

f
oo foo 1 !?Jl 

J(z) = dx dy Fnm(x,y), 
- 00 - 00 (x - z) (y - x) 

(B4) 

where Fnm (x, y) is defined in Eq. (4.11). Then we use Eq. 
(4.15) to obtain 
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J(z) = dx dy---
f

OO foo 1 
-00 -00 (y-z) 

X[ 1 - &' ] Fnm(x,y). (B5) 
(x -z) (x - y) 

Next, we integrate Eq. (B5) by parts using the deriva
tives contained in Fnm (x, y) and the formula 

a(k)(x-z)-I (I+k-1)! (_)k 

ax(k) (I-I)! (x-z)k+ I ' 
(B6) 

a result that holds for either (x - z) -lor &' I(x - U)I. 
After some algebra, we obtain 

J(z) =foo dxfoo dY{k n~lcn-I[H(r) 1 
nm.£.- r nm ( ) m + r 

-00 -00 r~O y-z 

1 m-I+r 
X _(_)n+r L G(n') 

(x_z)n-r r'~0 nm 

X /(x,y), 1 &']} 
(Y_Z)r'+1 (y_x)n+m-r'-I 

where C ~ - I is a binomial coefficient and 

k nm = [(n-l)!(m-l)!]-I, 

H~'j, = (n - 1 - r)!(m - 1 + r)!, 
and 

G ~~) = Cr;-I + r(n + m - r' - 2)!r'!. 

(B7) 

(B8) 

(B9) 

(BIO) 

Note that since/ex, y) is arbitrary, we have also verified the 
algebraic relation 

1 
(x_z)n (y_x)m 

=knm nr~~-ol C~-I[H~'j, ___ 1 ____ 1 __ 
£.. (y_z)m+r (x_z)n-r 

m-I+r 1 
- (- )n+r L G~r;:;)-----

r'~0 (Y_Z)r'+1 

X 1 ] 
(y_x),,+m-r'-I . 

(B1l) 

We emphasize, also, that Eq. (B 11) is formally valid in 
Eq. (Bl) if we let Z-+U (a real number), so that 
(x-u)-I-+&,I(x-u) and (y-u)-I-+&,I(y-u). 
Again, as indicated in Eqs. (B2) and (B3), this is because 
the algebra associated with x - I is exactly the same as that 
with &' Ix. Also, note that in Eq. (Bl) for Z-+U, the two 
principal values arising from the second and third lines of 
Eq. (Bl1) occur in the innermost y integration. However, 
two higher-order principal values in the same integral can be 
justified using the limiting procedure indicated in Eq. (B3). 2 

Of course, as we have demonstrated in Sec. IV, there are no 
special problems in manipulating the derivatives associated 
with higher-order poles if each of the principal values is in a 
different integral. Reversing the order 0/ integrations is an
other matter and for this one needs the PB theorem! 

B. Proof of Eq. (4.14) 

Because the rhs of Eq. (4.13) contains two principal 
values in the same integral, great care must be exercised in 
deriving Eq. (4.14). In particular,2o,22 
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(x - u ± iE) - n -+ 
E-O+ (x-u)n 

_. (_)n-I d(n-\) 
+ l1T c5(x - u) 

(n-l)! dx(n-\) 
(BI2) 

is valid only for the integrand of a Cauchy integral, which by 
definition contains no other singularities.2 In the formalism 
leading to the derivation of Eq. (4.10), we carefully studied 
how derivatives of higher-order principal values are to be 
handled and we showed that two principal values are easily 
manageable provided that each is in a separate Cauchy inte
gral. In what follows, we will treat the case in which the two 
principal values occur in only one of the integrals comprising 
a double integral. 

Equation (4.14) will now be derived using a generaliza
tion of the method developed in Ref. 2 for the case of simple 
poles. First, we derive the functions 

f

oo 1 foo &' 
<I>(z) = dx dy lex, y) 

-00 (x_z)n -00 (y_x)m 
(B13) 

and 

'I1(z) =foo dyJoo dx __ 1__ &' Ji(x y) 
( ) n ( m" 

- 00 - 00 x - z y - x) 
(BI4) 

where z is complex. We now make use of a very important 
property of integrals containing singular functions. Since 
Eqs. (B 13) and (B 14) contain only one principal value, the 
order of integrations may be interchanged,I,2 giving 

<I>(z) = 'I1(z). (BI5) 

Ifwe let 
<1>( ± leu) = lim <I>(u ± iE), (BI6a) 

E-O 

'11( ± leu) = lim 'I1(u ± iE). (BI6b) 
E-O 

it is clear that 

<1>( + leu) + <1>( - leu) = '11( + leu) + '11( - leu). (BI7) 

Since <I> (z) is a Cauchy integral with respect to the x integra
tion, we see from Eqs. (4.9), (BI2), and (B13) that 

<1>( + leu) + <1>( - leu) = 2A(u). (BI8) 

However, 'I1(z) is not a Cauchy integral with respect to 
the y integration: From Eq. (B 11 ) we can convert it to sums 
of Cauchy integrals, namely, 

n-I foo [ 1 
'I1(z) = k nm L C~-I dy m+r H~'j,Pnr(z,y) 

r=O -00 (y-z) 

m-I+r 1 ] 
- (- )n+r L ---=---r'-I G~r;:;)R~';j(y) , 

r'~0 (y-z) + 
(BI9) 

where 

f OO 1 
Pnr(z,y) = dx /(x,y), 

-00 (x_z)n-r 
(B20) 

and 

R (r'l foo d &' Ji B21 IIm(y) = X (x,y).( ) 
-00 (y_x)n+m-r'-I 

Now 'I1(z) is expressed in terms of Cauchy integrals and, 
from Eq. (BI2), Eq. (BI6) becomes 
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n-I {[fOO f!)J ( - )m+r-I foo 'I1C±l(U) =k ~ en-I Hcrl dy pC±l(U,y) ±i1T dypC±l(U y) 
nm ~ r nm ( _ ) m + r nr ( + _ 1) 1 nr' r=O - 00 y u m r . - 00 

dCm+r-1) ] m-I+r [fOO f!)J X c5(y- u) - (- )n+r ~ Gcrll dy R CIl(y) 
d C m + r - I) ~ nm () 1 + 1 nm y 1=0 -00 y-u 

(B22) 

so that 

n - 1 {[fOO f!)J 'I1 c + l(U) + 'I1 c - l(U) = k nm r C~-I H~'j, dy ( )m+ r (p~,+ l(U,y) + P~r- l(U,y» 
r=O -00 y-u 

i1T foo d c5( ) dcm+r-l) ( C+l( C-l( >] 
+( -1)1 Y y-u dcm+r-llPnr u,y)-p u,y) m+r . -00 y 

_2(_)n+rm-~+rGcrr')foo dy f!)J RCI)(y)}, 
~ nm ( )"+ 1 nm 

1=0 -00 y-u 
(B23) 

where we have integrated by parts m + r - 1 times in the second line of Eq. (B23). 
We must now evaluate the integralsp~,;t l(U,y). From Eqs. (B12) and (B20) we see that 

P~r± l(U,y) = lim Pnr(u ± iE,y) = dx /(x,y) ± 11T /(x,y) 
f

oo f!)J • [acn-r-l) ] 
E_O+ -00 (x_u)n-r (n-r-l)! axCn-r-1) x=u 

(B24) 

and in the second term we have integrated by parts (n - r - 1) times and then integrated over the delta function. Thus we 
have 

pC+l(u,y) +pC-l(U,y) =2 dx /(x,y), f
OO f!)J 

-00 (x_u)n-r 
(B25a) 

2i1T [acn-r-l) ] 
pC+l(U,y) _pC-l(U,y) = ( _ -1)1 a cn-r-IJ(X,y) 

n r .:x X=U 
(B25b) 

and substituting Eqs. (B25) into Eq. (B23) we obtain 

'I1c + l(U) + 'IIc - l(U) = 2k nilcn-I[HcrlfOO dy f!)J foo dx f!)J /(x,y) 
nmr=o r nm -00 (y_u)m+r -00 (x_u)n-r 

_ (_ )n+rm~+rG~~)foo dy f!)J foo dx f!)J /(X,y)] 
I~ 0 _ 00 ( y - u) 1 + 1 _ 00 ( y _ x) n + m - 1 - 1 

(B26) 

n-I [acm+r-l) acn-r-I) ] 
-2'filknm rC~-1 a Cm+r-l) a Cn_r_l)/(x,y) , 

r=O ~:x X=)I=U 

where we have also used Eqs. (B9) and (B21). The terms in 
the first two lines ofEq. (B26) can be then combined using 
Eq. (B11), so that 

'I1C+l(u) +'I1C- l(u) =2 dy dx---fOO f'" f!)J 

-00 -00 (x-u)n 

X f!)J /(x,y) 
( y_x)m 

- 2'filFnm (u,u) (B27) 

andFnm is defined in Eq. (4.11). Finally, from Eqs. (B17), 
(BI8), and (B27), we obtain 

A(u) = dy dx j(x,y) Joo Joo f!)J f!)J 

-00 -00 (x_u)n (y_x)m 

- 'filFnm (u,u), (B28) 

which, after comparing with Eq. (4.12), establishes Eq. 
(4.14). 
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APPENDIX C: POOR MAN'S DERIVATION OF THE PB 
THEOREM 

In this Appendix we give a short, nonrigorous (physi
cist's) proof ofthe PB theorem. 1,2 We make some assump
tions about analyticity which are more restrictive than the 
conditions required in the general theorem. However, the 
spirit of our derivation does parallel that of a more rigorous 
proof, e.g., the general derivation in Appendix B.2 

We begin by noting that for a function/(x) that is well 
behaved along the real axis2o,24 we have 

f: '" x ~x~~ iE E_-;; + f: 00 /(x )dx 

X [ f!)J =+= i1Tc5(x - U)]. 
(x- u) 

(Cl) 

It is well known 1 that the result (Cl) does not trivially gen
eralize to two poles. For example, if we define the functions 
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then 

lim JO(U I,U2;EI,E2) i=KO(U I,U2). 
£"£2-0 + 

Our aim is to find a relationship between J and K which is the 
natural generalization ofEq. (Cl). We mention that/{x) 
stands for f(x,u2) in order to allow for a generalization to a 
function of two variables later in this Appendix. 

Next, we evaluate Eq. (C2) for the case in whichf(z) is 
analytic in the upper half-plane, giving 

J. ( 2 · f(u l +iEI ) 
o U I U2;EI E2 ) = 1Tl • , 

U I - u2 + I(EI + E2) 
(C4) 

which becomes 

Now, from the residue theorem for poles on the contour 
(principal values)25 we find that 

J
"" q; 

-----f(x)dx 
- "" (x - ul)(x - U2) 

1ri[ f(u l ) + f(U2) ] (C6) 
= (U I -U2) (U2 -UI )' 

Equation (C6) is also valid if U I = U2 since2S.26 

J
"" q; 
---~2 f(x)dx 

-"" (x-u I ) 

= 1ri(df (X») = 1ri lim [f(u l ) - f(U2)]. 
dx X= u, u,_u, UI - U2 

Thus there is no loss in generality in writing 

J
"" q; 

-----f(x)dx 
- "" (x - uI ) (x - U2) 

=1ri[f(ul )-f(u2)] q; (C7) 
(u l - u2 ) 

Substituting Eq. (C7) into Eq. (C3) we obtain 

KO(U I,U2 ) = 21rif(ul )[ q; I(u l - u2 )] 

+ rf(uI)~(ul - U2) (C8) 

and comparing Eqs. (CS) and (C8) we see that 

+ rf(uI)~(ul - U2)' (C9) 

The result (C9) also holds if f(z) is analytic in the lower 
half-plane; thus it is valid if/{z) is the sum off unctions that 
are separately analytic in the upper and lower half-planes. 

Now, in Eqs. (C2), (C3), and (C8) we introduce an
other variable y, letting/{x) = f(x,u2) -+ f(x, y), u 1-+ u, and 
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u2-+y. We also integrate both sides ofEq. (C9) over y and 
find that 

leu) = lim f"" dyJ"" f(x,y)dx 
£,.£,_0+ _ "" _ "" (x - u - iEI ) (x - y + iE2) 

(ClOa) 

J"" f"" q; = dy dx /(x,y) 
-"" -"" (x-u)(x-y) 

+ i1r dy f(u,y) J"" q; 

-"" (u-y) 
(ClOb) 

~ i1r dy /( y,y) + 2r/{u,u). J
"" q; 

-"" (y-u) 

However, in the double integral on the rhs ofEq. (ClOa) we 
can reverse the order of integration before we take the limit,2 

with 

leu) = lim J"" dx F(X,E2), 
£,.£,-0+ - "" (x - u - iEI ) 

(Cll) 

J"" dy 
F(X;E2) = . /(x,y). 

- "" (x - y + lE2 ) 
(C12) 

Equation (C12) is of the form given in Eq. (Cl), so that 

lim F(X;E2) = J"" dy q; f(x,y) - i1rf(x,x). 
£,-0+ _ "" (x - y) 

(C13) 

Similarly, in Eq. (Cll) we have 

leu) = J"" dx q; lim F(X;E2) + i1r lim F(U;E2 ) 
_ "" (x - u) £,_0+ £,_0+ 

J"" q; J"" q; = dx f(x,y)dy 
-"" (x-u) -"" (x-y) 

- i1r dx f(x,x) J"" q; 

_"" (x-u) 

+ itT dy f(u,y) + rf(u,u). f"" q; 

-"" (u-y) 
(C14) 

ThencomparingEq. (C14) withEq. (ClOb) weobtainEq. 
(1.1), the PB theorem. 

We have assumed thatf(x, y) consists of a sum of terms 
which with respect to x are separately analytic in the upper 
and lower half-planes. No special properties are assumed 
with respect to the dependence on yother than that the inte
grands are well behaved along the entire real axis. As men
tioned, the general theorem is rigorously proved without any 
assumptions of analyticity. 2 Nevertheless, as we have repea
tedly emphasized in earlier parts of this paper, the validity of 
various principal-value expressions is intimately connected 
to analyticity (and to causality). 13 

Finally, we define the functions 

J ± (U I,U2;EI,E2) 

f"" f(x)dx 

= - "" (x - U I ± iEI)(X - U2 ± iE2 ) , 

K ± (UI,U2) 

= J"" /(X)dX[ q; ~ i1r~(x - U l )] 
-"" (x-u I ) 

X [ q; ~ i1r~(x - U2>] 
(x - u2 ) 
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corresponding to poles infinitesimally on the same side of the 
real axis. Thus from the analysis used to prove Eq. (C9) we 
find that 

lim JO(U\,U2;E\,E2) = K ± (U\,U2) 
£1'£2-+0 + 

(C17) 

a result that is independent of how one takes the limit 
E\,E2 -+O +. We see that (C9) and (C17) establish the com
prehensive relation22 

[(x - U\ - is\E\) (x - U2 - iS2E2)] - \ 

-+ [ r!J1 + i1TS\~(X _ U\)][ r!J1 
",.",-0+ (x - u\) (x - u2) 

+ i1TS2~(X - u2) ] + r~(x - u\)~(x - u2), 

(C18) 

where Sj = ± 1. This limit applies to any integral in which 
the lhs ofEq. (C18) multiplies a function which is analytic 
in the upper or lower half-plane. Also, note that if S\ = S2 

(with the poles on the same side of the real axis), the two 
terms in Eq. (C18) involving ~(x - u\)~(x - u2 ) cancel. 
The only way one can obtain a true delta function singularity 
upon integrating is when the poles are on opposite sides of 
the real axis. [See Eq. (C5).] However, in deriving Eq. 
(C18), it was necessary to consider the case u\ = u2; other
wise, the terms involving ~(x - Ul)~(X - u2 ) never con
tribute. (Indeed, such terms were crucial for proving the PB 
theorem.) We mention, also, that for u 1 = U2 the term 
r!J1 I(x - U\)2 must be evaluated using Eq. (4. 1).20 Thus Eq. 
(C 18) is a generalization of Eq. (C 1) for the case in which 
there are two poles in the denominator of the integrand.22 
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with the solutions of Boussinesq-Burgers' hierarchy 

Zhuquan Gu 
Shijiazhuang Railway Institute, Shijiazhuang, People's Republic o/China 

(Received 1 June 1989; accepted for publication 13 December 1989) 

Two new finite-dimensional completely integrable systems in the Liouville sense are obtained. 
The solutions of Boussinesq-Burgers' hierarchy are generated by using involutive solutions of 
the commutable flows in the completely integrable systems. 

I. INTRODUCTION 

The link between finite-dimensional completely integra
ble systems in the Liouville sense and infinite-dimensional 
soliton systems has been an important topic of concern in 
recent years. I However, known classical Liouville complete
ly integrable systems are very few;2 the key point is whether 
an N-involutive system of the Hamiltonian functions in R 2N 

can be obtained. In the present paper, according to Cao's 
method of finding the finite-dimensional completely integra
ble systems,3 we study the hierarchy of the Boussinesq
Burgers' equation. Two new finite-dimensional completely 
integrable systems in the Liouville sense are obtained by 
means of the nonlinearization of the Lax pairs of the hierar
chy of the Boussinesq-Burgers' equation; therefore the solu
tions of the Boussinesq-Burgers' hierarchy are generated by 
using the involutive solutions of the commutable flows in the 
completely integrable systems. In the Boussinesq-Burgers' 
system, a lot of work has been done, e.g., Hamiltonian struc
ture, the Painleve property, the Hirota bilinear form, pole 
expansions and a related many-body problem, Backlund 
transformations, some particular solutions, etc.4-6 We study 
the following problems. 

(I) How do we get the Lax pair of the high-order Bous
sinesq-Burgers' equation? 

(2) What is the link between the Boussinesq-Burgers' 
hierarchy and finite-dimensional completely integrable sys
tems in the Liouville sense? 

(3) How do we use the Lax pairs of the Boussinesq
Burgers' hierarchy to generate the solutions of the high-or
der Boussinesq-Burgers' equations? 

In this paper, we get the hierarchy of the Boussinesq
Burgers' equation and their Lax pairs by using the spectral 
problem and the commutator of the differential operators. 
We give two constraints between the potential and eigen
functions for the spectral problem; then the Lax pairs of the 
high-order Boussinesq-Burgers' equations are nonlinear
ized. It is proved that the Lax pairs when nonlinearized be
come commutable flows of the finite-dimensional complete
ly integrable systems in the Liouville sense, so that each of 
the high-order Boussinesq-Burgers' equations becomes an 
exactly involutive condition of the commutable flows; in 
particular, as dynamic systems, the nonlinear Lax equation 
systems are all completely integrable systems in the Liouville 
sense. Finally, the solutions of the Boussinesq-Burgers' hier
archy are obtained by means of the involutive solutions of 
commutable flows. 

II. EVOLUTION EQUATION HIERARCHY AND LAX 
REPRESENTATIONS 

We consider the following spectral problem: 

L (~) = (a =!u -~(;:!~ »)(~) = A (~), (2.1) 

where u and ware called potentials, A is the eigenparameter, 
anda= a/ax. 

Propostion J: If the operators K and J take the forms5 

K=(!~ ~ua3+2wa+wJ, J=4e ~, (2.2) 

and (Pi' qj ) T and A j satisfy the linear equation system (2.1), 
then 

Proof: From (2.1) and the definitions of K and J, 
through direct computation, (2.3) holds. 

Remark: If u and ware real and Aj is an arbitrary real 
given, then the linear equation system (2.1) has the nontri
vial real solution (Pj ,qj ) T. 

Now, let 

aa- I =a-Ia= I. (2.4) 

We define Lenart's sequence Gm , m = 0,1,2, ... , by means of 
the recursion relations 

G_ I = (b,4)T, Gm = (bm,cm)T, 

JGm =KGm _ l , m=0,1,2, ... , 

where b is an arbitrary constant. 

(2.5) 

From (2.5), bm and Cm are polynomials ofu, w, u', w', 
u", w", .... If the constant term ofGm (m = 0,1,2, ... ) takes 
zero, then Gm (m = 0,1,2, ... ) is determined uniquely. In this 
case, we call X m = JG m (m = 0,1,2 ... ) an mth-order Bous
sinesq-Burgers' vector field; the evolution equation 

Vtm = (u,w)i", = JGm , m = 0,1,2, ... , (2.6) 

is called an mth-order Boussinesq-Burgers' equation. 
Propostion 2: In the case of w = ux ' the evolution equa

tion (2.6) becomes the Burgers'-type equation 

(2.7) 

where cP = !(a +!u + !u~ a -I) (Ref. 7). 
Proof: If bm = Cmx ' m = 0,1,2, ... , then the propostion is 

proved. Since bo = w = Ux = COx' in the case of m = j, we 
havebj =cjx ' Then,fromX}+1 =KJ-1Xj , 

1374 J. Math. Phys. 31 (6), June 1990 0022-2488/90/061374-07$03.00 @ 1990 American Institute of PhySiCS 1374 



                                                                                                                                    

so that bm = Cmx ' m = 0,1,2, .... 
The operators L. and ~ are defined as 

The commutator of operators A and B is defined as follows: 

[A,B] =AB-BA. 

Hence we have 

(i) L: R 2 ..... R 2 is one to one; 
(ii) [~,L] = - L. (KGj _ l ) + L. (JGJ_I)L. 
Theorem 1: Set 

m 

Vm = - L ~Lm-j. 
j=O 

Then L. (JGm) = [Vm,L], and the evolution equation 
Vtm = JG m and the Lax form L tm = [V m,L ] are equivalent, 
for m = 0,1,2, .... 

Proof: Since JG _ I = 0, 

[~Lm-j,L] = [~,L ]Lm- j, 

so that 
m 

[Vm,L] = - L [~,L ]Lm- j 
j=O 

= L. (KGm_ l ) - L. (JG_I)L m+ I 

= L. (JGm ), 

L tm =L.(vtm )· 

Hence the theorem is proved. 
Corollary: If aj (j = 0,1,2, ... ) is constant independent 

from x, then (i) The Boussinesq-Burgers'-type equation 
m 

Vtm = L aj~ 
j=O 

can be written in the Lax form 

L tm = [.f aj~,L]; 
}=o 

and (ii) the Boussinesq-Burgers'-type equation 
m 

Vtm = L aj~ 
j=O 

is a compatible condition for the following Lax pair: 

Lt/I = At/I, t/ltm = (f aj ~)t/I [t/I = (p,q) T] , 
/=0 

in the case ofAtm = 0, t/lxtm = t/ltmx' Particularly, the mth
order Boussinesq-Burgers' equation Vtm = Xm = JGm is a 
compatible condition for the following Lax pair: 

Lt/I = At/I, 

t/ltm = Vm t/I, 

in the case of Atm = 0, t/lxtm = t/ltmx. 

From (2.9), the Boussinesq-Burgers' equation 
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(2.9a) 

(2.9b) 

L. (r) =!i..\ L(v + Er), 'tIr, 
dE £=0 

(2.8) 

where v = (u,w) T, r = (rl,r2 ) T, and L is defined by (2.1), 
and 

° ) L. cj _ 1 

( u) (Wx + uUx ) 
W tl = 2 uxxx + (uw)x 

has the following Lax pair: 

L"'=A'" ["'= (p,q)T] , 

"'tl = VI'" = (0+ 4 _°4) L 2", - (~ 

i.e., 

qxx + ( - A 2 + (A 12)u + !w - -hu2)q = 0, 

qtl +!uxq- (U+4A)qx =0. 

(2.10) 

(2.11 ) 

Let A = ik and t 1 = - !t. Then (2.10) and (2.11) become 
exactly (2) and (3) in Ref. 5. 

If F(v) is a functional, i.e., a numerically valued func
tion, in general, defined on the underlying linear space, then 
F is called differentiable if the directional derivative 

lim [F(v + Er) - F(V)]lE 
£-0 

exists for all v and r and is a linear functional of r. Here 
v = (VI (x),v2 (x)V and r = (rl (x), r2 (x)V are vectorfunc
tions defined over the underlying interval .0., where .0. is 
( - 00, + 00) for decaying at infinity and is a double peri
odic interval for the periodic condition. We assume that our 
linear space is equipped with a L2 (.0.) scalar product (., .) I: 

(v,r)1 = 1 (v2r2 + vlrl)dx = lV'rdx. 

Since linear functionals can be expressed as scalar products, 
we can write 

!i..F(v + Er) \ = (GF(v),r)1 = r GF(v) 'rdx, 
dE £=0 In 

where G F (v) is called the gradient of F at v with respect to 
the specified scalar product. 

If (Pj' qj) TEL2 (n) isa nontrivial solution of the spectral 
equation (2.1), and the eigenparameter corresponding to 
the vector (Pi' qj ) Tis Aj , then we call (Pi' qj ) T an eigenvec
tor of (2.1) and Aj an eigenvalue of (2.1). 

Proposition 3: Suppose (Pi' qj ) T is any eigenvector of 
(2.1), and Aj is an eigenvalue corresponding to the vector 
(Pi' qj ) T. Then 

( .) G ()_ 1(( dx)-1(2(Pjqj+qjqjx») 
I A.J v - sU/jqj _ qJ , 

where v = (u,w) T; 
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(ii) KG;.. (v) = AJ.JG;.. (v), 
J J 

where K and J are Hamiltonian operators;7.8 and (iii) each 
of the eigenvalues for the spectral equation (2.1) is all con
servation integrating of the Boussinesq-Burgers' hierarchy 
{vm =JGm} (Refs. 9, to). 

Proot (2.1), we have 

(
pj) = ~(Pj) = (Aj -lu l(w + u" »)(pj) . 
qj " qj - 1 lu - Aj qj 

Let a prime denote a derivative with respect to E. Then 

(Pj qj - Pj qj ) " 

= tr ~(~ ~ 1) (~) 
+(pj,qj)(~ ~I)~(~). 

Since tr M j = ° and (Pj' qj) T ELz (n), 

L (Pi' qj)(~ ~ 1) ~(~)dX = 0; 
hence (i) is obtained. By (2.2) and (2.3) and the definition, 
(ii) is proved. According to (ii), we have 

AJ'tm = (G;..(v), Vtm)l = (G;...(v),KGm_I)1 
J J 

= -(KG;..,(v),Gm_I)I= -(AjJG;..,(v),Gm_I)1 

= (G;"j(v), JGm_ 1 )etj = Aj(G;"j(v),KGm_ 2 )1 

m = 0,1,2, ... ; 

thus (iii) holds. 

III. TWO CLASSICAL LIOUVILLE COMPLETELY 
INTEGRABLE SYSTEMS1,2,11,12 

In order to study the complete integrability of the Lax 
equation system (2.9) in R 2N, let (-,. ) denote the standard 
inner product in RN, and set q= (ql,qZ, ... ,qN)T, 
P = (PI,PZ"",PN) T, and A = diag(AI.Az, ... .AN), 
Al <A2 <'" <AN' 

The Poisson bracket for the Hamiltonian functions F 
and Q in the symplectic space (R ZN, dp 1\ dq) is de.fined as 

(F,Q) = ± aF aQ _ aF aQ = (Fq, Qp) _ (Fp, Qq). 
j = 1 aqj apj apj aqj 

(3.1) 

We call the Hamiltonian functions F and Q involutive in 
R 2N if (F,Q) = 0. Whether the Hamiltonian system is com
pletely integrable in R ZN depends on whether the N-involu
tive system exists or not in R 2N (Refs. 2, 13). 

1376 

Let 
j 

Tj = I'(A; _Aj)-IB~, Bij =p;qj -p;qj' 
j 

i N 

I' == I, i = I,2, ... ,N. 
j j= 1 

17'1 
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(3.2) 

Lemma: 

(qi,qj) = (p;'Pj) = 0; 

t
o, i=/;j, 

(qi,Pj) = IJij' IJij = 1, i = j; 

«P,p),Bij) = «q,q),Bij) = «P,q),Bij) =0; 

(T;,Tj) = 0; (Pk,Bij) = PjIJki - PiIJkj; 

(qk,Bij) = qjIJki - qiIJkj; 

(pLT;) = 4(Ak - A;) -IPkP;B;k; 

(qi,T;) =4(Ak -A;)-lqkqjB;k; 

(Pkqk,T;) = 2(Ak - Ai)-I(Piqk + Pkq;)Bik ; 

ij,k = 1,2, ... ,N. 
Proot (See Ref. 14.) In fact, from (3.1), we have 

(Pi,Pj) = 0, (q;,qj) = 0, (qi,Pj) = IJij . 

From (3.1) and (3.2), 

(Pk,Bij) = PjIJki - PiIJki' (qk,Bij) = qjIJk; - qiIJkj , 
N N 

«P,p),Bij) = I (pLBij) =2 I Pk(Pk,Bij) =0. 
k=1 k= 1 

Because i = j, (To Tj) = 0. If i =/; j, then, through comput
ing, we have 

Since 

+ BijB;nBknIJkj + BijBknBkjIJ;n) 
j 

=4 I' (Ai -An)-I(Aj -An)-IBinBnj 
n 

j 

+4I' (Ai -Aj)-I(Aj -An)-IB;nBjn 
n 

i 

+4I' (A; -Ak)-I(Aj -Ai)-IBkjBk;. 
k 

(Ai -An)-I(Aj -An)-I 

= (A; - Aj) -1«Aj - An ) -I - (Ai _ An ) -I) , 

Thus 

(Ti,Tj ) 

=4Bij(A; -Aj)-I(t' (Aj -An)-I(Bnj +Bjn)B;n 

-t' (A; -An)-I(B;n + Bn;)Bnj ) =0, 

; 

(pLT;) = I'(A; -Aj)-I(pLB~) 
j 

; 

= 4I'(A; - Aj)-IPkBij(pjIJk; - p;IJkj ) 
j 

= 4(Ak· - A; )PkP;B;k' 

and another similarly is proved. 
Theorem 2: Set 

Ej = 2pJ - 4AjPjqj - 4(q,q)qJ + 2Tj , 

j= 1,2, ... ,N. 
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Suppose the Hamiltonian functions in R 2N are defined as 
follows: 

Fo = - 4(Aq,q) - 2(P,p) - 4(q,q) (p,q), 

Fm = - 4(A m+ Ip,q) _ 2(A mp,p) _ 4(A mq,q) (p,q) 

m 
+ 2 I «A i-Ip,p)(A m-iq,q) 

i=1 

_ (A i-Ip,q) (A m-p,q», (3.4) 

m= 1,2, .... 

Then 
(i) {Ej , j = 1,2, ... ,N} is an N-involutive system; 

N 

(ii) Fm = IA jEj' m = 0,1,2, ... ; 
j= I 

(iii) (Fm,Fn) = 0, m,n = 0,1,2, ... , 

i.e., (R 2N,dp 1\ dq, F m ) is a completely integrable system in 
the Liouville sense. In particular, the system 
(R 2N ,dp 1\ dq, !Fo) is a Liouville completely integrable sys
tem. 

Proof: By the lemma, the following terms are zero: 

(- 2p;' + 2Tk, - 2pJ + 21j), 

( - 4(q,q)qi, - 4(q,q)qJ), 

( - 2pi, - 4AjPjqj) + ( - 4AkPkqk' - 2PJ), 

( - 4AkPkqk' - 4AjPjqj), 

( - 2pi, - 4(p,q)qJ) + ( - 4(p,q)qi, - 2pJ) 

+ ( - 4AkPkqk,21j) + (2Tk, - 4AjPjqj), 

( - 4(p,q)qi, 21j) + (2Tk, - 4(p,q)qJ). 

Since (Ek,Ej ) is the sum of above terms, we have that 
(Ek,Ej ) = 0, kj = 1,2, ... ,N. 

Let Qz(Y,s) = «z -A)-Iy,s), whereQz(Y,s) is a dou
ble-linear function in R 2N. Now expand Qz (y,s) into Laur
ant form and partial fraction form as follows: 

00 N 
Qz(Y,s) = I z-m-I(Amy,s) = I (Z-Ai)-IYiSi' 

m=O i=1 

Since the generating function of Tk is l1 

N 

I (Z-Ak)-ITk = Qz(q,q)Qz(p,p) - Qz (p,q)Qz (q,p), 
k=1 

the generating function of E k is 
N I (Z-Ak)-IEk 

k=1 

N 

-4(p,q)Qz(q,q) +2 I (Z-Ak)-ITk · 
k=1 

Substituting the Laurant expansion of Qz into the generating 
function of Ek , and expanding (z - Ak ) -I as a power series 
ofz- I , we have 

thus 
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N 

Fm = I Ak'Ek . 
k=1 

The involutivity of {E k} implies the involutivity of {F m }. 

Theorem 3: Set 

H=!«q,q) -I), 

ej = 4(q,p)qJ - 4(q,q)qjPj - 21j, j = 1,2, ... ,N. (3.5) 

Suppose the Hamiltonian functions hm , m = 1,2, ... , are de
fined as 

hm = - 4(q,q) (A mq,p) + 4(q,p) (A mq,q) 

m 

- 2 I «A i-Ip,pHA m-iq,q) 
i=1 

_(Ai-Iq,p)(Am-iq,p», m=I,2, ... ; (3.6) 

then 
N 

(i) I ej = ° and (H,ej ) = 0, j = 1,2, ... ,N, 
j=1 

where {H,ej , j = 1,2, ... ,N - t} is an N-involutive system; 
and 

N 

(ii) hm = IA jej and (hm,hn) = 0, m,n = 1,2, ... , 
j=1 

where the system (R 2N,dp 1\ dq,hm ) is a completely integra
ble system in the Liouville sense. 

Proof: By the lemma, (H,ej ) = 0, j = 1,2, ... ,N. Since 
the terms 

(4(q,p )q;', (q,p)qJ), 

( - 4(q,q)qkPk, 4(q,p)qJ) 

+ ( - 4(q,q)qkPk, - 4(q,q)qjPj) 

+ (4(q,p)qi, - 4(q,q)qjPj)' 

( - 2Tk,4(q,p)qJ) + (4(q,p)qi, - 21j), 

(- 2Tk, - 21j), 

( - 2Tk, - 4(q,q)qjPj) + ( - 4(q,q)qkPk, - 21j) 

are zero, and (ek,ej ) is the sum of the above terms, 
(ek,ej ) = 0, kj = 1,2, ... ,N. Since 

N 

I1j =0, 
j=1 

we obtain 
N 

Iej =0. 
j= I 

In a way similar to (ii) and (iii) of Theorem 2, (ii) can be 
proved. 

Now, according to Moser's method l1 of constrained 
Hamiltonian systems, we consider the following constraint 
condition: 

H=~«q,q) -I) =0, G= (q,p) =0. (3.7) 
In Sec. IV we shall prove that the dynamic systems cor

responding to the Hamiltonian systems (3.6) become the 
dynamic systems corresponding to the following Hamilto
nian systems (3.8) in the case of the constraint condition 
(3.7): 
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Hm = - 4(A mq,p) + 4(q,p)(A mq,q) 

m 

-2L «Ai-Ip,p)(Am-iq,q) 
i=1 

_ (A i- Iq,p) (A m - iq,p», iiz = 1,2, .... (3.8) 

Theorem 4: Set 

gj = - 4qjpj + 4(q,p)qJ - 21j , 

aj = (ej,(q,p»IH=O, 

G=O 

j = 1,2, ... ,N, m = 1,2, .... 

Then 

(i) (gk,gj) = 0, kj = 1,2, ... ,N; 
N 

(3.9) 

(3.10) 

(3.11 ) 

(ii) Hm = LA jgj' (Hm,Hn) = 0, m,n = 1,2, ... ; 
j= I 

(iii) gj = ej - ajH, Hm = hm - fmH, 

j = 1,2, ... ,N; m = 1,2, .... 

Therefore the {H m } are completely integrable systems in the 
Liouville sense. 

Proof In a manner similar to the proofs of Theorems 2 
and 3, by means of the lemma through direct computation, 
the theorem is obtained. 

IV. NONLINEARIZATION OF LAX PAIRS AND 
SOLUTIONS OF BOUSSINESQ-BURGERS' HIERARCHY 

In the symplectic space (R 2N, dp A dq), the canonical 
equation of the Hamiltonian function Fis defined as follows: 

(4.1 ) 

where I is the N X N unit matrix. 
Let gt; denote the solution operator of the initial value 

problem for the dynamic system (4.1). Then the solution of 
( 4.1) can be expressed as 

{
Px =Ap+ (q,q)P+2(q,p)q, 

(Fo): 
qx = -p-Aq- (q,q)q; 

(p(tn») = tn(P(O») 
q(tn) gp q(O) , 

where (P(O), q(O)V is an arbitrary initial value. The opera
tor hierarchy {gt;} is called the Hamiltonian phase flow of 
the dynamic system (4.1), or F flows. Therefore we have 

(F,Q) =~I F{gQ(p(tn»)}. 
dtn tn=O q(tn) 

According to Proposition 1 and the remark, suppose 
realAj and the real vector (Pj,qj) T satisfy the linear equation 
system (2.1), and j = 1,2, ... , ,N, Al <A2 < ... <AN, 
P= (PI,P2, ... ,PN )T, q = (ql,q2, ... ,qN )T, and 
A = diag (A 1,A2, ... ,AN)' Then (2.1) can be written in the 
following form: 

(P) =(A-lUI -l(W+Ux)f\(P). (4.2) 
q x - I - A + luI } q 

Now, we consider the following two constraints: 

Go = (w) = _ 4( - 2( (q,p) + (q,qx») 
u (q,q) 

(4.3) 

and 

G_
I 
= (0) = 4( - 2( (q,p) + (q,qx) »). 

4 (q,q) 
(4.4) 

We call (4.3) the Bargmann constraint and (4.4) the Neu
mann constraint for the spectral problem (2.1). 

By (4.2), (4.3) can be written 

(w) = _ 4( + 2( (Aq,q) + (q,q)2») (4.5) 
u (q,q) 

and (4.4) can be written 

(q,q) = 1, (q,p) = 0. (3.7') 

In the case of the constraint condition (4.5), by making 
use of the equation KGm _ I = JGm, i.e., 
Gk = (J-IK)kGO' k = 0,1,2, ... , and using (2.3) and (2.4), 
the Lax pair (2.9) of the mth order Boussinesq-Burgers' 
equation Vtm = JGm ( = KGm -I) is nonlinearized as fol
lows: 

{

ptm = 4A m+ Ip + 8 (q,p)A mq + 4(A mq,q)p + 4i~1 «A i-Iq,p}A m- p _ (A i-Ip,p)A m-iq ), 

(Fm): m 

qtm = - 4A m+ Iq _ 4A mp _ 4(A mq,q)q _ 4 L «A i-Iq,p)A m-iq _ (A i-Iq,q)A m- p) , 
i= I 

m = 1,2,3, .... 

In the case of the constraint condition (3.7), by using (2.3), (2.4), Go = (w,u) T, and Gk = (J-IK)kGO,k = 0,1,2, ... , we 
have 

Go = (w) = 4(P,P) + 2(A 2q,q) + 2(Aq,p) - 2(Aq,q}2) . 
u (Aq,q) 

(4.6) 

Therefore the Lax pair (2.9) of the mth-order Boussinesq-Burgers' equation V'm = JGm ( = KGm _ I ) is nonlinearized as 
follows: 

{
Px = Ap - (Aq,q}p + (P,p)q - 2(q,p)Aq - (q,p)p, 

(HI): ( ) ) qx = - Aq + Aq,q q - (q,q)p + (q,p q, 
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H=~«q,q) -1) =0, G= (q,p) =0; 

P'm = 4(q,q)A m+ Ip - 4(A m+ Iq,q)p - 4 L «Aiq,p)A m-ip _ (Aip,p)A m-iq ), 
i=O 

{ 

m 

(Hm + I ): m 

q'm = 4(A m+ Iq,q)q _ 4(q,q)A m + Iq + 4/~o «Aiq,p)A m-iq - (Aiq,q)A m-ip ), 

H =!( (q,q) - 1) = 0, G = (q,p) = 0, m = 1,2,3, .... 

According to the previous discussion, we obtain a new 
propostion as follows. 

Proposition 4: Let 4to = x. Then, as dynamic systems, 
the Lax pairs (F m ) nonlinearized in the case of constraint 
(4.5) become exactly the following Hamiltonian canonical 
equation systems: 

m = 0,1,2,3, ... , 

(4.7) 

where the Fm, m = 0,1,2, ... , are defined by (3.4). The Lax 
pairs (Hm) nonlinearized by the constraint (3.7) become 
exactly the following Hamiltonian canonical equation sys
tems: 

(H ). P'm _ ° - I ap 

(

aHm+l) 

-+' . CJ-(I 0) aH~+, m =0,1,2, ... , 

(4.8) 

I 

where the Hm + I' m = 0,1,2, .. , are defined by (3.8). 
According to Theorems 2 and 4, the Fm, m = 0,1,2, ... , 

and the Hm, m = 1,2, ... , are all completely integrable sys
tems, so that two arbitrary Hamiltonian canonical equations 
(Fm) and (Fn) are compatible (m,n = 0,1,2, ... ), and two 
arbitrary Hamiltonian canonical equations (Hm) and (Hn ) 
are compatible (m,n = 1,2, ... ); therefore the Hamiltonian 
phase flows g';,. and g';. are commutable, and the Hamilto
nianphaseflowsg'; andg~ are commutable. Now, we 

m+ I n+ I 

arbitrarily choose an initial value (P(O,O),q(O,O»T. Let 

(
p(tm,tn») _ 'm 'n (P(O,O») (4.9) 
q(tm,tn) - gFmgF. q(O,O) , 

(
p(tm,tn») 'm 'n (P(O,O») 
Q(tm,tn) = gHm + 19Hn+l q(O,O) . (4.10) 

Since theFm flow andFn flow (m,n = 0,1,2, ... ) are commu
table, (4.9) is called an involutive solution of the Hamilto
nian canonical equations (F m) and (Fn) and (4.10) is 
called an involutive solution of the Hamiltonian canonical 
equations (Hm+ I) and (Hn+ I)' 

By means of Theorem 1 and its corollary and (4.7)
( 4.1 0), we have the following two theorems. 

Theorem 5: Suppose (p(x,tm),q(x,tm»T is an involu
tive solution of the Hamiltonian canonical equation system 
(Fo) and (Fm). Then 

(W) = _4(2«Aq(X,tm),q(x,tm» + (q(x,tm),q(x,tm»2») 
u (q(x,tm),q(x,tm» 

(4.5') 

becomes the solution of the mth-order (m = 1,2, ... ) Boussinesq-Burgers' equation (2.6) (v,m =JGm ). Especially if 
(P(x,t 1), q(x,t 1)V is an involutive solution of the Hamiltonian canonical equation system (Fo) and (FI), then 

(W) = _ 4(2{ (Aq(x,t 1) ,q(x,t 1» + (q(x,t 1) ,q(x,t 1) ) 2») 
u (q(x,t 1) ,q(x,t 1» 

satisfies the Boussinesq-Burgers' equation 

( u) (Wx + uux ) - 2 (2.10) 
W ,I - uxxx + (uw)x . 

Theorem 6: Suppose (P(x,tm),Q(x,tm)V is an involu
tive solution of the constrained Hamiltonian canonical equa
tion system (HI) and (Hm+ I)' Then 

W = 4«P(x,tm),P(x,tm» + 2(A 2Q(x,tm),Q(x,tm» 

+ 2(AQ(x,tm),Q(x,tm» - 2(AQ(x,tm),Q(x,tm»2, 
(4.11 ) 

U = 4(AQ(x,tm),Q(x,tm» 

1379 J. Math. Phys., Vol. 31, No.6, June 1990 

becomes the solution of the mth order (m = 1,2, ... ) Bous
sinesq-Burgers' equation (2.6) (v,m = JGm ). Especially if 
(P(x,t 1 ),Q(x,t 1) V is an involutive solution of the con
strained Hamiltonian canonical equation system (HI) and 
(H2 ), then 

W = 4«P(x,t 1 ),P(x,t 1) + 2(A 2Q(X,t 1),Q(x,t 1) 

+ 2(AQ(x,t 1 ),P(x,t 1» - 2(AQ(x,t 1 ),Q(x,t 1) )2) , 

U = 4(AQ(x,t 1),Q(x,t 1» 

satisfies the Boussinesq-Burgers' equation (2.10) 
The significance of the above two theorems is that solv-
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ing a high nonlinear partial differential equation has been 
transformed into solving two ordinary differential equations 
and solving the soliton equations by making use of finite
dimensional completely integrable systems. 
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It is shown that a class oftwo-variable nonlinear partial differential equations, such as the 
Liouville equation, the sine-Gordon equation, the Ernst equation, and the Ernst-Maxwell 
equations, can be Ricatti-type quasilinear systems through maps from J 1 (R 2, R n) to JO (R 2, 

R I). The auxiliary linear equations (Laxpair) for them are formulated, respectively, by using 
the W-E prolongation procedure. The Lax pairs for the Liouville equation and the sine
Gordon equation contain an arbitrary parameter besides the usual spectral parameter. 

I. INTRODUCTION 

The discovery of the inverse scattering method in 1967 1 

is undoubtedly one of the most elegant contributions to 
mathematical physics in the 20th century. It led to the devel
opment of a powerful method for integrating important non
linear partial differential equations. Auxiliary linear systems 
or the so-called Lax pair2 of a given nonlinear partial differ
ential equation is indispensable in this method. The W-E 
prolongation procedure3 provides a useful program for de
riving an auxiliary linear system from it.4

,5 

In the present paper, using the W-E prolongation pro
cedure, we formulate the auxiliary linear system of the Liou
ville equation and sine-Gordon equation. It is shown that 
these two equations can be turned into a Ricatti-type, quasi
linear system through certain maps from J 1 (R 2, R) to JO 
(R 2, R I). As these maps permit us to introduce an arbitrary 
parameter, the auxiliary linear system naturally contains 
two parameters: One is the spectral parameter but the other 
is not. Finally, we briefly recall the results in the author's 
previous paper about the Ernst equation and the Ernst
Maxwell equations showing that they also become the Ri
catti-type. quasilinear system through maps from J 1 

(R 2.e2) to JO(R 2,e6) and from J1(R 2.e3) to JO 
(R 2.e 10). respectively. 

II. JET-BUNDLE FORMULATION 

First of all. we summarize the relevant definitions and 
notations from the theory of jet bundles.6 

Let e 00 (M.N) denote the set of e 00 maps from M to N 
and let J k(M,N) denote the k-jet bundle of these maps. The 
k-jet bundle J k(M.N) is given by the equivalent classes of 
maps in e 00 (M.N) having k th order contact. Especially. the 
O-jet bundle JO (M,N) is identified with M X N. For k> I 
there is a natural projection n~ from J k(M,N) to J 1 (M,N) 
given by j!f~j~J, where j!f denotes the k jet of 
feG 00 (M,N) at xeM. The source projection is the map a: 
J k(M,N) -+M given by j!~x 'dfeG 00 (M,N). The cross sec
tion of a are defined as smooth maps s: M -+J k(M,N) such 
that a' s = id M' An important example of such a cross sec
tion is the k-jet extension of a map feG 00 (M.N) defined by 
If:~j!f 

If M = R m, N = R n, let xa, a = 1 ..... m and ZA, 
A = 1, .... n be coordinates on R m and R n, respectively. The 
standard coordinates onJ k(R m,R n) are thenxa

• Z A, Z :, ... , 
ZA 

Q.Q:! ••. a" ° 

In these coordinates, the solution manifold of a general 
system of k th-order partial differential equations that reads 

(1) 

can be associated with the submanifold Sk of Jk(R m,R n). 

This submanifold is given by the following constraint equa
tions: 

(2) 

Obviously, a solution of Eq. (1) is a map fee 00 (R m,R n) 

such that the pull back /f*F (xa,ZA, ... ,Z: .... a) vanishes. 
Then, S k will be referred as k th-order differential equations. 

For the aim of this paper, we study the case that Sk is a 
quasilinear system of equations on Jk (R m,R n). The con
straint equations ofa quasilinear system on Jk(R m,R n) are 
generally given by 

(3) 

where F~""~k and GA are functions independent of Z :, ... ak' A 
map feG 00 (R m,R n) is a solution ofS k iff jJ*F= 0, then it 
can be shown in almost the same technique as in Ref. 6 that 
f is a solution of Sk iff 

If*O'A = 0, (4) 

where~isasystemofm-formsonJk-I(R m,R n) associat
ed with Eq. (1). In the system 

J F a, ... ak-lbdZA 1\ G u:= AA a, ... ak_1 (J)b+ A{J), (5) 

the notation (J) in Eq. (5) stands for the volume form on R m 

and {J)b = ab J (J). 
Furthermore, let OA, O:, ... ,O:, ... ak_2 denote the contact 

forms on J k - 1 (R m,R n) defined by 

OA: = dZ A - Z: dxa, 

(6) 

and let:I,k - 1 denote the exterior differential system genera-
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ted by {OA l\(J)a, ... O~, ... ak_21\(J)a} and CTA. It is standard to 
show that the solutions of l:,k - 1 have a one-to-one corre
spondence with the solutions of Sk. We may therefore con
sider l:, k - 1 and S k as completely equivalent. 

An important simple case is such a class of second-order 
partial differential equations that can be reduced to the Ri
catti-type form. For S 2 given by the following constraint 
equations on J2(R 2,R n): 

FA (xa,ZA,z~,Z~b) = 0, A = 1, ... ,r, a,b = 1,2. (7) 

We consider the case that a smooth map denoted by Q exists 

Q: JI(R 2,R n) ..... JD(R2,R I), (8) 

such that Eq. (7) becomes the Ricatti-type form under this 
mapping, i.e., 

F,,: = F~aZ~ + G"afJ zaz
fJ = 0, 

J.l = 1, ... ,s, a,/3= 1, ... ,1, (9) 

where F~a and G "afJ are constants. It will be seen in the next 
section that the Liouville equation, the sine-Gordon equa
tion, the Ernst equation, and the Ernst-Maxwell equations 
belong to this case. 

According to the W -E prolongation procedure, the con
tact one-form on J 1 (R 2,N') is introduced: 

(10) 

Here, the dimension of N' is unlimited. Consider the map ,p: 
JO(R 2,R I) XJo(R 2,N') ..... J 1 (R 2,N') such that the fol
lowing figures commute: 

JO~R~:~') ~' JO(R/J'~'JV') 

R2/ 

JD(R2,RI) X JD(R 2,N') ..... JI(R 2,N') 

R,'/ p 
N' 

where pr i is the projection of the ith factor and /3 is the target 
projection map defined by /3: Jk(M,N) ..... N. This requires 
that the map is given in coordinates by 

x'a = xa, q'i = qi, 

q~i =,p~ (xb,za,qi). 

The closure condition requires 

d,p*,p'iEi'( l:,O,,p*O 'i). 

(11) 

(12) 

For the Riccatti-type, quasilinear system, we only need 
to consider the linear part of Z a in ,p~, because the higher
power terms contribute vanishing commutators in prolonga
tion algebra. With,p~ admitted by condition Eq. ( 12) we can 
determine the pseudopotentials qi from ,p*() 'i = 0 on the so
lution manifold of l:,0. 

III. APPLICATIONS 

In this section we discuss the Liouville equation, the 
sine-Gordon equation, the Ernst equation, and the Ernst
Maxwell equations, respectively. 
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A. Liouville equation 

The standard Liouville equation reads 

al a2u - e - 2u = O. ( 13) 

In terms of jet-bundle formulation, the constraint equation 
on J2(R 2,R) takes the form 

(14) 

Through a map from J I(R 2,R) to JO(R 2,R 4) defined by 

ZI=ZI, Z2=Z2' 
Z3 = e- (\ +PlZ, Z4 = e- (\ -plZ, 

the constraint equation becomes 

Z~ - Z3Z4 = 0, 

Z~ _Z3Z4 =0, 

Z~ - (1 +p)Z 3ZI =0, 

Z~ - (1 + p)Z3Z2 = 0, 

Z~ + (1 - P )Z4Z 1 = 0, 

Z; + (1 - p)Z 4Z2 = 0, 

(15) 

(16) 

where p is a permitted arbitrary constant. The two-forms on 
JO(R 2,R 4) associated with Eq. (16) then read 

CT 1: = dZ Il\dxl + Z 3Z4 dx l l\dx2, 

CT2: = dZ 21\dx2 - Z 3Z4 dx l l\dx2, 

CT3: = dZ 31\ dx2 + (1 + p)Z 3Z 1 dx l l\dx2, 

CT4: = dZ 31\dxl - (1 + p)Z3Z2 dx l l\dx2, 

CTs: = dz41\ dx2 + (1 - p)Z 4Z 1 dx l l\dx2, 

CT6 : = dZ 41\dxl - (1_p)Z 4Z2 dx l l\dx2. (17) 

The pull back of contact one-forms onJ 1 (R 2,N') is written 
as 

,p*O'i = dqi -,p~ (Z 1, ••• ,Z4,qi)dxa. (18) 

For simplicity, here a,p~/axb = 0 is assumed, which im
plies that the map with translational invariance is consid
ered. 

When Eq. (12) is written out in detail by using Eqs. 
( 17) and (18), the following set of partial differential equa
tions for,p~ is obtained: 

a,p; a,p~ 
-=-=0 (19) 
az 2 az l ' 

a~,i a",i al-i al-i 
J.i _'1'_1 _ J.i _'1'2_ + _'1'_1 Z3Z4 _ (1 + ) _'1'_1 Z3Z2 
'1'2 aqi '1'1 arl az l p az 3 

a"" - (1-p) _'1"_1 Z 4Z2 
az 4 

al-i al-i 
- _'I'2_ Z 3Z 4 + (1 + ) _'I'2_ Z 3Z 1 

az 2 p az3 

a,p' 
+ (1-p) ~Z4Z1 =0. 

az 

Due to Eq. (19) ,p~ can be expressed as 

,p~ = X~ (q)Z 1 + X~ (q)Z3 + X~ (q)Z4, 

You-Quan Lee 

(20) 

(21) 
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Substituting Eq. (21) into Eq. (20), we have eight partial 
differential equations for X; (l = 1, ... ,6). If the notations 

. a 
X/:=Xi-., 

aq' 
. a· . a . 

[x/,xm] =x~-.x:" -x~ -.Xi, (22) 
aq' aqJ 

are adopted, the eight equations are written as the following 
incompleted algebra: 

[X6,xd = 0, [XS,x2] = 0, [X4,x3] = 0, 

[X6,x2] = (1 + p)X2, [X6,x3) = (1 - p)X3, 

[XS,xI] = - (1 + p}Xs, [X4,x1] = - (1 - p)X4, 

[XS,X3] + [X4,x2] = -XI +X6. (23) 

This is the prolongation structure of the nonlinear equation 
under consideration. 

Considering the compatibility of these commutator re
lations and the requirements of Jacobbi identities, we can 
choose 

X3=0, Xs=O, 

X6= - [(1 +p)/(1-p)]XI· 

The Eq. (23) is reduced to the following: 

[XI,x2] = - (1 - p)X2, 

[XI,x4] = (1 - p}X4, 

[X2,x4] = - [2/(1 - p) ]X2· 

(24) 

(25) 

An infinite-dimensional linear realization of Eq. (25) is 
found; 

XI = [(1-p)/2](A l~' -A i~'), 

X 2 =A i:', 
X4 =A 12-1), 

where 
co 

A (ml = '" 
'J £.i 

n = - 00 

which satisfies 

q(m+nl_a_ 
, aqY

" 

[A (ml,A (nl] - £ A (m+nl £ A (m+nl 
ij k/ - Ujk iI - Uli kj • 

This is a Kac-Moody algebra without the center term. 

(26) 

Using Eqs. (21) and (26), and writing out ¢*O ~(nl = 0 
(0 = 1,2) on the solution manifold, we have 

dqlnl - «(1 - p}/2qlnlZ 1+ qin + I)Z3)dx l 

+ [(1 +p}/2]qlnlZ 2dx2=0, 

dqinl + [(1 - p}/2]qinlZ I dx l - ([ (1 + p}/2]qinlZ 2 

(27) 

If definitions 

(28) 
n= - 00 

are introduced, Eq. (27) gives an auxiliary linear system of 
equations for the Liouville equation. In terms of a matrix 
they are written as follows: 
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(

I_PZldXI_l+PZ2dX2 J.. Z 3dXI) 
2 2' A 

AZ 4 dx2 _ 1 - P Z I dxl + 1 + P Z2 dx2 
, 2 2 

x(~J = 0, (29) 

where A is the spectral parameter and p is a new parameter 
involved in our formulation. 

B. Sine-Gordon equation 

The well-known sine-Gordon equation reads 

al a2u = 2 sin 2u. (30) 

Consider a map Q: J I (R 2,R) -+Jo(R 2,R 6} defined by 

Z I = ZI' Z 2 = Z2' 

Z3 = sin(1 + p}Z, Z4 = sin(1 - p)Z, 

ZS = cos(1 + p}Z, Z6 = cos(1 - p}z. 

The constraint equation onJ 2 (R 2,R) becomes the following 
Ricatti-type quasilinear forms on J I (R 2,R 6) under this 
map: 

Z ~ = zt = 2(Z3Z6 + Z 4Zs), 

Z! = (1 +p}zSza, 

Z: = (1 - p}z6za, 

Z! = - (1 +p}z3za, 

Z: = - (1_p}z 4za, (31) 

where 0 = 1,2. The associated two-formsonJo(R 2,R 6) are 

0'1: = dZ 21\dx2 - 2(Z 3Z6 + Z 4Zs)dx l l\dx2, 

0'2: = dZ Il\dxl + 2(Z 3Z6 + Z 4Zs)dx l l\dx2, 

0'3: = dZ 31\dx2 - (1 + p}ZsZ I dx l l\dx2, 

0'4: = dZ 31\dxl + (1 + p}Z SZ2 dx l l\dx2, 

us: = dZ 41\ dx2 - (1 - p}Z 6Z I dx l l\dx2, 

0'6: = dZ 4 1\ dx l + (1 - p)Z 6Z2 dxl l\dx2, 

0'7: =dZ s l\dx2 + (1 +p}Z 3Z l dx l l\dx2, 

O'g: = dZsl\dx l - (1 + p}Z 3Z2 dx l l\dx2, 

0'9: = dZ 61\dx2 + (1 _p}Z4Z I dx l l\dx2, 

0'10: = dZ 61\dx l 
- (1 - p}Z4Z2 dx l l\dx2. (32) 

In the same manner as in previous discussion on the 
Liouville equation, we introduce the pull back of contact 
one-forms. Then we obtain from the closure condition Eq. 
(12) that 

¢; = X;Z I + X~Z3 + X~Z4 + X~Z5 + X~Z6, 
¢i =XiZ 2 +X~Z3 +X~Z4 +X~Zs +X\OZ6, 

(33) 

and XI = X; (a laqi) (I = 1,2, ... ,1O) satisfies the following 
commutator relations: 
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[XI,x2] = 0, [X3'X7] = 0, [X4,xg] = 0, 

[XS,x9] = 0, [X6,XIO ] = 0, 

[X3,xg] + [X4,x7] = 0, [X3'X9] + [XS,X7] = 0, 

[X4,x1O] + [X6,xg] = 0, [XS,XIO ] + [X6'X9] = 0, 

[XI,x7] = (1 + P )X9, [XI,xg] = (1 - P )XIO' 

[XI,x9] = - (1 + P )X7, [XI,xIO] = - (l - p )Xg, 

[X3,x2] = - (l + p)XS' [X4,x2] = - (l - p)X6, 

[XS,X2] = (l + p)X3, [X6,x2] = (l + p)X4, 

[X3,x1O] + [X6,x7] = 2(X1 - X2), 

(34) 

The compatibility of Eq. (34) and requirements of Jacobi 
identities permit the simple choice X3 = Xs = Xg = XIO = 0, 
or X4 = X6 = X7 = X9 = 0. However the results given by the 
two choices have no difference but a sign of the parameter p. 
Thus we only need to consider the first case; under this 
choice Eq. (34) reduces to 

[XI,x7] = (l + p)X9, [X9'X1] = (l + p)X7, 

[X2,x4] = (l-p)X6, [X6'X2] = (l-p)X4, 

[X6,x7] = 2(X1 -X2), [X4,x9] = 2(X1 -X2), 

[X4,x7] = 0, [X6,x9] = 0, [XI>X2] = O. (35) 

An infinite-dimensional linear realization of Eq. (35) is 
found to be 

X1=(l+p)nO), X7=2T\1), X9=2nl ), 

X2 = - (l - p)nO), X4 = 2T\ -I), (36) 

X6= -2T~-I), 

where 

T(m) = ~oo ..!.- (q(m+n) _a_ + q(m+n) _a_) 
I ~ 2 I !l (n) 2 !l (n) , 

n = - 00 uq2 uql 

T(m) = ~oo ~(q(m+n) _a __ q(m+n)_a_) (37) 
2 ~ 2 2 !l (n) I !l (n) , 

n = - 00 uql Uq2 

T (m) = ~oo ..!.- (q(m + n) _a _ _ q(m + n) _a_) 
3 ~ 2 I !l (n) 2 !l (n) , 

n= - 00 uql uq2 

satisfying the su (2) ® e Kac-Moody commutator relations 
(without the center term) 

[ T(m) T(n)] =€ .. T(m+n) 
, , J IJk k • (38) 

Therefore, on the solution manifold, q~n) satisfies the 
following equations: 

dqln) = ([i(l + P )/2 ]qln) Z I + iq? - I) Z4 

- qin -I)Z6}dxl + {- [i(l - p)/2]qln)Z2 

+ iq~n + 1lZ3 + q~n + I)ZS}dx2, 

dq~n) = {_ (i/2) (l + p)q~n)z 1+ iqln- I)Z4 

+ qln-1lz 6}dx l + {(i/2)(l_p)q~n)Z2 
+ iqln+ I)Z3 _ qln+ I)ZS}dx2. (39) 

In order to introduce the spectral parameter, definition (28) 
is adopted. Then the following auxiliary linear system (Lax 
pair) for the Sine-Gordon equation is obtained from Eq. 
(39): 

d'l' = .M'I', 

where 

(40) 

(41) 

The above Lax pair contains the new parameter p, which is not the spectral parameter. 

c. The Ernst equation and the Ernst-Maxwell equations 

The Ernst equations of stationary axisymmetric exterior 
gravity field are 

(42) 

where T= (1f + 1f*)/2. Obviously, the related constraint 
equations on J 2 (R 2,e 2) become the following Ricatti-type 
quasilinear forms on J I (R 2, e 6) : 
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Z~ = (Z 1_ Z3)Z2 _ ~(ZSZ2 + Z 6Z I), 

Z ~ = (Z2 _ Z4)Z I _ ~(Z6Z 1+ Z SZ2), 

Zi = (Z3 - Z I )Z4 _ ~(ZSZ4 + Z 6Z3), 

Z~ = (Z4 _ Z2)Z3 _ ~(Z6Z3 + Z SZ4), 

Z~ = _ZSZ6, 

Zi = - Z SZ6, (43) 

under the maps fromJI(R 2,e 2) to JO(R 2,e6): 

Z 1= 1f 1/2T, Z2 = 1f 2/2T, Z3 = 1fT/2T, 

Z4 = 1f!/2T, (44) 

ZS = WI/W, Z6 = W2/W, 
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The related two-forms onJo (R 2 ,C 6) can be written down on 
the basis of Eq. (5). Then the prolongation structure of the 
Ernst equations are obtained by introducing the pull back of 
contact one-forms: 

[XI,Yd =XI - Y2, [XI,Y4] = -XI + Y4, 

[XI,Y6] =!( - XI + Y2), 

[X3,Y2] = - X3 + Y2, [X3,Y4] = X3 - Y4, 

[X3,Y6] =!( -X3 + Y4), 

[XS,Y2] =!( - XI + Y2), 

[XS,Y4] =!( -X3 + Y4), 

[XS,Y6 ] = - Xs + Y6 • 

(45) 

The pull back of contact one-forms are determined by 

tP; =X;ZI +X~Z3 +X;Zs 

tP~ = X~Z2 + X~Z4 + X~Z6. (46) 

An infinite-dimensional linear realization of Eq. (45) is 
found, 

XI =A I?) +A ii-I), X2 =A I?) +AW, 

X3 =A i~) +A b-I), X4 =A i~) +A g>, (47) 

Xs = !(D{O) - D{-2», X6 = !(D{2) _ D{O», 

where the definition of A ij have been given previously; D (m) 

is defined by 

D(m)=n=~oo (m+n)(tl q1m +
n
) a~n»)' (48) 

where they satisfy the following coupled Kac-Moody and 
Virasoro (without center terms) commutator relations: 

[A (m) A (n)] - 11 A (m+n) 
ij' kl - Ujk iI 

- ~IiA i'l' + n) (Kac-Moody), 

[D(m), A ijn)] = nA ijm+n), 

[D(m>, D(n)] = (n_m)D(m+n) (Virasoro). (49) 

The pull back of the contact one-forms vanish on the solu
tion manifold of Eq. (43). It gives the following partial dif
ferential equations for qln) (i = 1,2): 

dq\n) = {(q\n) + qin-I»Z 1+ !(nq\n) 

- (n - 2)q\n-2»ZS}dxl 

+ {(q\n) + qin+ I)Z2 

+ H (n + 2)q\n+2) - nq\n)]Z6}dx2, 

dqin) = {(qin) + q\n-I)Z3 

+ !(nq?) - (n - 2)qin- 2»ZS}dxl 

+ {(qin) + q\n + I) )Z4 

+H(n+2)qin+2)-nqinl]Z6}dx2, (50) 

where Eqs. (46)-(48) have been used. If definition Eq. (28) 
(here A. must be regarded as function of x) is adopted, the 
following auxiliary linear system of the Ernst equation is 
obtained from Eq. (50): 
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where 

dA. = !(A. 2 - 1) (A.Z s dxl + A. -IZ6 dx2). 

The Ernst-Maxwell equations are 

1 
ala2~ = -- (aIWa2~ +a2Wal~) 

2W 

+ ~ (al ~ + 2tP altP )a2~ 
Q 

+ (a2~ + ~ a2tP)al~' 
I 

ala2tP = - - (al wa2tP + a2w altP) 
2W 

+ ~ (al~ + 2~ altP)a2tP 
Q 

+ (a2~ + 2~ a2tP)altP, 

ala2 W=0, 

(52) 

where Q = ~ + ~ + 2~tP and the "overbar" stands for 
complex conjugation. The related constraint equations on 
J2(R 2,C 3) are turned into Ricatti-type forms on 
JI(R 2,C IO ) through the following maps from JI(R 2,C 3) 
to JO(R 2,C IO ): 

ZI = (~I + 2~tPI)/Q, Z2 = (~2 + 2~tP2)/Q, 
Z3 = (~I + 2tP~I)/Q, Z4 = (~2 + 2tP~2)/Q, 
ZS = i(1/Q)1/2~1' Z6 = i(1/Q)1/2~2' (53) 

Z7 = i(l/Q) 1/2tPI , Z S = i(l/Q) I12tP2, 
Z9 = WI/W, ZIO = W2/W, 

The associated two-forms on JO(R 2,C 10) are 

0"1: = dZ I /\dx l + {(Z2 - Z4)ZI 

_ !(Z 9Z2 + Z IOZ I) _ Z 6Z7}dxl /\dx2, 

0"2: = dZ 2 /\dx2 + {(Z 1_ Z3)Z2 

_ !(Z 9Z2 + Z IOZ I) - Z SZS}dx2 /\dz!, 

0"3: = dZ 3 /\dx l + {(Z4 - Z2)Z3 

- !(Z 9Z4 + Z IOZ3) - ZSZS}dx l /\dr, 

0"4: = dz 4 /\dx2 + {(Z3 - Z I)Z4 

- !(Z 9Z4 + Z IOZ3) - Z 7Z6}dx2 /\dx!, 

O"s: = dZ 5 /\dx l + {!(Z4 - Z2)Z5 

_ !(Z 9Z6 + Z IOZ5) + Z 6Z3}dxl /\dx2, 

0"6: = dZ 6 /\dx2 + {!(Z3 - Z I)Z6 

_ !(Z 9Z6 + Z IOZS) + Z SZ4}dx2 /\dxl, 

0"7: = dZ 7 /\dx l + {!(Z2 - Z4)Z7 

- !(Z9Zs + Z IOZ7) + ZSZ I}dxl /\dx2 , 

O"s: = dZ s /\dx2 + {!(Z 1_ Z3)ZS 

- !(Z9Zs + Z IOZ7) + Z 7Z2}dx2 /\dxt, 
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U9: = dZ 91\dxl + Z9ZIOdx21\dxl, 

U IO: = dZ 10 I\dx2 + Z 9Z IOdx l l\dx2. (54) 

In the same manner as in the previous discussion, we 
find that the contact one-forms on the solution manifold are 
determined from the closure condition as follows: 

¢; =X;ZI +X;Z3 +X;Z5 +X~Z7 +X~Z9, 

¢~ = X~Z2 + X~Z4 + X~Z6 + X~Z8 + X;oZ 10, 

(55) 

whereX; (/ = 1,2, ... ,10) satisfy the following commutator 
relations: 

[XI,x2] = XI - X2, [XI,x6] = ~6' 
[XI,xIO] = !( - XI + X2), 

[XI,x4] = - XI + X4, [XI,x8] = X7 - ~8' 

[X3,x2] = - X3 + X2, [X3'X6] = Xs - ~6' 

[X3,x1O] =!( - X3 + X4), 

[X3,x4] = X3 - X4, [X3,x8] = ~8' 

[XS,x2] = - ~3' [XS,x6] = 0, 

[XS,xIO] =!( - Xs + X6), 

[XS,x4] = ~5 - X6, [X5,x8] = - X3 + X2, 

d'll = M\II 

(56) 

[X7,x2] = ~7 - X8, [X7,x6] = - XI + X4, 

[X7,x1O] =!( - X 7 + X8), 

[X7,x4] = - ~7' [X7,x8] = 0, 

[X9,x2] = !( - XI + X2), 

[X9,x6] =!( - Xs + X6), 

[X9,xIO] = - X9 + X IO, 

[X9,x4] =!( -X3+X4), 

[X9,x8] = !( - X 7 + X8), 

where the notations given by Eq. (22) are used. This is the 
prolongation structure of the Ernst-Maxwell equations. Its 
infinite-dimensional linear realization is found to be 

XI =A l?) +Ail-I) +!Ai~), X2=A l?) +Ail) +!Ai~), 

X3 =A i~) +A l2- 1) +!A i~), X4 =A i~) +A g) +!A i~), 
Xs = Ai?) - A i2- I), X6 = Ai?) - A i~), 

X7= -Al~)-Ai3-1), X8= -Al~)-Ag), 

X9 = !(D(O) - D(-2», XIO = ~(D(2) - D(O». (57) 

The partial differential equations for qY) 
(n = - 00, ... , + 00; j= 1,2,3) can be obtained from the 
above linear realization. From those equations we then ob
tain an auxiliary linear system for the Ernst-Maxwell equa
tions: 

( 

Zldxl+Z2dx2, AZldxl+A-IZ2dx2, Z Sdx1 +Z6dx2 ) 

M: = AZ 3 dxl +A -IZ4 dx2, Z3 dx l + Z4 dx2, -AZs dXI_A -IZ6 dx2 , 

_ Z7 dxl _ Z8 dx2, - AZ 7 dxl - A -IZ8 dx2, !(Z 1+ Z3)dx l + !(Z2 + Z4)dx2 
(58) 

where 

the spectral parameter A is desired to obey 

dA = !(A 2 _ 1 )(AZ9 dx 1 + A -IZ 10 dx2), 

so as to reach Eq. (58). 

IV. CONCLUSION 

In the above we discussed the Liouville equation, the 
sine-Gordon equation, the Ernst equations, and the Ernst
Maxwell equations by means of the W-E prolongation pro
cedure in jet-bundle formulation. These equations are sec
ond-order nonlinear partial differential equations, their as
sociated jet bundle is J2(R 2,N), where N = R 1 for the 
Liouville equation and sine-Gordon equation, N = C 2 for 
Ernst equations, and N = C 3 for the Ernst-Maxwell equa
tions. It was shown that the related constraint equations on 
J2(R 2,N) for those equations can be turned into Ricatti
type ones on J 1 (R 2,N') under certain maps from J 1 (R 2,N) 
toJO(R 2,N') whereN' = R 4,R 6, C 6,and C 10 for the Liou-
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ville equation, the sine-Gordon equation, the Ernst equa
tions, and the Ernst-Maxwell equations, respectively. The 
maps for the cases of the Liouville equation and the sine
Gordon equation naturally contain an arbitrary parameter. 
From the Ricatti-type constraint equations onJ I (R 2, N'), 
we can immediately write down the associated two-forms on 
J O (R 2, N'). 

Introducing contact one-forms, we obtained a set of par
tial differential equations from their closure condition. The 
set of equations can be expressed as an incompleted algebra 
in terms of tangent vectors in prolongation space. The in
completed algebra is called the prolongation structure of the 
equation under consideration. For the four equations, the 
number of tangent vectors that are needed to determine the 
pull back of contact one-forms equal to the number of con
straint equations onJ 1 (R 2, N') or that of two-forms on J O 

(R 2, N'). The prolongation structure of the Liouville equa
tion or Sine-Gordon equation takes some set of Kac-Moody 
algebra (without the center term); for the Ernst equations or 
Ernst-Maxwell equations, its prolongation structure takes 
some set of the coupled Kac-Moody and Virasoro algebra 
(without the center terms). These can be seen from the infi
nite-dimensionallinear realization. 
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Due to that, the maps for the Liouville equation and the 
sine-Gordon equation permit an arbitrary parameter, the 
auxiliary linear system obtained naturally contain two pa
rameters, one is the spectral parameter but the other is not. 
As there are generators of Vir as oro algebra appearing in pro
longation structure of the Ernst equation or the Ernst-Max
well equations, the spectral parameter in the Lax pair must 
be functions on R 2 and obey a constraint equation. 
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The quantization condition in the presence of a magnetic field and 
quasiclassical eigenvalues of the Kepler problem with a centrifugal potential 
and Dirac's monopole field 

Akira Yoshioka 
Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 
278, Japan 

Kiyotaka Ii 
Department of Mathematics, Yamagata University, Yamagata 990, Japan 

(Received 8 September 1989; accepted for publication 24 January 1990) 

In the presence of a magnetic field, the Maslov quantization condition is not available in the 
original form. An alternative quantization condition is proposed with the aid of a principal 
U( 1) bundle over a phase space and a connection whose curvature form is the charged 
symplectic form. By means of this quantization condition, quasiclassical eigenvalues of th~ 
Kepler problem with a centrifugal potential and Dirac's monopole field are calculated, which 
turn out to coincide with the eigenvalues of the quantized problem. 

UNTRODUCTION 

The Maslov quantization condition, which is consid
ered a generalization of the Bohr quantization rule, is given 
as follows. I Let M be a C 00 manifold and T * M be its cotan
gent bundle. The symplectic manifold (T * M, dO M) is con
sidered, where OM is the canonical one-form on T*M. Sup
poseLC (T*M, dOM ) isa Lagrangian submanifold, namely, 
dOMIL = 0 and dim L = dim M. Then OM defines an ele
ment of HI(L;JIt), so that Sy OM' the action integral for a 
closed curve r in L, depends only on the homology class 
[r] EHI(L;Z). Now L satisfies the Maslov quantization 
condition if and only if 

_1_ r OM -~<JLL,[r] > = integer, (1.1) 
2'IT Jy 4 

for any closed curve rinL, whereJLL E H I(L;Z) is the Mas
lov class of L (for the definition of the Maslov class, see 
Appendix A or Ref. 2). By means of (1.1), approximate 
eigenvalues of operators, which are referred to as quasiclas
sical eigenvalues, are calculated. I Moreover, it is shown that 
in some specific models, quasiclassical eigenvalues coincide, 
or coincide modulo a certain constant, with eigenvalues of 
operators.3-6 However, note that (1.1) is not applicable to a 
mechanical system under the influence of a magnetic field in 
general. In this paper, we improve (1.1) so it can be applied 
to the case where a magnetic field is considered. 

In mathematical language, the quantum mechanical 
motion of a charged particle in a magnetic field is described 
within the theory of complex line bundles in the following 
way (for details, see Ref. 7). A magnetic field is a real closed 
two-form n defined on M. This n is assumed to be integral, 
i.e., [n ]l2'IT E H 2 (M;Z). The existence theorem ensures 
that one has a complex line bundle 'IT E:E -. M and a linear 
connection V with the curvature in. This E admits a Hermi
tian inner product < , > E such that 

X (SI,S2) E = (V XS),S2) E + (s), V XS2) E' (1.2) 

for arbitrary cross sections S) and S2 and vector field X. More
over, if M is simply connected, E and V are uniquely deter
mined up to strong bundle isomorphism. 

The Schrodinger operator is then given as 

ifIII(x) = ( - ~ L gik(X)Vj V k + V(X»)'I'(X), (1.3) 
2 j,k 

where V· is a covariant derivative in the direction of a lax j 
( the loc~l coordinate frame), 'I' is a cross section of E, and g 
is a Riemannian metric. 

On the other hand, in classical mechanics one has to 
introduce into T*M a modified symplectic form 

U = dOM + 171tn ( 1.4) 

(called a charged symplectic forms) to describe the corre
sponding motion, where 'IT M: T * M -. M is the canonical pro
jection. The motion is given by the Hamiltonian vector field 
on T * M associated with 

H(x;p) = !lpl2 + Vex), 

with respect to u, where (x;p) E T*M,xEM,andpE T~M. 
Thus we need to consider the symplectic manifold (T* M,u) 
instead of ( T * M,dO M ). Let L be a Lagrangian submanifold 
of (T*M,u). While ulL = 0, dOM is not necessarily vanish
ing on L. Hence OM cannot define an element of HI (L;R) so 
that action integrals S y OM on L are not determined by the 
homology class [r] E HI (L;Z) in general. Thus the Maslov 
quantization condition (1.1) is not effective in the original 
form. In Sec. II, we propose an alternative quantization con
dition by means of a certain principal U( 1) bundle and con
nection form (cf. Ref. 9). 

As an application of this quantization condition, we cal
culate quasiclassical eigenvalues of the Kepler problem with 
a centrifugal potential and Dirac's monopole field, which is 
referred to as the MIC-Kepler problem. 1O The quantized 
MIC-Kepler problem is given as follows. 11 

For every m E Z, Dirac's monopole field is defined by a 
closed two-form on R3 = R3 - {O} such that 

Om = - (mI2)lxl-3(xldx2I\dx3+X2dx3I\dx\ 

+x3dx\l\dx2), (1.5) 

where x = (x\,X2,X3) E R3
, Ixl 2 = x~ + x~ + x~. A simple 
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calculation yields 

r Om = 211m, 
J'(2) 

where S(2) is the unit two-sphere, that is, Om is integral. 
Since ie is simply connected, we have the unique complex 
line bundle Em over it3 with the Hermitian inner product 
( , ) m and the linear connection vm with the curvature 
form iOm by virtue of the existence theorem. The Hamilto
nian ofthe quantized MIC-Kepler problem is given by 

iI = _..!. ~ (vm)2 + (mI2)2 k (1.6) 
m 2 j£:1 J 21xI2 - lxi' 

where Vj stands for the covariant derivative in the direction 
of iJ..1aXj,j = 1,2,3, and k is a positive constant. The domain 
of H m is contained in the space of all L 2 sections of Em. The 
eigenvalue problem is exactly solved. II Consider the non
negative integer n subject to the condition 

Iml,n,n-miseven. (1.7) 
A 

The eigenvalues of Hm and their multiplicities are 

en = -2k 2/(n+2)2, (1.8) 

(n - m + 2)(n + m + 2)/4, (1.9) 

respectively, where n satisfies ( 1. 7). 
On the other hand, the corresponding classical mechan

ical system is of the following form. The symplectic manifold 
is (T*R3

, um ), where 
3 

U m = L dpj/\dXj +1T*Om' (1.10) 
j=1 

(X;p) E T*R3 = R3 XR3 and 'IT: T*R3
-+R

3 is the canonical 
projection. The classical Hamiltonian of the MIC-Kepler 
problem is given by 

H (x·-) =..!.1;;'1 2 + (mI2)2 -~. (1.11) 
m;P 2 lY 21xI2 Ixi 

Iwai and UwanolO showed (T*R3
, um,Hm) is obtained by 

the U( 1) reduction of the conformal Kepler problem. In 
Sec. III, in the above framework we relate the principal U( 1 ) 
bundle and the connection form, which are used in defining 
the quantization condition, to the cotangent bundle T *R4 

and its canonical one-form. 
In Sec. IV, we investigate the U( 1) reduction of the 

Maslov class. With the aid ofthe results in Sec. III and IV, 
we calculate the quasiclassical eigenvalues and their multi
plicities of iI m in Sec. V, to see these coincide with ( 1. 8) and 
(1.9), respectively. 

II. A QUANTIZATION CONDITION IN THE PRESENCE OF 
A MAGNETIC FIELD 

Consider the principal U ( 1) bundle v p :P -+ M associat
ed with the complex line bundle 'IT E:E -+ M with the Hermi
tian metric ( , ) E' Let V be a linear connection in E with the 
property (1.2), whose curvature form is in. Here P is en
dowed with the connection form P induced by the linear 
connection V. The curvature form of Pis n. We define the 
pullback bundle B = 'IT M I P over T * M with the commutative 
diagram 
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B P P 
VB 

I I vp • 

T*M 
'lTM 

M 

(2.1) 

Set a one-form on B: 

a = 118M + p*p. (2.2) 

Then a turns out to be a connection form on B with the 
curvature form u defined by (1.4). Suppose L is a Lagran
gian submanifold of ( T * M,u). It holds that da I vii I (L) = 0 
sinceulL = O. Thus a defines an element of HI (Vii I(L);R) 
so that f y a, for an arbitrary closed curve r in viiI (L), de
pends on [r] EHI(vii I(L);Z). Now, L satisfies the quanti
zation condition if and only if 

_1_ r a - ..!.(11Jlu [r» = integer, (2.3) 
2'IT Jy 4 

for any closed curve rin vii I(L). Ifn = 0 and E = M XC, 
then we may take B = T*M X U(1) and a = 8M + dzliz, 
wherezE C, Izl = 1. In this case, (2.3) isequivalentto (1.1). 
Thus the quantization condition (2.3) can be regarded as a 
generalization of the Maslov one. Using (2.3) instead of 
( 1.1 ), we can define a quasiclassical state (QCS, for short) , a 
quasiclassical eigenstate (QCE), and a quasiclassical eigen
value in parallel with those in Ref. 4. Namely, a compact 
connected Lagrangian submanifold L C ( T * M,u) is a QCS if 
L satisfies (2.3). Let H be a smooth function on T * M. A 
QCSL is called a QCE of HwhenH IL = c (const).Thiscis 
called a quasiclassical eigenvalue of H. 

III. (S, a) AND THE U(1) REDUCTION OF A PHASE 
SPACE 

In this section, we review the construction of the com
plex line bundle Em and the connection vm for the quantized 
MIC-Kepler problem first. 11

•
7 Next, we recall briefly the 

U( 1) reduction of a phase space, through which the classical 
MIC-Kepler problem is obtained from the conformal 
Kepler problem in T *R4. 10 Within this framework, we show 
the principal U( 1) bundle and the connection form given in 
(2.1 ) and (2.2) can be related to T *:a4 and its canonical one
form, respectively. 

We identify x = (X I ,X2,X3,x4) E R4 with 
z = (ZI,z2) E C2 through Zl = XI + ix2, Z2 = X3 + ix4• Con
sider a U( 1) action R(eit ) on R4 = R4 - {a} such that 

(3.1) 

Then we have a principal U(1) bundle over R3, v:R4 
-+ R3

, 

where v is given by x = v(x) E R3
, X E R4, 

XI = 2 Rez lz2, x2=2Imz lz2, x3=lzI12_lz212. (3.2) 

The fundamental vector field r(z) = (d Idt) It=oR(eit)z is 
written as r(z) = iz. Let R4 be equipped with the Rieman
nian metric go = dxi + dx~ + dx~ + dx~. The one-form PI 
such that 

(3.3 ) 

defines a connection on R4. A calculation shows the curva-
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ture form .01 of /31' i.e., d/31 = v*.o l, is given by 

.ol(x) = - (l/2IxI3)(Xldx2I\dx3+X2dx3I\dxl 

+ X3 dx l l\dx2). (3.4) 

For each m E Z, let Pm be a U( 1) action on C defined by 
Pm (eit)w = eimtw, WE C. Then the complex line bundle Em 
and the linear connection vm are obtained as follows: Em is 
the associated bundle Em = R4 X Pm C. The connection form 
/31 naturally induces the linear connection vm in Em. The 
curvature form ofVm equals im.ol. 

As stated in the Introduction, the symplectic manifold 
(T*R3,O'm),O'm = dO + 1T*m.ol' is considered, where 0 is 
the canonical one-form on T *R3 and 1T: T *R3 ..... R3 is the ca
nonical projection. We denote by fJ the canonical one-form 
on T *R4. Let Hc be a Hamiltonian function of the conformal 
Kepler problem: 

14k 
Hc(x;p) =-81 12 .LPJ--

1 

12 ' (3.5) 
x }=I x 

where (x;P) E T*R4 = R4XR4. In what follows, we review 
the U(l) reduction, through which (T*R3

, 0' ,H ) is ob
tained from (T*R4, dfJ, Hc) (for details, see Ref. iO). The 
U(l) action R is lifted to be a symplectic action on T*R4, 
which is denoted by it The moment map tIt: T *R4 ..... R of R is 
defined by", = fJ( r), where ris the induced vector field of R 
such that 

r(x;p) = - R(elt
) (x;p). d I A. 

dt t=O 

We denote by H", the Hamiltonian vector field of tIt. We note 
r = H",. In an explicit manner, we have 

"'(x;p) = (p,y(x» = XIP2 - X7PI + X3P4 - X4P3' (3.6) 

We set a submanifold F = ",-I (0) and the inclusion map tF: 
F ..... T*R4. Since", is U(l) invariant, U(l) acts freely on F. 
Hence we get a principal U( 1) bundle over T*R3 with the 
U( 1) action R, VF: F ..... T*R3.1t is easily checked that 

(3.7) 

We define a diffeomorphism rm: T*R4 ..... T*R4 by rm 
(x;p) = (x;p - m/31 (x», where /31 (x) is regarded as an ele
ment of T~R4. The diffeomorphism r m commutes with it 
Let 1T P, : T *R4 ..... R4 be the canonical projection. It follows 
that 

(3.8) 

Consider a submanifold ",-I (m). Then r m maps "'- I (m) 
diffeomorphically to F. We set Vm = vFor m' 

Theorem 3.1 (Iwai and Uwano lO
): (T*R4, dfJ, Hc) is 

reduced to (T*R3'O'm' Hm)' Namely, (i) Vm: 
",-I (m) ..... T*R3, is a principal U( 1) bundle with the U( 1) 

action R; (ii) v:,O'm = t::', dfJ; and (iii) v:,Hm = t::',Hc' 
where Lm:"'-I(m) ..... T*R\ is an inclusion map. 

In addition to Hc' we set U(l) invariant functions on 
T*R4

: 

J(x;p) = !(XIP4 - X4PI + X3P2 - X7P3) , (3.9) 

D(x;p) = !(PIP3 + P7P4) - 2(X1X3 + X2x4)Hc (x;p). 
(3.10) 

Here He' J, and D are in involution, i.e., commutative with 
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respect to the Poisson bracket defined by dfJ. On the other 
hand, we consider functions on T*R3: 

Jm (x;p) = XjJ3 - X~2 + (m/2)x l/lxl, 

Dm (x;P) = - xl wl 2 + PI (x,p) 

(3.11) 

+ (m/2)(xjJ3 - x~2)/lxl + kXl/lxl· 
(3.12) 

Proposition 3.2 (lwai and Uwano lO
): It holds that 

v:,Jm =J, v:,Dm =D. 

Moreover, H m' J m' and D m are commutative with respect to 
the Poisson bracket defined by 0' m • 

Now, let vpm:P m ..... it3 be the principal U( 1) bundle as
sociated with the Hermitian line bundle (Em' ( ~ ) m ). Here 
we have PI = R4, vP , = v. We denote by Rm the U( 1) action 
of the principal bundle P,;, and by Y m the fundamental vector 
field on it. The bundle Pm is equipped with the conneCtion 
form /3 m induced by Vm

• For Pm and /3 m' we denote by 
vBm :Bm ..... T*R3, the principal U( 1) bundle over T*R3 de
fined by (2.1) and by am the connection form defined by 
(2.2), respectively. In what follows, we see Bm and am are 
related to T*R4 and fJ, respectively. Let {tp ~m),Ua}aEA be 
the iocal trivialization of Pm; {U a} a E A is an open covering 
ofR3 and 

tp ~m):Ua X U(l) ::'vpml(Ua ) 

is a diffeomorphism with the U( 1) equivariancy. Define a 
bundle homomorphism ~(m): PI - Pm by 

tp ~m) - lo~(m)otp ~1)(X,W) = (x,wm ), 

(x,w) E Ua X U(l), for every a E A. Then it holds that 
~(m)oRI(eit) = Rm (eit)mo~(m), so that d~(m) YI = mYm' 
It follows that 

~(m)*/3m = m/3I' (3.13) 

Recall that Bm is given explicitly by 

Bm = {«X;p),S)E T*R3XPmlvpm (s) =x}. (3.14) 

The U( 1) action Rm on Pm naturally induces that on Bm, 
which is denoted by the same letter, Rm. In terms of (3.14), 
we define a bundle homomorphism Pm: Bm ..... P m by 
Pm «X;p),s) = S and a bundle homomorphism 
'II(m):BI ..... Bm by 'II(m) = I X ~(m), where I is the identity 
map of T*R3. This 'II(m) satisfies 

v 0'll(m) = V 
Bm B.' 

Pm 0'll(m) = ~(m)oPI' 
'II(m)oR I (e

it ) = Rm (eit)mo'll(m). 

Combining these with (3.13), we get 

'II(m)*am = 11,0 + mpT/3I' (3.15) 

Define a bundle isomorphism f F ..... B I by f(x;p) 
= (vF(x;p),x). We have 

VB, °f= vF, Plof= 1Tp,OtF, fOR(eit ) = RI(eit)0J, 

so that 

'II(m)ofOR(eit ) = Rm (eit)mo'll(m)o f 
Equations (3.7) and (3.15) yield 

f *'II(m)*a = t*(fJ + mrl /3 ) m F P, I . (3.16 ) 
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Set Km: ",-I(m) -+Bmas Km = \j!(m)ojb-r m' Then, by means 
of q.8) and (3.16), we get a relation between Bm, am and 
T*R4, 0 such as the following proposition. 

Proposition 3.3: Km: ",-l(m)-+Bm is a bundle homo
morphism with the properties 

KmOR(eit ) = Rm (eit)mOKm' K!am = t!tO. 

IV. MASLOV CLASS 

Let L be a Lagr~ngian submanifold of (T*it3
, um ). 

Sincev!,um = t!t dO, L = v;;' I(L) is also a Lagrangian sub
manifold of (T*R4, dO), which is contained in ",-I (m). In 
this section, we investigate a relation between the Maslov 
classes of L and i. 9 In Appendix A, we recall the definition 
of the Maslov class briefly. 

We denote by J.L Land J.L t the Maslov class of L and that 
of i, respectiyely. We ¥<-e a Riemannian metric g on it3 

such that V: (R4, go) -+ (R3,g) is a Riemannian submersion, 
namely, g(X,Y) =go(X*,Y*), where .:t, Ye TxR3 and 
X*, y* are their horizontal lifts. For every 
y = (x;p) E T*R4 = it4XR4, weset.Y F(Y) = TpT~R4, the 
Lagrangian subspace tangent to the fiber T~R4. In what 
follows, we construct a Lagrangian subspace 
U' °4 ..z B (y) C Ty T *R transverse to .Y F (y). We take orthonor-

mal vectors UI,U2,U3,U4 E TxR4 such that U4 = y(x)/ly(x) I. 
Suppose uj ( j = 1,2,3,4) are written as 

4 a 
Uj = L uja--· 

a= I aXa 

We define orthonormal vectorsfj e.Y F(Y) (j = 1,2,3,4) by 

4 a 
fj = L Uja-· 

a= I aPa 

Set tangent vectors b· (J' = 1,2,3,4) of T T*R4 as J y 

b4=H.,,(y)/ly(x)1 [y= (x;p)], 

bj = uj -dO(uj ,b4)h (j= 1,2,3), 

where H." is the Hamiltonian vector field of t/J. Then 
dO(h,b4)=1 and dO(h,Uj ) =0 (j=1,2,3). It follows 
that -f./;,bj (j = 1.2,3,4)} is a symplectic basis, i.e., 

dO(fjJk) =dO(bj,bd =0, 

dO(fj,bk ) = 0jk (j,k = 1,2,3,4). (4.1) 

Hence we define .Y B(Y) = span{bj (j= 1,2,3,4)}, a La
grangian subspace transverse to .Y F (y). We take 
YEt/J-I(m) and setY=vm(y). In what follows, we con
struct Lagrangian subspaces li F (y) and liB (Y) C Ty T *it3 

out of .Y F(Y) and .Y B (y), which are transverse to each 
other. Theorem 3.1 shows 

dVm (y): Tyt/J-I(m) -+ TyT*it3 

is an onto map with !he kernel spanned by H." (y). Set a 
subspace Ny of Ty T *R4 as 

Ny = {Ye Tyt/J-I(m)I~,,8I( y) = O}. 

Sinc~~,,8I(H.,,) = I, we have Tyt/J-I(m) =RH.,,(y) +Ny 
(a dIrect sum). Thus the restriction of dv m (y) to N yields a 
linear isomorphism between Ny and Ty T *R3. ~uations 
(4.1) indicate fj (j = 1,2,3) and bk (k = 1,2,3) belong to 
Ny. Note that b4 spans the kernel of dVm (y). We then get a 
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symplectic basis of(TyT*R, Um (y» such that 

ij =dvm(y)fj, h} = dVm(y)b) (j= 1,2,3). (4.2) 

Thus we have that li F(i) is spanned by ij (j =_1,2,3) and 
we set li B<Y) = span{b} (j= 1,2,3)}. Here .Y B<Y) is a 
Largrangian subspace transverse to li F (Y). 

By means of {fj,b} (i = 1,2,3,4)} and {ij,hj 

(j = 1,2,3)}, we identify Ty T *R4 .: C' and Ty T *R3 .: C3 in 
the stan<!..ard manner, r~tively [see Appendix A, (A2) ]. 
For y E L, dv m (y): TyL -+ TyL is onto and the kernel is 
spanned by b4• If a unitary matrix We U(3) satisfies 
TyL = w-li B(Y)' then the unitary matrix We U(4) with 

A A A 

TyL= W-.YB(y) is given by W= (:;' n owing to (4.2). 
Let Dee: A(T*R4) -+ U(I) and Det2

: A(T*R3) -+ U(I) be 
the maps given in (A3) of Appendix A, respectively. Also 
denote by A: L-+A(T*R4) and l: L-+A(T*R3) the maps 
defined by (A4) in Appendix A, respectively. The above 
arguments show DeeOA (y) = Det2ol(v m (y». Thus we get 
the following theorem. 

Th~rem 4.1: Wi. = v!,J.L L' where we consider v m as a 
map of L toL. 

V. QUASI CLASSICAL EIGENVALUES OF THE MIC
KEPLER PROBLEM 

For constants E (>0), Jm , and 15m , we set a level set 

L(E,Jm,15m) = {(x;p) E T*R3IHm (x;p) = - E, 

Jm(x;p) =Jm, Dm(x;p) = 15m}. 

Recall that H m' J m' and D m Poisson-commute (see Propo
sition 3.2). Owing to the Liouville-Arnold theorem, 12 

L(E,Jm,15m) is a Lagrangian submanifold of (T*R3, um) if 
dHm, d!...m,~.nd dDm are linearly independent at each point 
of L(E,Jm,Dm). Set a level set of T*R4: 

L(E,Jm,15m ) = {(x;p) e T*it4IHc (x;p) = - E, 

J(x;p) =Jm, D(x;p) =15m, 

"'(x;p) = m}. 

Because of Theorem 3.1 and Proposition 3.2, 

v;;' I(L(E,Jm,15m» = L(E,Jm,15m). 

First of all, ~e in~es~ate a condition on E, Jm , and 15m 

under whichL(E,Jm,Dm) [henceL(E,Jm,15m)] becomes a 
Lagrangian submanifold. We introduce the complex vari
ables;-} (j= 1,2,3,4): 

;-1 = A,(XI + x3) - P2 - P4 + i(A,(x2 + x4) + PI + P3)' 

;-2 = A(XI - x 3) - P2 + P4 + i(A(X2 - x4) + PI - P3)' 

;-3 = A(XI + x 3) + P2 + P4 + i(A,(X2 + x4) - PI - P3)' 

;-4 = A,(XI - x 3) + P2 - P4 + i(A,(X2 - x4) - PI + P3)' 
(5.1 ) 

where A = ~8E . It follows that 

32IxI2(Hc (x;p) + E) + 32k = 1;-11 2 + 1;-212 + 1;-312 + 1;-412, 
J(x;p) = - (1I16"t)(1;-11 2 -1;-21 2 -1;-312 + 1;-412), 
D(x;p) + 2(XIX3 + X2x4)(Hc (x;p) + E) 

= (1132) (1;-11 2 
- 1;-21 2 + 1;-312 - 1;-412), 

t/J(x;p) = (1I8A,) ( - 1;-11 2 - 1;-212 + 1;-31 2 + 1;-412). (5.2) 
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We set constants 

AI = 8k - Urn - 4£i: + 815 m m' 

A2 = 8k - Urn + 4£i:m - 815m, 

A3 = Sk + Urn + 4£i:m + 815m , 

A4 = Sk + Urn - 4£i:m - 815m • 
A __ 

In accordance with (5.2), L(E,Jm,Dm) is given by 

l~jI2=Aj (j=I,2,3,4). 

(5.3) 

(5.4) 

Proposition 5.1: L(E,Jm,15m) is a Lagrangian submani
fold if and only if 

Aj > 0, j = 1,2,3,4. (5.5) 
A __ 

Moreover, L(E,Jm,Dm) is diffeomorphic to a four-dimen
sional torus T4. 

By means of (5.4), we parametrize L(E,Jm,15m) as 

~j = ,fA; i\ tj E [0,217'] (j = 1,2,3,4), where the Aj are sub-
A . 

jectto (5.5). Since He,J, D, and "'are U(1) invariant, R(e") 
acts on L (E,J m ,15m), In terms of this parametrization, the 
U( 1) action is written as 

A . 

R(e")(tl> t2, 13, (4) = (tl + t,/2 + 1,/3 + t,t4 + t) 
(mod 217'). 

Hence, we introduce another parametrization 
s = (SI,s2,S3,S4)' for example, Ij = Sj + S4 (j = 1,2,3), 
14 = S4' namely, 

(5.6) 

By means of (5.6), the U( 1) action can be expressed as 

R{eit ) (SI,S2,s3,s4) = (SI>S2,S3,s4 + I) (mod 217'). 
- - "" --Thus L(E,Jm,Dm)~L(E,Jm,Dm)/U(1) is parametrized 

- - 3 by (SI,S2,s3) (mod 217'), whichshowsL(~Jm~ml ~ T . We 
define closed curves cj (j = 1,2,3,4) in L(E,Jm,Dm) by 

cj: Sj = I, others = 0 (j = 1,2,3,4). (5.7) 

Note that thecj (j = 1,2,3,4) generate HI(L(E,Jm,15m );Z), 
and [cj ] denotes the class of cj" In terms of (5.6), we define _ _ A. __ 

a global section q: L{E,Jm,Dm) ->L(E,Jm,Dm) by 
q(SI,S2,S3) = (SI,s2,S3'0). TheKm given in Proposition 3.3 in
duces a bundle homomorphism of L(E,Jm,15m) to 
viiJL(E,Jm,15m». Then, 

o - - -I --Km q: L(E,Jm,Dm) ->vBm (L(E,Jm,Dm» 

grovi~es 3 global sectlion. ~us_ we have trivial_bu~dles 
L(E,Jm,Dm) and vii (L(E,Jm,Dm» over L{E,Jm,Dm), 
which are diffeomorphic to T4. We denote by u the generator 
of HI {vii,.,I(L(E,Jm,15m »;Z) defined by the fiber U(l), so 
that the first homology class is generated by K m* [cj ] 

(j= 1,2,3) and u. We haveKm* [c4 ] = mu. 
Now, in order to calculate quasiclassical eigenvalues of 

H m we check the quantization condition 

_1_ f. am - ~(VLUL,Km* [cj ]) = integer 
217' Km' [ej ) 4 

(j= 1,2,3), 

_1_ { am - ~(11 /-lL'U) = integer, 
217' Ju 4 m 

(5.S) 
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wherelh is the Maslov class of L{E,Jm.Dm). Note that 

i am = 217', vBm'u = 0, 

so that the last equation trivially holds. Because of Proposi
tion 3.3 and Theorem 4.1, (5.S) is equivalent to 

_1_ { 0 - ~<I-lL'[ cj J> = integer (j = 1,2,3), 
217' J[e)) 4 

(5.9) 
A __ 

where/-lL is the Maslov class of L{E,Jm ,Dm). First, we com
pute action integrals along cj (j = 1,2,3). Here, 0 is ex
pressed in terms of ~j as 

0= (1ISA)lm{~1 d'l + ~2 d'2 - ~3 d'3 - ~4 d'4 

+ ~I d'3 - ~3 d'l + ~2 d'4 - ~4 d'2)' 
Hence we have 

Ole) = - {A/SA)dt + dF (j = 1,2), 

Ole] = {A3/SA)dl + dF, 

whereF= (1ISA)lm{~1'3 + ~2'4)' Thus we get the follow
ing proposition. 

Proposition 5.2: 

{ 0= -~17' (j= 1,2), {0='&17'. 
lej 4A le, 4A 

Next we compute Maslov indices along cj (j = 1,2,3). 
Define 

G{x;p) = t(H(x;p),"'(x;p),J(x;p),D{x;p» 

and differentiate G by Xj and Pj (j = 1,2,3,4). Then we get 
4 X 4 matrices Gx = ax G and Gp = ap G. Because of Pro po
sition 3.2 in Ref. 6, we have 

/-lL = (l/17')dargdet(Gp +iGx)IL{E,Jm,15m). (5.10) 

By means of ( 5.10), we can calculate Maslov indices for [ cj ] 

(j = 1,2,3) explicitly to get the next proposition. 
Proposition 5.3: 

(/-lL'Cj ) = - 2 (j = 1,2), (/-lL'C3 ) = 2. 

(For a proof, see Appendix B.) 
Now, we are in a position to calculate the quasiclassical 

eigenvalues. By means of Propositions 5.2 and 5.3, (5.9) is 
quivalent to 

(11217')( -A/4A)17'-!( -2) = -nj (j= 1,2), 

(11217') (A3/4A) 17' -!2 = n3, 

namely, 

Aj=SA{nj+D (j=1,2,3), (5.11) 

where nj (j = 1,2,3) are integers. We set 
n4 = n 1 + n2 - n3 + m E Z. According to (5.3), (5.11) is 
equivalent to 

Sk = U(n 1 + n2 + n3 + n4 + 2), 

4flm = U( - n1 + n2 + n3 - n4), (5.12) 

SDm = U(n 1 - n2 + n3 - n4)· 

It follows that A4 = S...i.(n4 + ~). Substituting (5.11) and A4 
into (5.5), we have 

nj>O (j= 1,2,3,4). (5.13) 
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Ifwe set n = n l + n2 + n3 + n4, A = ~SE and (5.12) give 

E = 2k 2/(n + 2)2 [= - en' see (1.S)]. 

1m = ( - n l + n2 + n3 - n4)/2, 

15m = k(n l - n2 + n3 - n4)/(n + 2). 

(5.14 ) 

Notethatn l + n2 = (n - m)/2, n3 + n4 = (n + m)/2. Re
lation (5.13) implies 

Iml..;;n, n - m is even. (5.15) 

Thus, in accordance with Proposition 5.1, we see that 
L(E,lm,15m) satisfies the quantization condition (5.S) if 
andonlyifE,lm,andDm are subject to (5.14) and (5.15). 
Foreachn obeying (5.15), the number ofL( - enlm,15m)'s 
that satisfy (5.S) is equal to the number of (n l ,n2,n3,n4)'s 

that satisfy n l + n2 + n3 + n4 = n, - n l - n2 + n3 + n4 
= m,nj>O. Then it coiIJ..Cides with the multiplicity of the 
eigenspace of H m belonging to en' 
(n - m + 2)(n + m + 2)/4 [see (1.9)]. In conclusion, we 
get the following. 

Theorem 5.3: The quasiclassical eigenvalues of H m are 
A 

just equal to the eigenvalues of Hm. Moreover, for each 
eigenvalue en' the number of the Lagrangian submanifolds 
L( - en lm ,15m) satisfying the quantization condition (1.1) 
is equal to the multiplicity of if m belonging to en' 
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APPENDIX A: DEFINITION OF THE MASLOV CLASS 

Let Q be an n-dimensional smooth manifold. We sup
pose Q is equipped with a Riemannian metric g. Let OQ be a 
closed two-form on Q. We consider a symplectic manifold 
(T*Q'O"Q) withO"Q = d(}Q + ~OQ' where(}Q is the canoni
cal one-form and 11' Q: T*Q--+ Q is the canonical projection. 
The Lagrangian Grassmannian manifold A ( Ty T *Q) of 
TyT*Q is a collection of all Lagrangian subspaces of 
(TyT*Q,O"Q(Y», where Y = (x;P) E T*Q, x E Q, P E T~Q. 

Now, Tp T~Q, the tangent space to the fiber T~Q at p, is an 
element of A(TyT*Q). We denote it by .!f F(Y)' One can 
choose a Lagrangian subspace .!f B (y) transverse to 
.!f F(Y)' i.e., TyT*Q=.!f F(Y) +.!f B(Y) (a direct sum). 
One may assume .!f B (y) depends smoothly on y. Owing to 
the linear structure of T~Q, .!f F(Y) is endowed with an 
inner product induced from the fiber metric of T~Q defined 
by g, which is denoted by g*(y). For an orthonormal basis 
E = {/1, ... ,jn} of (.!f F(Y),g*(y», there exists uniquely a 
basis {b l ,b2, ... ,bn} of.!f B (Y) such that 

O"Q(y)(J;,J;,J = O"Q(y)(bj,bd = 0, 

O"Q (y)( J;,bk ) = 8jk (j,k = 1, ... ,n). 
(AI) 

When {/1,J;, ... ,jn,b l ,b2, ... ,bn} satisfies (AI), we have a 
symplectic basis of (TyT*Q,O"Q(y». We introduce Euclid
ean inner product g(y) into Ty T*Q with respect to which 
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{/1J ... ,ln ,bl, .. ·,bn} becomes an orthonormal basis. Through 
the map 

i 
fj--+ej = '(0, ... ,0,1,0, ... ,0), 

(A2) 
bj--+iej (j= 1, ... ,n), 

we identify the vector space TyT*Q with en. We define a 
Hermitain inner product on Ty T*Q by 
hey) = g(y) + iO"Q (y). For v E A( Ty T*Q), there exists a 
unitary matrix WE U(n) such that v = W·.!f B(y). Then 
U(n) acts on A( Ty T*Q) transitively and the isotropy sub
group is O(n). We put Det2 (v) = (det W)2 E U( 1). Note 
that Det2(v) is independent of the choice of E. Then, Detl 
turns out to be a mapping 

Detl:A ( T *Q) --+ U( 1 ), (A3) 

where 11' A :A( T*Q) --+ T*Q is a Lagrangian Grassmannian 
bundle defined by 

A(T*Q) = UyA(TyT*Q) 

and 11'" (v) = y, for v E A( Ty T*Q). Consider a Lagrangian 
submanifold L of ( T *Q,O" Q)' For every IE L, TIL is an ele
ment of A(TIT*Q). We define a mapping A: L--+A(T*Q) 
by 

(A4) 

Then we have an element of HI (L;Z) such that 

f-lL = [(Det20A)*(dz/211'iz)], (AS) 

where [dz/211'iz] EHI(U(l);Z),ZE e, Izi = 1. Thisf-lL isre
ferred to as the Maslov class of L. We note f-l L is independent 
of the choice of g and .!f B (see Ref. 2). 

APPENDIX B: PROOF OF PROPOSITION 5.3 

A direct calculation yields 

det( Gp + iG .. ) 
= - (l/32IxI2){(HI + H3)(ZI + Z3) 

+ (H2 + H4) (Z2 + Z4)} 

X{(HI -H3)(ZI- Z 3) 

+ (H2 - H4) (Z2 - Z4)}' (Bl) 

whereHk = Pk - iSHxk' Zk = X k - ipk (k = 1,2,3,4). We 
set t j = aj + iPj> aj>Pj E R (j = 1,2,3,4). Putting 
SH = - SE ( = - A 2), we get 

HI + H3 = !(PI - P3) + (iA. /2)(a l + a 3), 

H2 + H4 = - !(a l - a 3) + (iA /2) (PI + P3)' 

H2 - H4 = - !(a2 - a4) + (iA /2) (P2 + P4)' 

ZI + Z3 = (lI2A)(a l + a 3) - (i/2)(PI - P3), (B2) 

ZI - Z3 = (1I2A)(a2 + a 4 ) - (i/2)(P2 - P4)' 

Z2 + Z4 = (lI2A)(P 1+ P3) + (i/2)(a l - a 3), 

Z2 - Z4 = (lI2A)(P2 + P4) + (i/2)(a2 - a4)· 

Substituting (B2) into (Bl), we have 
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A __ 

det(Gp +iGx)IL(E,Jm,Dm) 

= (1/32IxI2)[ {(ala3 + f3J33)(a2a 4 + f3~4) 
- « 1 + A. 2)2/4A. 2)(a~1 - aJ33) (a~2 - a~4)} - (i( 1 + A. 2)/U) 

X{(a la3 +f31f33)(a~2 - a~4) + (a2a 4 +f3~4)(a~1 - a l f33)}j· 

Since 1/321xl2 > 0, arg det( Gp + iGx ) = arg(Re + ilm), 
where 

A __ 

Using the global parametrization of L(E,Jm,Dm) given in 
(5.6), we get the following: on CI and C2, 

Re = A cos t, 1m = - «(1 + A. 2)/U)A sin t, 

where A = (1TJ= I Aj) 112, and on C3, 

Re = A cos t, 1m = « 1 + A. 2)/U)A sin t. 

Thus we have 
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Id arg det(Gp + iGx ) = - 21T (j = 1,2), 
J 

L d arg det( Gp + iGx ) = 21T, 

which proves Proposition 5.3. 
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This paper proves a noninteraction theorem for a system of N relativistic particles in direct 
interaction, and each particle has internal Grassmann degrees of freedom for describing spin. 

I. INTRODUCTION 

The noninteraction theorem of Currie, Jordan, and Su
darshan I proves the incompatibility of direct interaction 
with relativistic symmetry. Relativistic symmetry comprises 
two distinct requirements. The first is that the dynamics ad
mits the Poincare group as a symmetry. Further, it is also 
necessary that the particle world lines transform as is expect
ed of them in special relativity. This last requirement is 
called the world line condition (WLC) and is an essential 
ingredient in the proof of the theorem. 

There are several versions of this theorem in the litera
ture. The first, due to Currie, Jordan, and Sudarshan, I was 
proved for a system of two-point particles. Then Cannon and 
Jordan2 proved the result for three particles and Leutwyler3 

extended the proof to the general case. These proofs were set 
in the framework of Hamiltonian mechanics. Subsequently, 
it was possible to prove the theorem in a purely Lagrangian 
framework. 4-7 This approach is considerably more economi
cal than the earlier ones and does not need to assume that the 
Lagrangian is nonsingular. 

The above results were obtained for structureless point 
particles. In this paper, we allow for internal structure and 
show again that relativistic symmetry rules out direct parti
cle interactions. The internal structure can be thought of as 
describing spin in a classical framework. The internal co
ordinates can be either commuting or Grassmann. In either 
case, our result applies. For definiteness, we treat the more 
novel situation where the internal coordinates take values in 
a Grassmann algebra. The case of bosonic internal variables 
is straightforward. 

At the classical level, anticommuting variables corre
spond to Fermi degrees offreedom. In the last decade, Casal
buoni and others have developed the subject of pseudoclassi
cal mechanics.6

,7 This provides a formal description of 
Fermi systems, which is purely classical. Upon quantization, 
these systems yield quantum Fermi systems. These develop
ments provide a natural way to describe spin in a classical 
framework. (Other descriptions using bosonic internal co
ordinates are also possible.s For a review, see Ref. 1.) 

There is another approach to the no-interaction 
theorem that is different from the original approach of Su
darshan and co-workers.9 This approach uses the assump
tion that the action must be invariant under independent 
reparametrization of each subsystem. This approach has 
been extended to include Grassmann variables giving the 
dynamical independence of the subsystems. 10.1 I 

In this paper, we proceed along the lines ofSudarshan's 
approach. We first review pseudoclassical mechanics from a 

geometrical point of view in Sec. II. This involves working 
on supermanifolds. An excellent introduction to this subject 
is given in Ref. 11, whose notations we largely use. In Sec. 
III, we formulate the problem we are interested in and derive 
a WLC suitable for Grassmann variables. In Sec. IV, we 
prove the main results of this paper. Section V is a brief 
concluding discussion. 

II. DYNAMICS ON SUPERMANIFOLDS 

Let Ej , i = 1, ... ,L, be anticommuting generators 

EjEj + EjEj = 0, (1) 

of an algebra A L. Elements of AL are objects constructed 
from E j by multiplication and addition. A general elementf 
of AL has the form 

(2) 

where fv = /; .... jv are ordinary real numbers and Ev = Ej , 

•. 'E jv are products ofthe basic generators. Obviously, since 
EjEj = 0 from (1), v = L is the highest power that can ap
pear in (2). Also /; .... jv is completely antisymmetric in its 
indices. The real dimension of AL is 2L since this is the num
ber of distinct E's. A general element of AL can be decom
posed into 

f=fodd + !.ven = L fvEv + L fvEv' (3) 
v=odd v=even 

its odd and even parts. Those elements that have vanishing 
odd or even parts will be called pure. In this work we need to 
only deal with pure objects. 

B. Superspace 

Consider a space R ~ ® R : spanned by m even elements 
qj and n odd elements s" of AL • Here, (qj,s") are global co
ordinates on R ~ ® R :, whose real dimension is 
(m + n) 2L - I. Also, R ~ ® R : is the model for the construc
tion of supermanifolds, just as R n is the model for ordinary 
manifolds. We will only need to work with the simple super
manifold R ~ ® R :, which admits a single global chart. For 
the more general definition, consult Ref. 7. In the future we 
use the symbol Q = R ~ ® R: to save writing. We also set 
L = 00 and drop the subscript on A. 

C. Geometry on supers pace 

A function fEY (Q) on Q is a map 

f Q--+A. (4) 
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We suppose that all the functions we deal with are superana
lytic. 12 This makes matters more restrictive and interesting, 
just like complex analysis is more restrictive than the analy
sis on R 2. 

A vector field Xe£il" (Q) is a map 

X: Y(Q) -+Y(Q) , (5) 

satisfying 

XC/a) =X(j)a' 

X(/+g) =X(j) +X(g), 

XC/g) =X(j)g+ (-l)X-:!X( g), 

(6) 

(7) 

(8) 

wherej,geY(Q), aeA, and the notation of Ref. 11 has been 
used. Obviously the coordinate functions (qi,s") are ele
ments of Y (Q) and we can characterize any vector field by 
its action on these 

(9) 

Using the basis (a laqi,a las") of vector fields, any vector 
field X can be written 

X=Xi~+xa~. 
aq' as" 

A one-form ae£il"*(Q) is a map 

a: £iI"(Q) -+Y(Q) , 

satisfying 

( 10) 

(11 ) 

(12) 

where ixa is the image of X under the map (11). We intro
duce the basis of one-forms aqi,ds<', and write 

a = dqiai + ds"aa . ( 13) 

Similarly from Ref. 11 one can define higher-order 
forms, the exterior derivative d and the Lie derivative Lx. 
While manipulating these objects it is important to keep 
track of the order, or else additional minus signs appear. 

We now consider a simple dynamical system to illus
trate dynamics on supermanifold Q of dimension (1,2) with 
global coordinates (q,sl ,r). Here, q is an even element of A 
and sa are odd elements. Suppose that a Lagrangian func
tion .!£' is given on TQ, the tangent bundle over Q. Define 

{}y = dq a.!£' + ds" a.!£' (14) 
aq' as" 

and 

(15) 

The dynamical vector field 11 is a second-order vector field 

A _. a +;.a a _ a + b a a u-q- ".--a- -
aq asa aq &a 

(16) 

(a = 1,2) on TQ, satisfying the Euler-Lagrange equations 

Ls{}y = d.!£' . (17) 

For instance if 

.!£' = !mil + sl.e + U(q)Slr , (18) 

then 

(19) 

and 
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L",{}y = m dqq+ m dqa + dslr 

+ dsl b 2 - dr Sl - dr b I , (20) 

where a,b a are the coefficients appearing in expression ( 16). 
The Euler-Lagrange equations (17) yield 

ma= du _SIr 
dq , 

b a = u(q)s", a = 1,2 ; 

that is, 

mij = du SIr, ~ = u(q)s" . 
dq 

(21 ) 

(22) 

(23) 

II. THE N-PARTICLE PROBLEM AND THE WORLD LINE 
CONDITION 

We now address the problem of N relativistic particles. 
Each particle is described by special spatial coordinates q~ 
(a = 1, ... ,Nis a particle label, i = 1,2,3 is a Cartesian vector 
index, we add if: to deal with time components) and internal 
Grassmann coordinates S::, a = 1, ... ,1. We collectively de
note (q~,s~) by the single symbol~, where x: are global 
coordinates on the supermanifold Q, which is the configura
tion space of the system. Thus Q has dimension (3N,IN). 
Under Lorentz transformations, the q transform as the spa
tial components of a four-vector and s transform according 
to some representation of the Lorentz group. Let us denote 
the corresponding generators by (l:pv) p. These are not dy
namical objects, but just a collection of numbers. The phys
ical quantities describing spin would be even objects like 
sa (l:pv) ps 13. Note that we use the summation convention 
for the indices a and i, but not for the particle labels a,b,c. We 
work in the instant form of dynamics (like Refs. 1-4) and 
our use of q as coordinates is, therefore, appropriate. The 
evolution parameter is t, the physical time of some inertial 
observer. 

Let us suppose that a Lagrangian function .!£'(x,x) is 
given on TQ. 

From.!£' we construct the one-form 

a.!£' 
{} = = '" d:xJ! -

..L ~ aaX'; 

and the two-form 

- Wy = d{}y • 

Explicitly written out, W y has the form 

(24) 

(25) 

- Wy = 2: [d~ dx'b a
2

.!£' + d~A dx'b a
2

.!£' ]. 
a,b ax'b aX'; ax'b aX'; 

(26) 

Note that, by construction, 

(27) 

which fact we will use in the next section to prove the 
theorem forbidding interaction. Also 

.. .. a 2.!£' 
'ala~'lalaxbWy = -lalaJ<l:,"alax'{,Wy. = a.· v a.' p ' 

'Xb 'Xa 

(28) 

as can be easily seen if one is careful with signs. 
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We suppose that dynamics is an even second-order vec
tor field on TQ (otherwise even objects will become odd 
under time evolution). With no loss of generality we write 

(29) 
a 

(30) 

The accelerations A ~ have to satisfy the Euler-Lagrange 
equations (17), which can also be written 

iaWy = dEy, 

where 

(31) 

Ey = illJJy -.Y , (32) 

is the energy function on TQ. 
Relativistic symmetry demands the existence of a ten 

Poincare vector field on TQ: Pi' Ji> Ki> A, which reflect the 
Lie algebra structure of the Poincare group in their Lie 
bracket relations. For example, 

(33) 

These ten vector fields must generate canonical transforma
tion on TQ and so 

Lp,Wy = LJ,wy = LK,wy = 0, 

LAwy = O. 

(34) 

(35) 

The last is of course immediate from (31). Since we would 
like the gradings of the basic variables to be preserved under 
Lorentz transformations, these ten vector fields must be 
even. 

As mentioned before, we work in the instant form of 
dynamics, where the evolution parameter is the physical 
time of an inertial observer. The ten Poincare group genera
tors can be divided into two classes according to whether or 
not they preserve the t = const surface. The generators J;, P; 
of spatial rotations and translations are called "simple" or 
kinematical generators,14 while the boosts K; and the time 
translation A are called "complicated" or "dynamical." The 
kinematical generators retain their free-particle forms even 
in the presence of interaction 14 

+(I)a(s~~+s~~)] , 
jk fJ as: as:, 

(36) 

P·=I~· 
I a aq~ 

(37) 

The remaining generators cannot have their free-particle 
forms ifthere is interaction. For instance, if Kjhad its free
particle form, (33) would imply that A too had free-particle 
form and there would be no interaction. The forms of Kj will 
be determined below by using the WLC. 

We now formulate a WLC that expresses the objectivity 
of the world lines (q~ (t),s~ (t» of the particles in superspace. 
Consider particle a located at q~ at time t with internal co-
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ordinates S:. Under an infinitesimal boost with Lorentz pa
rameters ~;, the quantities (t,q~,s:) transform as follows: 

t-+t'=t+&=t+4q~ , 

q~-+q~;=q~ +8q~ =q~ +Eb" 

s: -+s~a = s: + 8S: = s: + (€lj~)a s ~ . 
OJ fJ 

(38) 

(39) 

(40) 

Thus the world line (q~ (t),s:(t» in superspace transforms 
to (q~;(t '), s~a(t '». To first order in the infinitesimal param
eter ~; we can write 

q~;(t') = q~;(t') + q~&, 
s~a(t') = s~a + s:,& , 

or at t = 0, 

8q~ (t) = q~EJq~ , 

8S: (t) = (€lj I)a s ~ + s ~ + s:,EJq~ . 
Aj fJ 

(41 ) 

(42) 

(43) 

(44) 

"Peeling off" the ~j, we can write the WLC as a condition 
on the boost generators: 

LKJq~ = q~q~ , (45) 

LKjS~ = (I)a s ~ + s:,q~ . 
OJ fJ 

(46) 

These equations express the objectivity of the world lines 
under Lorentz transformations. They fix the "horizontal" 
parts of the boost generators. Let us now apply LA to (45) 
and (46) and use the Lie bracket relations (33) and (37). 
This yields 

(47) 

(48) 

This fixes the "vertical" part of Kj as well in terms of the 
dynamics A. The explicit form of Kj thus derived is 

Kj = I q~Aa + (I)a(s~ ~ + s:,~) 
a OJ fJ a~ as:, 

+ (q~q~ -8;) ~a; +s:,q~ ~~ . (49) 
uqa ds:, 

This form of the boost generators, derived from the WLC, 
will be made use of in the next section to prove the no-inter
action theorem. 

IV. PROOF OF THE MAIN THEOREM 

We now set about proving the main result of this paper. 
The proof is in three steps and entirely parallel to that of Ref. 
4. 

Step 1: Apply LK to (27) and use (34). This gives 
J 

i[K.i'a/ax~lia/axbwy + ia/a~i[K.i'a/ax;;lwy = O. (50) 

Note that no extra minus signs appear here since Kj is an 
even vector field. Using the form (49) for Kj and remember
ing (27), 

(51) 

Or, by (28), 
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( j j) •• -0 q a - q b lalaic,:'alax'{,OJ$ - . (52) 

For a=l=b this implies 

a2'y 
ialaic,:ialax'{,OJ$ = = 0, 

ax~ ax~ 
(53) 

which means that .Y is of the form 

(54) 
a 

which is completely separated in the velocities. 
Step 2: Let us apply L.1 to (53) where a=l=b. This gives 

i[.1,alaic,:]ia1ax'{,0J$ + i a1aic ,:i[.1,alax'{,]0J$ = O. (55) 

The second term drops out by virtue of (27) and the form 
(29), (30) of d. The first term then yields 

(56) 

Next, apply L K to (53). This gives 
J 

i[Ki'ala~]OJ$ + iala~i[Ki'alax'{,]OJ$ = O. (57) 

The second term again drops out and the first yields by use of 
(56) 

j.. - j' . 
q a'alax,:'alax'{,OJ$ - q bla/ax~'alaxbOJ$ . (58) 

Since a=l=b this implies 

(59) 

Using the velocities separated from (54) of the Lagrangian 
we can write 

(60) 

and 

+ ~ dxv /\dx I-' a
2 
'y

b 

"'- b b a I-' a' I-' b X b X a 

(61) 

The use of (59) then shows that 

a
2
'y

b 
= (-1)1-''' a

2
'y

a 
, (62) 

ax~ ax~ ax~ ax~ 

where ( - 1) I-'V = - 1 if both J1- and v are odd variables, 
and ( - 1) ILV = + 1 otherwise. Equation (62) implies that 
the dependence of 'ya on Xb can be at most linear in the 
velocities 

'ya(X,xa) = 'ya(xa,xa) +X~IaIL(X) - Va (X) , (63) 

where an abuse of notation has been made by giving the same 
symbol to 'ya(x,xa) and 'ya(xa,xa). Using (62) once 
more we find that IaIL satisfies 

a
a ILfbV = (_1)ILV aav lal-" (64) 
x a Xb 

for a=/=b. We eliminate the linear terms in the velocities in 
(63) by the following procedure: 

(65) 
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~ alau ~ af Q}L 
da = "'- dx ~ /\ dx~ --= "'- dx ~ /\ dx: -- , 

ab aX~ a aX: 
(66) 

by use of (64 ). Let us define 

F = alaI-' _ ( _ 1) ILV alav . 
aILv a val-' Xa X a 

(67) 

Then 

(68) 
a 

By Poincare lemma dda = 0 and so 

~ aFal-'v 
dda = "'- dx ~ /\ dx: /\ dx'b -- = 0 . 

ab ax'b 
(69) 

Since only one term with axb , b =l=a appears here, its coeffi
cient must be zero: 

aFaILv --=0. 
ax'b 

This means that Fal-'v (xa) depends only on Xa 
reads 

(70) 

and (69) 

(71 ) 

The only way this can be true is that each term in the sum 
vanishes, or the forms 

Fa = dx ~ /\dx: FaILv (xa) 

are closed 

dFa =0, 

and hence exact 

(72) 

(73) 

Fa = dAa (xa) . (74) 

Now, letting /3 = a - ~a A a , we find from (68) that /3 is 
closed 

d/3= 0, 

and hence exact 

/3=dF. 

Thus 

a 

Thus (63) assumes the form 

'ya(x,xa) = 'ya(xa,xa) 

. IL aF . I-'A V() +xa--+x a aIL - x. 
ax~ 

(75) 

(76) 

(77) 

(78) 

The second term on the right is a total time derivative and 
can therefore be dropped. The third term is in separated 
form and so can be absorbed in the first. Thus at this stage, 
the Lagrangian has the form 

(79) 
a 

The symplectic two-form OJ $ is now completely separated 

(80) 
a 
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[
a'y

a
] OJa = ax po 1\ d -- . 

.Y a a' po 
~a 

(81) 

This completes the argument of step 2. 
Step 3: Apply La to (59). This gives 

i{a.alaxl:)ialax~OJ'y + ialax:/[a.alaxb)OJ'y = O. (82) 

From the form (30) of a, 

[a,~] = - L dA~~, 
ar:, 0 ax ~ ax~ 

(83) 

when this is put into (82) all the terms with c = b drop out 
by (53) and we find 

aA ~. . b aA ~. . a -a po 'alaicr.'alaxbOJ'y = --lalaic,;'alax':OJ'y . 
~ a ax'; 

(84) 

Next, apply LK to (59). We find that 
) 

i[Kpalax,:)ialaxbOJ'y + ialax,:i[Kpalaxb)OJ'y = O. (85) 

UsingtheformofKj (49) in (85) we find 

For a=l=b we have 

aA ~. . b -a po 'alaicj,'alaicbOJ'y = O. 
~a 

Or since OJ'y is in separated form (80), (81), 

a [A U:U' a] 0 -- a1ala.·u1ala vOJ'y = . ax ~ ~a Xa 

This is the main result of step 3. 

(86) 

(87) 

(88) 

(89) 

With form (79) of the Lagrangian, the Euler-Lagrange 
equations (17) assume the form 

(90) 

Clearly the lhs of (90) hasnodependenceonxb by (79) and 
(89). If these Euler-Lagrange equations have solutions all 
over TQ, we must then have 

a2 v 
---=0, (91) 
ax'; ax~ 

which implies that V has the separated form 

(92) 
a 

This implies that the original Lagrangian separates 

.Y(X,x) = L .Y'''(Xa,xa) ' (93) 
a 
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and so each particle is governed by its own dynamics and 
moves independently of the others. Consequently, there is no 
interaction and the theorem is proved. 

v. CONCLUSIONS 

We have presented a proof of the no-interaction 
theorem that applies even if the particles have internal struc
ture. For definiteness, we have presented the case where the 
internal coordinates are odd Grassmann variables. But, in 
fact, the arguments go through trivially even in the case of 
commuting internal variables. The assumptions made were: 
(1) the existence of a (possibly singular) Lagrangian; (2) 
Poincare invariance as expressed by the existence of ten 
Hamiltonian vector fields on TQ; (3) objectivity of the 
world lines; (4) the existence of a second-order dynamics all 
over TQ. 

One might wonder about the physical content of the 
WLC for the Grassmann variables. As explained in Refs. 5 
and 6, these do not possess direct experimental significance. 
We perform purely formal manipulations with the odd vari
ables. It is only after quantization that pseudoclassical me
chanics makes contact with experiment. Then one would 
require that the analog of the WLC helped in the quantum 
theory. The WLC derived here is a classical version of this 
requirement. This is why we impose the WLC on odd vari
ables. 

In all this we have nowhere assumed that the Lagran
gian is nonsingular. This is unlike the proofs of Refs. 1-3 that 
do assume that dynamics are described by a nonsingular La
grangian. This point is emphasized by Sudarshan and Mu
kunda. 15 The Lagrangian proof of the no-interaction 
theorem generalizes easily to accommodate Grassmann 
variables.4-5 This is particularly important because the stan
dard Lagrangians written for Grassmann variables are sin
gular. 16 
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The equations UXI = F(u,ux ), which describe 17-pseudospherical surfaces, are characterized. In 
particular, when F does not depend on UX , the sine-Gordon, sinh-Gordon, and Liouville 
equations are essentially obtained. Moreover, it is shown that an equation U xl = F( u) has a 
self-Baclund transformation if and only if it describes an 17-pseudospherical surface. 

I. INTRODUCTION 

In 1979, Sasaki I observed that a class of nonlinear differ
ential equations, which can be solved by the inverse scatter
ing method, was related to hyperbolic surfaces. Other results 
associating nonlinear equations with Riemannian manifolds 
of constant curvature were obtained in Refs. 2-8. Ablowitz, 
Beals, and Tenenblat9 obtained solutions of the generalized 
wave equation and the generalized sine-Gordon equation 
using the inverse scattering method. These results were ex
tended in Ref. 10. Solutions for these equations are orthogo
nal matrices with n-independent variables that correspond, 
respectively, to flat n-dimensional submanifolds of the unit 
sphere s2n - I and to hyperbolic n-dimensional submani
folds of the Euclidean space m2n 

- I . 

In order to apply the inverse scattering method it is nec
essary to obtain a one-parameter linear problem associated 
to the nonlinear differential equation. In Ref. 4, Chern and 
Tenenblat began a systematic procedure to obtain such a 
linear problem. The notion of a differential equation, for a 
real function u(x,t), which describes a pseudospherical sur
face (p.s.s.) was introduced. A generic solution of such an 
equation provides a metric defined on an open subset of m2

, 

whose Gaussian curvature is - 1. We say that such an equa
tion describes an 17-P.s.s., where 17 is a parameter, if the 
length of the vector field a/ax satisfies 1 a/ax 12 > 1]2 (see Sec. 
II for definitions). Under these conditions one obtains a one
parameter (17) linear problem (6) whose compatibility con
dition is the differential equation for u(x,t). These compati
bility conditions are the structure equations of a hyperbolic 
surface. 

Equations related to the AKNS system II are included in 
this class of equations. Equations of the type 
u, = F(u,ux, ... ,a kU/axk) , which describe 17-P.S.S., were 
studied in Ref. 4. Similar results were obtained in Ref. 5 for 
the equations Uti = F(u,u",uxx,u , ). Motivated mainly by 
the existence of important examples such as sine-Gordon, 
sinh-Gordon, and Liouville equations, we are interested in 
studying equations of the type 

(1) 

In this paper, extending results obtained in Ref. 12, we 
characterize the equations U xl = F( u, U" ) that describe an 17-
p.s.s. for 17E&' = m - S, where S is a set of isolated points 
and F is a differentiable (COO) function independent of 17. 
Equations of the form (1), for k> 2, will be considered in 
another paper. 

We obtain the following results. 
Theorem 1: Let F be a differentiable function defined on 

an open connected subset ucm2
• An equation 

UXI = F(u,ux ) 

describes an 17-P'S'S. for 17E&' and Findependent of 17 if and 
only if F satisfies one of the following: 

(i) F"(u) +aF(u) =0, 

whereFis independent ofux ' U = m\ &' = m - {a}, and a 
is a nonzero real constant; 

(ii) F= v~uJ/3 + yu;, 

where U = {(U,Z)Em2; /3 + y~ > a}, &' = m, l),y,/3,v are 
real constants, with l),y, v nonzero and/3 = o when y = 1; or 

(iii) F = AU + tux + T, 

where U = m2, &' = m - {a}, and A,T,t are real constants. 
In particular, from (i) and (iii) of the above theorem 

one gets the following result obtained in Ref. 12 which shows 
that the nonlinear differential equations u xl = F( u) that de
scribe an 17-P.s.s. are essentially the sine-Gordon, sinh-Gor
don, and Liouville equations. 

Theorem 2: An equation 

UXI =F(u) 

describes an 1]-p.s.s, for 1]E&' , with Findependent of 17 if and 
only if 

F"(u) +aF(u) =0, (2) 

where aEm and &' = m - {O}. 
Finally, we conclude with an interesting result that re

lates the property of 1]-p.s.s. with the existence of Backlund 
transformations, In Refs. 13 and 14 it was shown that an 
equation UXI = F(u) has a self-Backlund transformation if 
only if F satisfies (2). Therefore as an immediate conse
quence of Theorem 2 we have the following. 

Corollary 1: An equation UXI = F(u) has a self-Back
lund transformation if and only if it describes an 17-P's.s. 

In Sec. II we consider the basic concepts, and we fix our 
notation. In Sec. III we prove Theorem 1. The one-param
eter linear problems associated with the equations of 
Theorem I are given in Remarks 2 and 3. 

II. PRELIMINARIES 

Let Mbe a pseudospherical surface (p.s.s.), i.e., a two
dimensional Riemannian manifold with constant Gaussian 
curvature - 1. We consider a local orthonormal frame el ,e2 
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and its dual coframe W I,W2' We denote by W3 the connection 
form (usually denoted by W I2 ). Then the following structure 
equations are satisfied: 

dw I = W3/\ W2, dW2 = W. /\ W3' dW3 = WI /\ W2 . ( 3 ) 

We consider the following definition introduced in Ref. 
4: A differential equation for a real function u(x,t) describes 
a p.s.s. if it is the necessary and sufficient condition for the 
existence of differential functions lu, l<i<3, 14<2, de
pending on u and its derivatives, such that the one-forms 

Wi =liI dx + li2 dt (4) 

satisfy the structure equations (3) of a p.s.s. 
Examples of such differential equations are given by the 

Korteweg-de Vries equation, the Modified Korteweg-de 
Vries equation, sine-Gordon equation, sinh-Gordon equa
tion, wave equation, Burgers equation, etc. See Refs. 4,5, and 
12 for more examples. 

It follows from the above definition that each generic 
solution (for which W I /\w2 ;60) of a differential equation 
(E) that describes a p.s.s. provides a metric on open subsets 
of !Ji2, whose Gaussian curvature is constant equal to - 1. 
Moreover, taking n given by 

n -.l( W2 W. - (3) (5) 
- 2 W. + W3 - W2 ' 

the definition is equivalent to saying that (E) is the integra
bility condition for the linear problem 

dv = nv, (6) 

where v = (~;). In fact, the compatibility condition for this 
system is 

dn -n/\n =0, (7) 

which is equivalent to (3). 
We note thatthe property of an equation (E) to describe 

a p.s.s. is invariant by a change of independent variables. 
Moreover, there is a linear problem (6) associated to (E). 
For the purpose of obtaining solutions for (E) by the inverse 
scattering method (see Refs. 11,15, and 16 for this method) 
applied to a one-parameter family of linear problems [for 
which (E) is the integrability condition] , one would like the 
functionShj, which define Wi' to depend not only on u and 
its derivatives, but also on a parameter '1]. As an example we 
consider the one-forms 

WI = (l/'I])sin u dt, 

W2 = 'I] dx + (l/'I])cos u dt, (8) 

W3 = Ux dx. 

Then the Wi satisfy (3) if and only if 

uxt = sin u, 

i.e., u is a solution ofthe sine-Gordon equation. 
In our main results the parameter 'l]e& = !Ji - S, where 

S is a set of isolated points. In the above example [( 8)] we 
have'l]e!1t - {ol 

We say that a differential equation describes an 'I]-p.s.s. if 
it describes a p.s.s. with};1 = '1]. This definition was motivat
ed by the equations associated to the AKNS system .• 1 Such 
equations describe an 'I]-p.s.s. However, they have an addi
tional condition that corresponds to the requirement thatft. 
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andhl do not depend on the parameter '1]. 
We observe that the property of describing an 'I]-p.s.s. is 

not preserved by a change of independent variables. More
over, it does not exclude the possibility of the differential 
equation depending on '1]. The following result provides a 
geometrical interpretation for the condition};. = '1]. 

Proposition 1: Let (E) be a differential equation that 
describes a p.s.s. Then (E) describes an 'I]-p.s.s if and only if 
generic solutions of (E) define a metric for which the length 
of the vector field a I ax satisfies 

1 
a 12 2 as >'1]. (9) 

Proof The equation (E) describes a p.s.s., i.e., there 
exist one-forms Wi' defined as in (4), that satisfy (3). 

Suppose};. = '1]. Then the first fundamental form, de
fined by I = wi + wL gives 

I! r =/i. +'1]2>'1]2. 

Conversely, suppose the metric ( , ), defined by gen
eric solutions of (E), satisfies (9). We show that there exists 
a frame field e.e2 and its dual coframe m.,m2 such that 
m2(a lax) + '1]. In fact, using the notation 

gil = (!, !), gl2 = (!, :J g22 = (:t' :J 
we define 

- a b a e2=a-+ -, 
ax at 

where 

b 2 = (gil - 'l]2)/(gllg22 -gi2)' a = ('I] - bg12 )/g1•· 

Then le21 = 1 and (e2,a lax) = '1]. Hence 
a _ _ 

-=ce. = 'l]e2, 
ax 

where c is a differential function and e.,e2 is an ortho
normal frame field. Therefore the dual coframe satisfies 
m2(a lax) = '1]. 

As we mentioned above, we are interested in differential 
equations (E) that are the integrability condition of a one
parameter family of linear problems. Hence we want to ob
tain equations (E) that describe an 'I]-p.s.s. such that (E) is 
independent ofthe parameter '1]. This is done in the following 
section for equations oftype Uxt = F(u,ux )' 

III. PROOF OF THE MAIN RESULTS 

In this section we consider solutions of an equation Uxt 

= F(u,ux ) as integral manifolds of an exterior differential 
system. In Lemma 1 we give necessary conditions on the 
functionShj for the one-forms Wi = h. dx + I". dt to be as
sociated to a differential equation Uxt = F(u,ux ), which de
scribes an 'I]-p.s.s. In particular, we obtain thatft I andhl are 
functions of U x ' Denoting by L the Wronskian of III andh. 
wecharacterizeF, whenL ;60 in Theorem 3. ThecaseL = 0 
is considered in Theorem 5. In those two results we consider 
'I] to be fixed. 

In Theorems 4 and 6, assuming thathj and F depend 
differentiably on 'I]El, where I is an open interval, we charac-
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terize the functions F, obtained in the previous results, which 
are independent of 1/. 

Finally, we prove Theorem 1, by imposing the param
eter 1/ to vary in fjJ, where fjJ = m - S, and S is a set of 
isolated potnts. The linear problems associated to the differ
ential equations of Theorem 1 are obtained from the proofs 
of the above-mentioned theorems. 

Cartan-Kahler theory relates solutions of differential 
equations with integral manifolds of exterior differential sys
tems. 17 In particular, for differential equations of the type 

Uxt = F(u,ux ) , 

for a function u(x,t), we obtain the following result, which 
we prove for the sake of completeness. 

Proposition 2: Let ,/" be the ideal generated in the space 
of variables x,t,u,z, by the two-forms 

0 1 = du A dt - z dx A dt , 

O2 = dzAdx + F(u,z)dxAdt, (10) 

where F(u,z) is a real differentiable function. Then ,/" is a 
closed differential ideal. If u(x,t) is a solution of 

Uxt = F(u,ux ) , 

then the map 

¢I(x,t) = (x,t,u(x,t),z(x,t» , 

(11 ) 

(12) 

withz = Ux ' defines an integral manifold of,/". Conversely, 
any two-dimensional integral manifold of ,/" given by 

¢I(s,r) = (x(s,r),t(s,r),u(s,r),z(s,r» , (13) 

with dx and dt linearly independent, determines a local solu
tion of the equation (11). 

Proof: We have that ,/" is a closed differential ideal, 
since 

dOl = - OzAdt, 

dOz = - Fudx A 0 1 + FzOzA dt . 

Suppose u is a solution of ( 11). We need to show that, for ¢I 
defined by (12), wehave¢l*Oj = 0, i 1,2. From thedefini
tion of ¢I* and (10) it follows that 

¢I*OI=uxdxAdt zdxAdt, 

¢I*Oz = -Zt dxAdt=FdxAdt. 

Since z = Ux and u satisfies (11), we get ¢I*Oj = O. 
Conversely, if ¢I given by ( 13) is an integral manifold of 

/' such that dx A dt #0, then we locally have 
(s,r) = h(x,t). Taking (J = ¢loh, we get 
¢I*Oj = h *¢I*Oj = O. Therefore 

0= (ux -z)dxAdt, 

0= (- uxt + F(u,z»dxAdt. 

We conclude that z = Ux and Uxt = F(u,z), i.e., U is a solu
tion of (11). 

The following result gives necessary conditions on the 
functionshj (u,z) for the one-forms @j = hI dx + Il}. dt to 
be associated to a differential equation Zt = F(u,z), which 
describes an 1/-p.s.s. From now on the variables appearing in 
the lower indices will denote partial differentiation. Unless 
explicitly stated, the functionshj and Fmay depend on 1/. 

Lemma I: Let 
Zt =F(u,z) (14) 
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be a differential equation that describes an 1/-p.s.s. with asso
ciated one-forms @i = hI dx + 112 dt, where hj and Fare 
real differentiable (COO ) functions on an open connected set 
ucmz. Then 

IlI,u =hl.u =0 , 

Itz,z =hz,z =hz,z =0, 

Itl,z + ~I,z #0 in U. 

Moreover, 

- Fit 1,z + Zlt2," + 'TJh2 - 12zhl =0, 

Zh2,u - Itlh2+ Itzhl=O, 
Fhl.z + zhz,u + 'TJftz - hJ..I =0 . 

(15) 

(16) 

(17) 

(18) 

Proof: In the space of variables x,t,u,z, we consider the 
ideal,/" generated by OJ defined by (10) whereFis given by 
(14). It follows from Proposition 2 that OJ = 0 when re
stricted to each integral manifold of /. Hence, for u,z satis
fying (14), we have 

du Adt = zdx Adt, dzAdx = - FdxAdt. (19) 

The one-forms@j satisfy the structure equations (3). There
fore 

dltlAdx + dlt2 Adt + ('TJh2 - hzhl )dxAdt 0, 

dh2Adt+ (ftzhl-/IJ;z)dxAdt 0, 

dhlAdx + dh2Adt + ('TJft2 - hJ..I)dxAdt O. 

Substituting 

dlv = Iv,u du + hj.z dz 

and (19) into the above equations and equating to zero the 
coefficients of the independent two-forms, we obtain (15), 
(16), and (18). Relation (17) follows from the fact that 
( 14) is the necessary and sufficient condition for (18) to be 
satisfied. 

In Lemma 1, we showed that a necessary condition for 
(14) to describe an 1/-p.s.s. is that hj satisfy (15)-(17). 
Therefore we will assume these conditions in order to char
acterize such equations. We introduce the notation 

L I Itl hI I (20) 
111,z hl,z . 

Assuming the condition L #0, we obtain Theorem 3, 
which shows that the function Fin (14) is algebraically de
termined by/11,hl' andh2' The easeL = 0 is considered in 
Theorem 5. In both theorems, 1/ # 0 is considered to be fixed. 

Remark 1: An equation Zt = F(u,z), where F is inde
pendent of u, can be considered as an ordinary differential 
equation on z. Therefore in the following results we will re
quire F to depend on u. However, for the sake of complete
ness, we note that any equation Zt = F(z), where Fis a dif
ferentiable function defined on an interval I, with F(z) #0, 
describes an 1/"P's.s. In fact, consider 

@I = Itt (z)dx + (l/1/)dt, @2 = l1dx , @3 = @l , (21) 

where/l1 ,z = l/F(z). Then (21) satisfy (3) if and only if 
Zt =F(z). 

The wave equation Zt = 0 is the necessary and sufficient 
condition for the one-forms 

@I =zdx, @2 = 1/dx + eUdt, @3 = 1/dx + e"dt 

to satisfy (3). 
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Theorem 3: Lethj' l<i<3, 1~<2, andFbe differentia
ble (C"") functions defined on an open connected set 
ucm2

, such that (15)-(17) hold. Suppose L #0 in U and 
F .. # 0 in a dense subset of U. Then Zt = F( u,z) describes an 
1]-p.s.s. with associated one-forms Wi = hi dx + h2 dt, if 
and only if, 

(i) F=EeDu[Ahl-Bhl+1]D(B2-A2)] (22) 

and 

h2 = EfIJ", 112 = Ah2, .. , h2 = Bh2,u , (23) 

hi andhl are algebraically determined by 

Bill -Ahl =z, 

Iii - I~I + 21]D(Bhl -AIll) - D 2z? + G = 0, (24) 

where A, B, D, E, and G are constants, which may depend on 
1], with 1 - D2(B2 -A 2) #0 and DE #0; or 

and 

III = (Bz -AQ)/(B 2 -A 2) , 

hi = (Az - BQ)/(B 2 -A 2) , 

112 = A/22,u' h2 = Bh2,u , 

h2 satisfies the equation 

122,uu +h2/(A 2-B 2) =0, 

(25) 

(26) 

(27) 

where A, B, and Q are constants that may depend on 1] and 
A 2 - B 2#0, Q #0. 

Proof: Suppose that Zt = F(u,z) describes an 1]-p.s.s. 
Then, from Lemma 1, we have that (18) is satisfied. This is 
equivalent to the system 

Z<hI,:rit2,u - hl,J32,u) + 1]<hJ'JI.z - hJ'll,z) 

+ h2H=0, (28) 

Zh2,u - IIl/32 + hJ12=O, (29) 

FL + z<hJ12,u - hJ'J2,u) + 1]<hJ'J2 - IIlI12) 

- h2(f~1 -lit> =0, (30) 

where 

H_I/ll hi I 
- hl,z hl,z . 

(31) 

Taking the derivative of (29) with respect to z, it follows 
from (15) and (16) that 

h2,u - hJ'll,z + IIJ'JI,z =0. (32) 

From (29) and (32) we obtain 

112 =h2,u (Zhl,z - hl)/L, 

h2=h2,u(zhl,z-hl)/L. (33) 

Let U I = {(U,Z)EU; 122,u #O}. It follows from (30), 
(33), and the hypothesis on Fu that U I is an open dense 
subset of U. Now, in each connected component U! of U I, 
from (15), (16), and (33) we obtain 
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(Zhl,z - Ill)/L =A, 

(zhl,z - hi )/L = B , 

112 = Ah2,u' h2 = Bh2,u . 

Using (34) and (35) we have, in U!, 
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(34) 

(35) 

(36) 

Bill - Ahl = z. (37) 

Observe that (37)impliesthatA 2 + B 2 #0.Now, using (36) 
and (37), Eq. (28) in U! reduces to 

- Zh2,u .. + 1]f12,u (Bh I,z - Ah I,z) + h2H = 0 . (38) 

Taking the derivative of this equation with respect to z, mul
tiplying the result by - z, and adding to (38), we get 

1Ji22,u [z(B/31 -AIll)zz - (Bhl -Aftl)z] 

+h2(zHz -H) =0. (39) 

We denote 

Y=z(Bhl-AIll)zz - (Bhl-AIll)z' 

Let Vi = {(U,z)EU!; Y #O} and VO = U! - VI. In 
each connected component V! of Vi we have, from (39), 
(15), and (16), 

h2 = EflJu 
, (40) 

where ED # 0, since V leu I. Substituting (40) and H de
fined by (31) in (38), we obtain, by integrating on z, 

Iii - I~I + 21]D(Bhl - AIll) - z?D2 + G = 0, 

where G is an integration constant. This last equation and 
( 37) give III and h I algebraically determined by (24) in 
terms of z, 1], A, B, D, and G. Moreover, since Y #0, we get 
1 - D2(B2 - A 2) #0. In order to obtainFwe note that (34) 
and (35) imply 

I~I -Iii =L(Alll-Bhl) -zH, 

Aill-Bhl = (B2_A2)L +z(Ahl,z + Bhl,z) . 

Using these relations and (38) in Eq. (30) we obtain Fgiven 
by (22) in V!. 

Supposeint VO#0. In a connected subset V~ ofint Vo, 
we have Y=O, i.e., 

«Bhl - Ahl)z/Z)zz = O. 

Integrating twice with respect to z, we get 

Bhl - Aill + Cz?/2 + Q = 0, 

where C and Q are constants, that may depend on 1]. Using 
(37) and the last equation, we obtain B 2 - A 2 # 0 and 

hi = (Bz -ACz?/2 -AQ)/(B 2 -A 2), 

hi = (Az-BCz?/2 -BQ)/(B 2 -A 2). (41) 

From (39) we have 

h2(zHz - H) = O. 

Sinceh2,u #Oin U!, wemusthavezHz - H = 0, i.e., C= O. 
Now substituting (41) (with C = 0) into (38) we obtain 
(27). Moreover, (26) follows from (41) and (36). Since 
L # 0, from (26) we have Q # O. Substituting (26) into (30) 
we get (25). 

We observe that, as a consequence ofthe continuity of 
the function h2 and its derivatives, we have int VO = 0 or 
V I = 0. Otherwise, in the boundary 
Fr VlnU! = Fr(int VO)nU!#0, Eqs. (23) and (27) 
imply 1 - D 2(B 2 - A 2) = 0, which is a contradiction. 
Therefore, V I = 0 and therefore U! = VO or else 
int VO = 0 and hence V I is dense in U! and the constants E, 
D, and G do not differ in the connected components of U!, 
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since hj and its derivatives are continuous. From this, we 
conclude that in each connected component U! of U I the 
functions are given by (i) or (ii). 

Now we show that (i) or (ii) occur in all U. In fact, if 
there exists a connected component U! where (i) occurs 
then it follows from (23) that Fr U! n UO = 0; therefore 
U = U I = U!. Otherwise, in each connected component of 
U I the functions are given as in (ii). Since U I is dense in U, it 
follows by the continuity of the functions that (ii) defines F 
and/ii in U. 

The converse in both cases is a straightforward compu
tation. 

In the following theorem we consider the dependence of 
the functions F and Iii on the parameter 1'/. 

Theorem 4: Letlii and Fbe differentiable functions de
fined on U X I, where U is an open connected set of VF and I 
is an open interval. Suppose, for each 1'/d, Zt = F(u,z,1'/) 
describes an 1'/-p.s.s. as in Theorem 3. Then Fis independent 
of 1'/ if and only if 

(i) F= ve6u ~p + r?, 

where U = {(u,z)Effl2; P + rz2 > o}, 1= fR, 8, p, r, v are 
real constants with 8, r, v nonzero and p = 0 when r = 1; or 

(ii) F" (u) + aF(u) = 0, 

whereFisindependentofz, U = fR2,I = fR+ orfR-, andais 
a nonzero real constant. 

Proof: Since Zt = F describes an 1'/-p.s.s. as in Theorem 
3, there exist A and B, differentiable functions of 71 such that 

BI1I -Ahl =Z .. 

Denote 

Y(U,z,71) =z(Bhl -Ahl)zz - (Bhl -AI1I)z, 

Let W I ={(U,z,71)EUXI;Y#O} and WO=(UXI) 
- W I. In each connected component W! of W I we have F 

given by (22), where 111 and hi are determined by (24). 
Therefore 

F= ±E~[K, 

where 

!:J. = 712D2(B2 -A 2)2 + G(B 2 _ A 2) 

+(1_D2(B2-A2»r. 

Since F is independent of 71, we have 

D=8, ±E=v, 1_82(B2_A2) =r, 

where v, 8, r are nonzero real constants. It follows that 

!:J.=P+rz2, 

where P is independent of 71 and satisfies 

P = [(1 - r)G + 1'/2(1 - r)2]182. (42) 

This equation determines G when r# 1 and shows that 
P= Owhenr= 1. In the latter case we can choose G=O. We 
conclude that F is given by (i) in W!. 

If int WO #0, in each connected component W~ of 
int WO we have F given by (25), where.h2 satisfies (27). 
From these two equations we obtain that F is a solution of 
(ii), where a = l/(A 2 _B2) is independent of 71. 
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It follows from the smoothness of F that Fis defined on 
Uby (i) or (ii). Its associated functionslij are defined on 
U Xl (see Remark 2), where 

U = {(U,z)EfR2; P + rr>O}, 1= fR for the case(i), 

and 

U=fR2, I=fR+ or fR-, for the case(ii). 

The converse in both cases is straightforward. 
Remark 2: The one-parameter linear problem (6) asso

ciated to the equation Zt = F, where F is given by Theorem 
4 (i) or 4 (ii) is obtained from the previous proof. In fact, it is 
not difficult to see that 

WI = (1'/A8 + 82 (Buz =FA [K)/( 1 - r»dx ± Av8e6u dt, 

W2 = 71 dx ± ve6u dt, 

W3 = (71B8 + 82(Aux =FB[K)/(1 - r»dx ± Bv8e6u dt, 

where!:J. = P + ru;, B2 - A 2 = (1 - r)/82,and r# 1 sat
isfy the structure equations (3) if and only if 

uxt = ve6U~p + ru;. 

When r = 1 we have P = 0 and F reduces to F = ve6u z. 
Choosing G = 0 in (42) we have 

WI = (± (l/A + 82A)ux /2 + 718A)dx ± Av8e6u dt, 

W 2 = 71 dx ± ve6u dt, 

W3 = (± ( - l/A + 82A)uz/2 ± 718A)dx + Av8e6u dt, 

where A #0, satisfy (3) if and only if 

When F is given by Theorem 4(ii), we have 
a = l/(A 2 _B2). From (25) and (27) we obtain 

122 = 1'/(Fu + (a/1'/)QF)/(Q 2a + 712
). 

Therefore using (26) we have 

WI = - a(Bux - AQ)dx 

+ [Aa/(Q 2a + 712
)] (QFu - 71F)dt, 

w2=71dx+ [(71Fu +aQF)/(Q 2a + 712)]dt, 

W3 = - a(Aux - BQ)dx 

+ [Ba/(Q2a + 1'/2) ](QFu -71F)dt, 

where 71, Q, and a are nonzero. These forms satisfy (3) if and 
only if 

Uxt = F(u). 

In the following theorem we consider the case L = 0 in 
U, i.e., h I and h I are linearly independent in U; hence there 
exist A and B that do not vanish simultaneously such that 
Alii + Bh I = O. As in Theorem 3 we consider 71 # 0 to be 
fixed and A, B may depend on 71. 

Theorem 5: Lethj' 1 <;<3, 1 <J<2, and Fbe differentia
ble functions defined on an open connected set UCfR2, such 
that (15)-(17) hold. Suppose there exist A, B satisfying 
A/ll + Bhl = Oin U,A 2 + B 2¥:0,andFu #Oinadensesub
set of U. Then Zt = F(u,z) describes an 1'/-p.s.s. with asso
ciated one-forms Wi = hi dx + fa. dt if and only if 

(i) F=1'/(B2-A2).h2.u/E2 (43) 

and 
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fl1 = Dz, hI = Cz, 

fl2 = - Ah2,u l E, h2 = Bh2,u IE, (44) 

h2 satisfies the equation 

(B 2 - A 2)h2,uu - E2h2 = 0, (45) 

where A, B, C, D, and E are constants, which may depend on 
7], such that A2_B2#0, E=AC+BD#O,AD+BC 
=O;or 

(ii) F= (zfl2,u ± WI2 + Kfll)/fll,z (46) 

and 

h2 = K, hI = ±fw h2 = ±fl2' (47) 

whereK is a constant that may depend on 7] andfl2,u #0 in a 
dense subset of U. 

Proof Suppose Zt = F(u,z) describes an 7]-p.s.s. Then 
from Lemma 1 we have (18) satisfied. This is equivalent to 
the system 

z(Afl2,u + Bh2,u) + 7](Ah2 + Bfl2) 

- h2(Ahl + Bfl1) =0, 

Zh2,u - fl1h2 + hJI2=O, 

- F(Bfll,z + Ahl,z) + z(Bfl2,u + Ah2,u) 

+ 7](Bh2 + Afl2) =0, 

(48) 

(49) 

(50) 

where we have used the hypothesis on A and B. Multiplying 
(49) by A and B and using Afl1 + Bhl = 0, we get, respec
tively, 

AZh2,u + (Bh2 + Afl2)hl =0, 

Bzh2.U - (Bh2 + Afd/;I =0. 

(i) Suppose A 2 - B2#0. We consider 

U I = {(u,z); Bh2 + AfI2#0} 

(51) 

(52) 

and UO = U - U I
• We claim that Ulisanopen,densesubset 

of U. Otherwise, suppose Vis an open subset contained in Uo; 
then, from (51) and (52), we getf22,u = Oon V. Combining 
this result with the derivative of ( 48) with respect to u, we 
get Ah2,u + Bfl2,u = 0 on V. Therefore, it follows from (50) 
that Fu = 0 on V, which contradicts the hypothesis on F. 
Therefore, U I is dense in U. Now, in each connected compo
nent U! of U I

, it follows from (51), (52) and (15), (16) 
that 

hl=Cz, fl1=Dz, (53) 

where C and D are constants, which may depend on 7]. Since 
U I is dense in U, from the continuity of fll' f31' and their 
derivatives, we havefll andhl defined by (53) in U. Observe 
thatbyhypothesisAfl1,z + Bf31,z =Oand (17) holds; there
fore AD + BC = 0, Bfll,z + Af31,z #0 in U, and 
E=AC + BD #0. Taking the derivatives of (48) with re
spect to z, we get 

Afl2,u + Bh2,u - h2(AC + BD) =0. (54) 

Therefore it follows from (48) that 

Ah2 + Bfl2 =0. 

This relation and (49) imply that 

fl2 = - Ah2,J(AC + BD), h2 = Bh2,ul(AC + BD). 
(55) 
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Hence (44) follows from (53) and (55). Taking these re
sults into (54) we obtain (45). Substituting (44) and (45) 
into (50), we obtain F given by (43). 

(ii) Suppose A 2 - B 2 = O. It follows from the hypothe
sis Afl1 + Bhl =0 that Bfl1,z + Af31,z =0. Using (50) we 
obtain 

z(Bh2,u + Ah2,u) + 7](Bh2 + Ah2) =0. 

From this equation we have 

Bh2 + Afl2 =0. (56) 

Since A 2 + B 2 # 0, it follows from (51) and (52) that 
h2,u =0, i.e., 

(57) 

SinceA IB = ± 1, combining (56), (57), and the first equa
tion of (18), we obtain F given by (46). The hypothesis 
Afl1 + Bhl =0 with (56) and (57) imply (47). From (46), 
we see thath2,u #0 in a dense subset of U. 

The converse in both cases is a straightforward compu
tation. 

As in Theorem 4, in the next theorem we consider the 
dependence of the functions F andfij on the parameter 7]. 

Theorem 6: Let fij and F be differentiable functions de
fined on U X I, where U is an open connected set ofm2 and I 
is an open interval, such that OEU. Suppose, for each 7]EI, 
z/ = F(u,z,7]) describes an 7]-p.s.s. as in Theorem 5. Then F 
is independent of 7], if and only if 

(i) F" (u) + aF(u) = 0, 

whereFis independentofz, U = m2,1 = m+ orm-, andais 
a nonzero real constant; or 

(ii) F = ve8u + h(z), 

where U = m XJ, J is an open interval, h is a differentiable 
functiononJ, v,Oem - {O},and U Xl does not intersect one 
of the planes {(u,z,7])em; ± 7] + (}z = O}; or 

(iii) F=AU + tz + T, 

where U = m2, I = m + or m - , A, t, T are real constants, and 
A#O. 

Proof Since Zt = F describes an 7]-p.s.s. as in Theorem 
5, there exist A and B differentiable functions in 7] such that 
Ahl + Bhl=O in U Xl. Let II = {7]EI;A 2 - B2#0}, and 
1°=1-/1. 

In each connected component of U X I I it follows imme
diately from (43) and (45) that F satisfies Theorem 6(i), 
with a = E 2/(A 2 - B2) independent of 7]. 

Suppose int 1°#0. In each connected component U XJ 
of U xintl°, from Theorem 5(ii) we have Fgiven by (46) 
andfll,z #0. Taking the derivative of Fwith respect to 7], we 
get, in U XJ, 

'h I,z" [.1' ~I' K"I'] ~ ZJI2,u ± '1.112+ "II 
JII,z 

(58) 

Taking the derivative with respect to u and then to z we 
obtain 

~I'Z7J [Zh2,uu ± TJt;2,u ] - [Zh2,uu" ± (TJt;2,u),,] =0, (59) 
J 11,z 
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(Z~I.Z'1) 112.u" ± 1](/~I.Z'1 ) 112.u - 1.2.uu'1 =0. (60) 
J lI.z z J lI.z z 

Let W = {(U,z,1])EU XJ;/12.u #O}, From Theorem 5, 
for each 1]oEJ, we havel.2.u (u,1]o) #0 in a dense subset of U. 
Therefore W is dense in U X J. 

Now we restrict ourselves to W. Dividing (60) by 112.u 
and taking the derivative with respect to z, 

(
ZI.I.Z'1) 1.2.u ± 1](I.I.Z'1) =0. (61) 
I.I.z zz 1.2." I.I.z zz 

We denote 

Z( ) _ (ZI.I.Z'1) Z,1] - -- . 
I.I.z zz 

Let WI = {(U,Z,1])EW; Z #O} and WO = W - WI. 

(a) In each connected component W ~ of W I from (61) 
we obtain 

1.2,u = N(1])eM ('1)U, (62) 

where N(1]) #0, and 

M(ZI.I.Z'1) ± 1](I.I,Z'1) = P'1 (1]). (63) 
I.I,z z I.I,z z 

Using these results in (60) we get 

M = () = const, 

P'1 = (}(log N)'1' 

Integrating (63) on z, we obtain 

() ) 1.1,Z'1 P Q ( z±1] --= '1z+ '1' 
I.I,z 

Substituting into (59) we have 

Q'1 = ± [1 + 1] (log N)'1]' 

(64) 

(65) 

(66) 

Combining this equation with (66) and integrating on 1], we 
obtain, in W!, 

I.I.z = yN«(}z ± 1])e- h(z), (67) 

where y is a nonzero real constant, and h is a differentiable 
function on an open interval J. The constant () # 0, otherwise 
Z=O, which is a contradiction since we are in W!. More
over, since/ll.z #0 we must have W: nn = 0, where n is 
one of the planes (}z ± 1] = O. From now on we fix such a 
plane. It follows from (62) and (64) that 

1.2 = (N /(})e()u + R(1]). (68) 

Using (67) and (68) in (46), we get, on W!, 

F=-- --+ . eh(z) (e()U 1]R - Kill) 
Y () - N«(}z ± 1]) 

Since F is independent of 1] we must have 

1]R - KI11 = N«(}z ± 1])m(z), (69) 

where m is a function of z only. Taking the derivative of (69) 
with respect to z, using (67), and derivating the result twice 
with respect to 1], we easily obtain 

K = m = R = O. (70) 

Hence we get F given by Theorem 6(ii) on W!, where 
V= 1I(y(}). 

(b) If int WO#0, in each connected component W~ 
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contained in int WO, we have Z=O. Using this relation in 
(61) we get 

(
1.1,Z'1) = 0, 
I.I.z z 

which, substituted in (60), provides 

I.I.Z'1 I' _ I' = 0 
I' J 12.u" J 12.uu'1 . 

JII.z 

Now (59) reduces to 

I.I.Z'1 I' (~I') 0 
1] r-J12,u - 'UI2.u 7J = . 

Jll,z 

(71) 

(72) 

Taking the derivative of this expression with respect to u and 
using (71), we obtain 

1.2 = Tu + R, (73) 

where T #0 and R depend only on 1]. It follows from (72) 
and (73) that 

I.t.z = 1]Tg(z) , (74) 

whereg(z) #0. Taking the derivative of (58) with respect to 
z and using (73) and (74), we get 

g= ± 1IA, K=A/1]+t, (75) 

where A #0 and t are real constants. Therefore 

111 = ± (1IA)1]Tz+ Q(1]), (76) 

and it follows from (46) and (73) thatFisgiven by Theorem 
6(iii), whereR = rT / A, ris areal constant, and without loss 
of generality we choose Q=O. 

We observe that it follows from the smoothness ofF that 
Fis defined on Uby Theorem 6(i) or 6(ii) or 6(iii), with its 
associated functions lij defined on U X I, where 1= Vt + or 
Vt-, for (i) and (iii). 

For F given by (ii), we have 
U = VtXJ, (U Xl) nn = 0, where n is one of the planes 
{(U,Z,1])EVt3, ± 1] + (}z = O}. The converse is a straightfor
ward computation. 

Remark 3: The one-parameter linear problem (6) asso
ciated to the equation Zt = F, for F as in Theorem 6, is ob
tained from Theorem 5 and the above proof. 

Consider F given as in Theorem 6(i). Then we have 
a = (AC + BD)2/(A 2 - B2) #O,A 2 - B2#0. From (43) 
and (45) we obtain 

122 = (l/1])Fu ' 

Therefore using (44) we have 

(/)1 = Dux dx + [Aa/1](AC + BD)]F dt, 

(/)2 = 1] dx + (l/1])Fu dt, 

(/)3 = CUx dx - [Ba/1](AC + BD) ]Fdt, 

where 1] # 0 and AD + BD = O. These forms satisfy (3) 
if and only if 

Uxt = F(u). 

In particular, in the case of the sine-Gordon equation, 
F= sin u. TakingB = D = O,A = C = 1, we obtain the one
forms (8). Similarly, one gets the corresponding one-forms 
in the case of sinh-Gordon and Liouville equations. 

When F is given by Theorem 6 (ii), the functions lij are 
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determined by (47), (67), (68), and (70). We obtain 

WI = fll dx + (N /(})e9u dt, W2 = TJ dx, W3 = ± WI' 

where 

fl1.U
x 

= (N /v(})«(}u" ± TJ)e-h(Ux >, 

N '# 0, (} '# 0, v'# 0, and the sign ± is chosen according to the 
plane (}z ± TJ = 0, which does not intersect U Xl. The one
forms above satisfy (3) if and only if 

For F given as in Theorem 6(iii), we obtainfij from 
(73), (75), (76), and (47). Choosing Q=O in (76) and 
T= 1, we have 

WI = ± (TJ/,1.)ux dx + (u + T/,1.)dt, 

W 2 = TJ dx + (A. /TJ + t)dt, 

W3 = ± WI' 

where A. ,#0, TJ'#O. These forms satisfy (3) if and only if 

Uxt = ,1.u + tux + T. 

Remark 4: In case (ii) of Theorem 6, Zt = F cannot 
describe an TJ-p.s.s. for TJe9 = m - S, where S is a set of 
isolated points. In fact, since the constant (} is nonzero and U 
is an open set in m2

, there exists (uo,zo)eU such that ± zo(} 
belongs to 9. For such a point and TJo = ± zo(}, we have 
that (uo,zo, TJo) belongs to the intersection of U X 9 and the 
plane (}z ± TJ = O. This is a contradiction. 

Finally we prove Theorem I, which gives a complete 
characterization of the equations Uxt = F(u,ux ), which de
scribes an TJ-p.s.s. where F is independent of TJ and TJe9 . 

ProofofTheorem l:Supposezt = F(u,z) describes an TJ
p.S.S. with associated differentiable functions fij (u,z, TJ), de
fined on U X 9. Consider L given by (20). Let 

Wi = {(u,z,TJ)eU X 9; L '#O} 

and WO = (U X 9) - WI. 
If int W°,#0, there exists an open connected set 

Vxle int WOwith VeUandle9.0ntheset VXI the 
conditions of Theorem 6 hold and we have two cases, since, 
from Remark 4, case (ii) cannot occur. From Theorem6(i), 
Fsatisfies case (i) of Theorem 1 with V = m2

, and the/;j are 
defined on m2 X (m - {O}) = int We; from Theorem 6 (iii), 
Fis given on V = m2 by 

F=,1.u + tz + T, 

where A. ,#0 and the functions /;j are defined on 
m2X (m - {a}) = int Woo Therefore, using Remark 1 for 
A. = 0, we obtain case (iii) of Theorem 1. 

IfW I ,#0,thereexistsanopenconnectedset V xle Wi, 
with ve U and Ie 9. On the set V Xl the conditions of 
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Theorem 4 hold. Therefore we have two cases: from 
Theorem 4( ii), we obtain again case (i) of Theorem 1; from 
Theorem 4(i),Fis given on V = Uasin Theorem l(ii), with 
the functionsfij defined on U X m = W I. This concludes the 
proof of Theorem 1. 

Theorem 2 and Corollary 1 follow immediately from 
Theorem 1, as mentioned in the Introduction. 
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An extension of Nelson's stochastic mechanics to the relativistic domain is proposed. To each 
pure state of a spinless relativistic quantum particle corresponds a Markov process t 1--+-51' 
where the random variable 5, represents, at every time t, the space position of the particle in 
the sense of Newton and Wigner. The process t 1--+-5, is not a diffusion but the usual Nelson's 
theory is restored in the nonrelativistic limit. 

I. INTRODUCTION 

Stochastic mechanics of relativistic spinless particles is 
not a novelty in literature. Besides a few considerations in 
Caubet's bookl there exists two interesting related papers2

,3 

on a possible probabilistic scenario for the Klein-Gordon 
equation. Both articles are inspired by Feynman's path inte
gral approach to the Klein-Gordon propagator4 and make 
use of diffusions 'T I--+-~, f.L = O, ... ,D in space-time, where 'T 

must be interpreted as some kind of proper time. As the path 
'T I--+-~ wanders over Minkowski space it crosses many times 
any spacelike hypersurface Xo = et creating a cloud of 
points, an observer watching space at time t perceives cross 
points as particles if the path goes forward in time and as 
antiparticles when it runs backward. By constructing the 
diffusions 'T I--+-~ from classical relativistic mechanics revis
tited according to some version of Nelson's bible,'-7 it is 
possible to reconstruct, from each of them, complex solu
tions of the Klein-Gordon equation whose electric current 
JlJ(xO,xl, ... ,XD) gives the correct average flux of charges 
across hypersurfaces. The many particles picture related to 
Feynman's path suggests some link between this stochastic 
treatment of the Klein-Gordon equation and the second 
quantized version of the theory. My approach is different. I 
consider only positive frequency solutions of the Klein-Gor
don equation and I associate to each of them a Markov pro
cess t 1--+-5, in space with a single particle meaning: The ran
dom variable 5, represents the space position of the particle 
at time tin the well-known sense of Newton and Wigner.8

•
9 

Of cours~ this stochastic framework is not manifestely co
variant as it is based on the noncovariant concept oflocaliza
tion in space. It happens that the processes t ~t are jump 
Markov processes and not diffusions. This fact deserves 
some physical explanation. Picturesquely one can identify 
the single physical particle with the center of mass of the 
cloud generated by a Feynman's path and it is quite clear 
that this center of mass undergoes random jumps when 
"particles" and "antiparticles" annihilate in pairs inside the 
cloud. The jump character of processes is a relativistic fea
ture and it disappears in the nonrelativistic limit. 

II. MATHEMATICAL FACTS 

For any M> 0, the function 

L('): pE]RDt---+L(p) 

= (Me2/1i) (1 - ~ (e/M2eZ)lIpII2 + 1 ) 

is conditionally positive definite and therefore the Levy
Khintchine formula to holds: 

L(p) = r (exp ip·y - 1 - ip·y 2 )V(dy ), (1) 
JRD 1 + lIyll 

where v(dy) is a Levy measure invariant under orthogonal 
transformations. The measure v(dy) is not finite but 
v( {y: lIyll > r}) < + 00 for any r> 0. For future needs, I 
call v, (dy) the finite measure in ]RD given by 
v, (dy) = X{y:llyll > r} (. )v(dy), where XB (.) is the character
istic function of the subsetB. The Levy-Khintchine formula 
( 1) allows me to obtain some control on the pseudodifferen
tial operator 

L = L( -IV) = (Me2/1i) (I - ~ - (liz/MzeZ}A + [) , 
(2) 

as it is clear, from (1), that 

(lLf)(x) = i/f(X + y) - f(x) - ~':~I~~nV(dY), 
(3) 

for instance iff ( . ): RD -+ C is a bounded C 2 function. If Mis 
interpreted as the mass of a relativistic particle, then (3) 
gives a useful representation of the free relativistic quantum 

Hamiltonian Ho = ~ - e?A + M 2e4I, which is related to 
lL by 

(4) 

It is interesting to observe that lL is the generator or infinitesi
mal operator of a time homogeneous Markovian family 
whose transition functions are obtained from the "heat equa
tion" au/at = Lu. 

This fact has been exploited by Ichinose and Tamura II 
in constructing a Feynman-Kac formula for Hamiltonians 
H = Ho + V(·) for a suitable class of potentials V(·). Any 
Matkov process with generator lL has the form 

5, = 50 + i yN(dy ds), 
RDx[O.I] 

(5) 

where 50ERD, N(dy ds) is the Poisson measure in 
RD X [0, + 00) with average E{N(dy ds») = v(dy)ds, and 
N(dy ds) is the martingale N(dy ds) - v(dy)ds. More gen
erally, if (t,x,y) t---+y(t,x,y) is a bounded non-negative func
tion continous in (I,x), sufficiently smooth in y, and such 
that y(t,x,O) = 1, operators L, of the form 
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(L,/)(x) = 1D (r(t,x,y)(f(X + y) - /(x» 

_ y·V lex») v(dy) 
1 + lIyll2 

= (lL f )(x) + i (r(t,x,y) - 1) 
RD 

x(f(x + y) - /(x»v(dy) (6) 

are infinitesimal operators of Markov processes obtained as 
solutions of the stochastic differential equation 

d St = i (r(t,SnY) - 1 2) yv(dy)dt 
RD 1 + lIyll 

where H = Ho + V(·) for some potential V(·): RD -lit 
From the standpoint of stochastic mechanics, the fol

lowing problem is quite natural: given a normalized solution 
tER.-tjl(t,)EL 2(RD ) of (8), find a Markov process 
t '-St in RD such that 

Prob(StEB) =1 ItjI(t,x)1 2d Dx (9) 
BD 

at every time t and for each Borel subset B of RD. The trouble 
with the relativistic Hamiltonian 

H=~-fh211+M2c4I+ V(·) 

lies in the quantum mechanical continuity equation for 
p(t,x) = ItjI(t,x) 12, namely, 

+ i yN(r(t'Sny)dy dt). 
RD 

(7) ap =i(~LtjI-tjllL~) =2~(tjllL~), (0) 
at 

The meaning of r(t,x,y) is clear: It represents a change of 
the rate of jumping which depends on the time t, the point x 
reached at time t, and the jump amplitude y. It is better 
dealing with finite Levy measures, so I will give an elemen
tary useful lemma. 

Lemma: If / ( . ): RD _ C is a bounded C 2 function, then 

(lL/)(x) = lim r (f(x + y) - /(x»vr(dy) 
r-O JRD 

= lim(Lr/)(x) . 
r_O 

Proot It is sufficient to exploit the identity 

r (f(x + y) - /(x»vr(dy) 
JRD 

= lD(/(X + y) - lex) - ~':~I~~~ )Vr(dy ) 

and Lebesque's theorem on dominated convergence as 
/(x+y) -lex) -y·V/(x)/O + IIYll2) isO(llyIl2) in the 
neighborhood ofy = 0, hence v(dy) integrable. 

The operator lLr is the generator of a regular jump Mar
kov process12 with jump probability per unit time given by 

( B) 1
· P(t,x,s,B) - XB (x) 

q t,x, = 1m -------
s_t+ s-t 

= r U'B(X+Y) -XB(x»vr(dy). 
JR D 

By the way, regular jump processes with 

q(t,x,B) = r r(t,X,y)U'B(X+Y) -XB(x»vr(dy) 
JR D 

have generators lL; of the form 

(L;/)(x) = r r(t,x,y)(f(x + y) - /(x»vr(dy) , 
JRD 

and vice versa. After this long discussion I will come back to 
quantum mechanics. 

III. RELATIVISTIC SCHRODINGER EQUATION 

Let me consider now the relativistic SchrOdinger equa
tion 

(8) 
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because lL is not (M2M) 11 as in the nonrelativistic case but 
the pseudodifferential operator 

(Mc2lli)(][ - ~ - (1i2IM2?)11 + I). 

Now I follow the general strategy introduced in Ref. 13 and 
I try to find a forward Kolmogorov equation that is satisfied 
by the quantum mechanical probability density p(t,x) 
= ItjI(t,x) 12. In order to simplify the search for such a good 

Kolmogorov equation, I replace, for the moment, the opera
tor lL with the better looking lLr. That leaves me with the 
(approximate) continuity equation apl at = 2~ (tjlLr ~) 
and, if I define m t (B) as f BP ( t,x) d DX , I obtain the following 
chain of equalities: 

dmt(B) 1 - D --= 2 XB (x)~( tjllLrtjl)d x 
dt RD 

XdDxvr(dy) 

[if x .-tjl(t,x) nowhere vanishes at every time t] 

= ( r XB (x) ItjI(f,x + y) 12~ tjI(t,x) 
URDXRD tjI(t,x + y) 

Xd DX Vr (dy) - r XB (x) ItjI(t,x) 12~ 
JRDXRD 

X [tjI(t,x + y)/tjI(t,x) ]dDx Vr(dY») 

[by translational invariance of d DX and reflection invar
iance of Vr (dy)] 

= r ItjI(t,xW dDx r ~ tjI(t,x + y) 
JRD JRD tjI(t,x) 

XU'B (x + y) - XB (x»vr(dy) . 

In this form the (approximate) continuity equation looks 
almost Kolmogorov for a regular jump process 12 except for a 
little detail: Since ~[tjI(t,x + y)/tjI(t,x)] is not necessarily 
positive, nobody can guarantee that 

q(t,x,B) = r ~ tjI(t,x + y) U'B (x + y) - XB (x» 
JRD tjI(t,x) 

Xvr(dy) 
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is a true jump probability per unit time. I notice, however, 
the identity 

r I¢(t,x + y)¢(t,x) IU'B (x + y) 
JRDXR D 

and this fact allows me to rewrite the (approximate) conti
nuity equation as 

dm,(B) i D 
--- = q, (t,x,B) m, (d x), 

dt aD 

where now 

qr(t,x,B) = r (I ¢(t,x + y) 1 + ~ ¢(t,x + y») 
Ja D ¢(~x) ¢(~x) 
XU'B(X+Y) -XB(x»vr(dy) , (11) 

which is the jump probability per unit time of a regular jump 
Markov process whose infinitesimal operators are given by 

(IL~f)(x) = r y(t,x,y)(f(x + y) - f(x»v,(dy) , 
JR D 

(12) 

where 

y(t,x,y) = I ¢(t,x + y) I + ~ ¢(t,x + y) ;;;.0. (13) 
¢(t,x) ¢(t,x) 

In order to get a true jump probability, a similar device has 
been used before. 13

•
14 If x ~¢(t,x) is bounded and suffi

ciently smooth, there exists 

lim(IL~ f)(·) 
r-O 

for each bounded C 2 function f ( . ) and this limit is given by 

(L,J)(x) = LD(y(t,X,y)(f(X + y) - f(x» 

_ y'V f(X») v(dy) 
1 + lIyll2 

= (ILf)(x) + r (y(t,x,y) - 1)(f(x + y) 
JR D 

- f(x»v(dy) . (14) 

Now the true quantum mechanical continuity equation con
tains IL and not ILr but, recalling my lemma and by taking 
care of all limits involved, I obtain, eventually, the forward 
Kolmogorov equation for p. 

Theorem: If t~¢(t")EL2(]RD) is a solution of (8) 
bounded, sufficiently smooth, and nowhere vanishing for ev
ery t, then the quantum mechanical probability density 
p (t,x) = 1 ¢( t,X) 12 obeys the forward Kolmogorov equation 

ap = IL*p 
at " (15) 

where L~ is the adjoint of the operator IL, given by ( 14). 
Therefore there exists a jump Markov process t ~s, in 

RD such that (9) holds. The process t~St is obtained as a 
solution of the stochastic differential equation (7) where 
y( t,x,y) is related to the wave function by ( 13) and the ran
dom variable So is distributed according to p(O,.)d DX 

= I¢(O,') 1
2d DX. I end this section with three remarks. 
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Remark 1: Hypotheses of smoothness and absence of 
zeros for the wave function were made by Nelson in his origi
nal treatment of Schr6dinger's equation. These hypotheses 
were relaxed considerably by Carlen 15 and it would be inter
esting to perform something similar in the present context. 

Remark 2: Suppose that H = Ho + V(·) has a ground 
state .0.(') > 0 with energy Eo. Under transition 
to ground state representation: ¢(')E L 2(]RD) ~f(') 
= ¢(. )/.0. ( ')E L 2(RD, .0.2 

( ')d DX) the operator 
(1/Ii) (Eo! - H) becomes Ln , where 

(ILn f) (x) = r (.o.(X + y) (f(x + y) - f(x» 
JR D .o.(x) 

y'V f(x») (d ) 
- 1 + IIyll2 V Y , 

which is, precisely, the generator of ground state process. So 
thesemigroupt~xp - (t Ifz) (H - Eo!) is unitarilyequiv
alent to the Markovian semigroup t ~xp tILo . Moreover, 

(f(· ),ILof('» U(IRD,O'C')dDx) 

= _.l r .o.(x+y).o.(x)lf(x+y) 
2 JR D XR D 

This expression reminds us of the theory of Dirichlet 
forms. 16,17 

Remark 3: It would be perfectly possible to define 
y(t,x,y) in (13) as 

y(t,x,y) = k I ¢(t,x + y) I + ~ ¢(t,x + y) 
¢(~x) ¢(~x) 

.provided that k;;;.l. I want to justify the choice which 
I made, namely k = 1. By observing that L(p) 
= S IRD (cos p.y - 1 )v(dy) and limc _ + 00 L(p) 

= - (1i12M)IIpII 2 it is clear that the measure v(dy) con
centrates its mass around y = 0 as c increases and that 

for any R > O. If S(t,x) and R (t,x) are defined by ¢(t,x) 
= exp(R(t,x) + is(t,x)) and I make the choice k = 1, then 
y(t,x,y) = 1 + (M lli)y'b(t,x) + O(IIyll2) in the neigh
borhood ofy = 0, where b(t,x) = (1iIM)(VR + VS). It is 
clear, now, (at least formally) that 

c_ + 00 

which is exactly the generator of the diffusion associated to 
(t,x) ~¢(t,x) by Nelson's theory. 

IV. KLEIN-GORDON EQUATION 

Let (t,x) ~(t,x) be a normalized positive frequency 
solution of the Klein-Gordon equation 

(16) 
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This means that 

lP(t,x) = (211') -D/2 r ei(rl[-ctcu(p))cp(p) dDp 
JRD m(p) 

= (211') -D/2 r elpoxcpt(p) dDp , (17) 
JR D m(p) 

where 

m(p) = 

and 

cp(')EK=L 2(RD, d
Dp

) 
m(p) 

with IIcp( . ) 11K = 1. The Hilbert space K describes precise
ly the pure states of a relativistic spinless particle of mass M 
and the fact that K carries an (irreducible) unitary repre
sentation of the Poincare group that gives us the self-adjoint 
operators representing physical observables as energy, mo
mentum, and angular momentum. What about the compo
nents of space position of the particle in a given inertial 
frame? The right answer was given many years ago by New
ton and Wigner.8,9 Under a few mild regularity assumptions, 
there exists only one choice of D mutually commuting self
adjoint operators qa that transform in the proper manner 
under orthogonal group and space displacements and they 
are given by 

( _) () . acp(p). Pa _( ) 
qalP P = '----ap:- - I IIpll2 + M2C2/~ lP p 

_ fT-')' a cp(p) -"m\PJ1-----. 
apa ~m(p) 

(18) 

LetB!;RD f-+E(B) be the joint spectral measure of qa 's 
and let cp(.) be a normalized vector of K. The quantum 
mechanical probability of finding the particle localized in
side B when the state is cp('), is given by 

(cp('), E(B)cp('»K = LI~(x)12dDx, 
where ~(.) is related to cp(.) by 

~(x) = (211') -D/2 r cp(p) eit>-l[ dDp, (19) 
JR D ~m(p) 

a well-defined Fourier-Plancherel transformation as 
cp(. )/JWr)E L 2(RD). Of course ~(.) is the wave function 
of the particle in the representation that "diagonalizes" all 
qa's. Coming back to our positive frequency solution 
(t,x) ~(t,x) of Klein-Gordon equation, we see that the 
probability of finding the particle inside B!; RD at time t is 
S B I~(t,x) 12 d DX , where 

(20) 

Obviously, t f-+~( t,' ) obeys the relativistic Schrooinger 
equation (8) with H = Ho (and I can apply the stochastic 
description of Sec. III). The conclusion is the following: if 
(t,x) f-+lP (t,x) is a normalized positive frequency solution of 
the Klein-Gordon equation, there exists a jump Markov 
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process t f-+St in RD such that 

Prob(StEB) = LI(( -a+ M;Cy/4lP ) (t,x)12 dDx 

at every time t and for each Borel subset B of RD
, provided 

that Xf-+« - a + M 2c2/1i2)1/4lPHt,x) is sufficiently 
smooth, bounded, and nowhere vanishing at each time t. By 
looking at the stochastic differential equation for the process 
t f-+5t we can imagine that the praticle travels in space guid
ed by a smooth velocity filed on which are superimposed, at 
random times, jumps of random magnitude. In the nonrela
tivistic limit, the probability of jumping concentrates more 
and more on vanishing jump amplitudes and the process will 
approach to a diffusion. The Newton-Wigner theory oflo
calization in space for elementary systems applies to all spins 
and therefore the present treatment can be extended to all 
relativistic wave equation. In particular, it can be extended 
to Dirac equation that, after a Foldy-Wouthysen transfor
mation, becomes a relativistic Schrodinger equation for a 
multicomponent wave function. Of course other approaches 
are feasible. 18 

V. CONCLUSIONS AND OUTLOOK 

The choice of space localization it la Newton and 
Wigner is not arbitrary. In a recent paperl9 Blanchard, Car
len, and Dell' Antonio analyzed the configurations of the free 
scalar quantum field at fixed time. Since quantum fields op
erators commute at fixed time, expectations of their prod
ucts on arbitrary quantum states can be interpreted as corre
lation functions of some (state dependent) space random 
field. The typical configuration of this random field is rather 
rough but, after a suitable filtering procedure that eliminates 
vacuum fluctuations, a smooth field configuration comes 
out and it shows a bump near x for quantum states describ
ing a particle localized near x in the sense of Newton and 
Wigner. It is clear that a full stochastic treatment of the 
Klein-Gordon equation requires an infinite-dimensional 
version of Nelson's theory namely a stochastic field theory in 
space-time. Starting from a single particle state ofthe quan
tum field it will then be possible, by the filtering procedure of 
Blanchard, Carlen, and Dell' Antonio, to reconstruct a Mar
kov process for the space position of the particle. When 
someone will do that, I can reasonably bet that this Markov 
process will not be a diffusion but exactly the kind of stochas
tic process which I just discussed. 
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A unitary operator for the transformation from individual particles to Jacobi variables is 
constructed explicitly for particles of arbitrary masses. It is expressed as a product of rotation 
and squeezing operators using only canonical variables. 

I. INTRODUCTION 

It is often necessary to have an explicit form for the 
unitary operator effecting the transformation between the 
canonical variables of individual particles to those of the 
center of mass (em) and the relative coordinates, and, 
more generally, to those of the Jacobi variables. Since such 
an operator for the general case of arbitrary single-particle 
masses does not seem to be available in the literature, a 
method is developed to construct such an operator. The 
special case of equal mass particles with specific dynamical 
assumptions has been the subject of a recent paper.l The 
generalized form reported here could be useful in several 
physical situations. Furthermore, the unitary operator is 
independent of any dynamical assumptions about the sys
tem of particles. 

In the following section we exhibit the construction of 
the unitary operator transforming the coordinates and mo
menta of two particles with mass ml and m2, into those of 
the cm and relative motion variables. In Sec. III we show 
how to generalize it for N particles, treating explicitly the 
three-particle case. It should be stressed that only the ca
nonical variables are used and the treatment depends nei
ther on the single-particle Hamiltonians and two-particle 
interactions, nor on their wave functions. Finally, in Sec. 
IV we conclude by mentioning the use of these transfor
mations for harmonic oscillator states for the two-particle 
case. 

II. UNITARY TRANSFORMATION: THE 
TWO-PARTICLE CASE 

Let the individual two particles have masses ml, m2, 
position operators XI, X2, and momentum operators PI, 
P2, respectively. We define the reduced mass parameters as 

J.Ll=ml/(ml + m2), J.L2=m2/(ml + m2)' (2.1) 

The cm and relative coordinate dynamical variables are 
given by the following well-known formulas; 

Xcm =J.LlXI + J.L2X2, 

Pcm=Pl + P2, 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

The characteristics of the unitary transformation (U) be
tween the individual dynamical variables to those of the cm 
and relative motion are best exhibited by separating the 
transformation into three parts. 

Part 1: Define an angle a by 

cosa=~, sina=!Ji;., (2.3) 

and a set of intermediate variables between the two sys
tems: 

(2.4a) 

X' = - !Ji;.xI + ~X2 = - XI sin a + X2 cos a, 
(2.4b) 

P'= ~PI + !Ji;.P2=PI cos a + P2 sin a, (2.5a) 

p'= - !Ji;.Pl + ~P2= - PI sin a + P2 cos a. 
(2.5b) 

Obviously the connection between the coordinates 
(X',x') and (XIoX2) and between the momenta (P',p') and 
(PIoP2) is given by a rotation through an angle a in the 
"(1,2) plane." This is generated by the operator 

L=XI'P2 - X2'PI' 

The finite rotation is given by the unitary operator 

RI=e- iaL, 

and therefore we have in an obvious notation 

(2.6) 

(2.7) 

RI{XI, X2; PI, P2}Rt ={X', x'; P', p'}. (2.8) 

Of course the results may be verified directly. 
Part 2: To obtain the transformation from the inter

mediate variables X'(P') to the center of mass variables 
Xcm(Pcm), we need to have (for i = 1,2) Xi(Pi) multiplied 
(divided) by -lii;. This is achieved by the unitary squeeze 
operator (see, e.g., Ref. 2) 

S2=e(r1 + r2)/2 exp[i('lxI'PI + '2X2'P2)], 

where 

(2.9) 

a)Permanent address: Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel. 

1413 J. Math. Phys. 31 (6), June 1990 0022-2488/90/061413-03$03.00 ® 1990 American Institute of PhYSics 1413 



                                                                                                                                    

e'i= .,f;;, i= 1,2. 

We then have immediately, by combining the two unitary 
transformations, that 

(S2RI){XbX2,PI;P2}(S2RI)t = {Xcm,x";P,p"}, (2.10) 

with the new intermediate variables related to the initial 
variables for the particles and to the relative coordinate 
variables by 

x" = ~Jl-IJl-2(X2 - XI) = ~Jl-IJl-2 x" (2.11a) 

p" = (1/ ~Jl-IJl-2) (Jl-IP2 - Jl-2PI) = (1/ ~Jl-IJl-2)P,' 
(2.11b) 

Part 3: The final component of the transformation con
sists now in passing from (x" ,p") to (x"p,), by applying 
the unitary squeeze operator in the relative variables 
(which leaves the eM variables unaffected). This unitary 
squeeze operator has the form 

S3=e- ('\ +'2)12 exp[ - i(r, + r2)x"'p"] 

=e - ('\ + '2)12 exp[ - i(rl + r2)xr'P,] 

=e- ('\ +r2)12 exp[ - i(rl + r2)(Jl-2xI'PI + Jl-IX2'P2 

(2.12) 

The total unitary operator (U) effecting the transforma
tion is obtained by combining the three separate unitary 
transformations and is given as 

(2.13) 

The transformation assumes a particularly simple form 
for the case of equal masses, i.e., Jl-I = Jl-2 = ~. In that case 
r = rl = r2 = - On 2)/2, a = 1T/4, and we have 

S3=e-'exp[ -ir(xI'PI +X2'P2-XI'P2-X2'PI)] 

=e -, exp[ - ir(xI'PI + X2'P2)] 

Xexp[ + ir(xI'P2 + X2'PI)], 

and finally 

U=S~2RI 

=exp[ - iOn 2/2)(XI'P2 + X2'PI)] 

X exp[ - i( 1T/4 )(XI'P2 - X2 'PI)]' 

(2.14 ) 

(2.15) 

In terms of creation and annihilation operators, defined by 

1 t _! ~mw t Xj= ~ <aj + aj ), Pj-. 2 (aj - aj ), i= 1,2, 
,,2mw I 

(for some w) this may be written as 

U=exp[ - iOn 2/2)(al'a2 - at-ai)] 

Xexp[ - i(1T/4)(at-a2 - ai'a,)], 

which is recognized as a rotation followed by a two-mode 
squeezing. To end this section we note that by using stan
dard techniques the general transformation operator U 
[Eq. (2.13)] may be written as a single exponent, 

U=e- jG, 

with 

- Jl-2' X2'P2), 

where cos 00 = (1 + Jl-I)/2. 

III. UNITARY TRANSFORMATION: GENERALIZATION 
TON>2 

The Jacobi coordinate and momentum operators for N 
particles of masses mj (i = 1, ... ,N) are defined as follows: 

(ml + m2)P3 - m3(PI + P2) 
1T2= 

("N-I) "Ii;'N-I '"'-j=1 mj PM - mN'"'-j=1 pj 
1TN-I= 

N 

1TN=Pc= L Pj, 
j=1 

From this structure it is obvious that the required unitary 
operator for the N-particle system may be constructed by 
using successive unitary transformations between pairs of 
"particles." This is illustrated explicitly for the special case 
of three-particle system, i.e., N = 3. 

We denote now the center of mass coordinate and mo
mentum of the subsystem of particles 1 and 2 by X12' P12' 
respectively, so that the Jacobi variables for the three
particle system are 
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'I =X2 - xb (3.1a) 

'2=X3 - x12' (3.lb) 

(3.1c) 

17'1 =Jl-IP2 - Jl-2P" (3.2a) 
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1T3 = PI2 + P3, 

with 

J.L12= (ml + m2)/(ml + m2 + m3), 

J.L3=m3/(ml + m2 + m3), 

(3.2b) 

(3.2c) 

(3.3a) 

(3.3b) 

and the constants JJ-I and JJ-2 are defined in Eq. (2.1). We 
first transform within the subsystem of particles 1 and 2 to 
the variables 61, X \2, 1TI, P\2 (as carried out in Sec. II). 
This is followed by another two-"particle" transformation 
between the center of mass of particles 1 and 2 and the 
particle 3. This is clear since by looking at Eqs. (3.1b), 
(3.1c), (3.2b), and (3.2c) we see that the transformation 
from (XI2' X3, P12, P3) to (63,62' 1T3, 1T2) is now the same as 
for the two-particle system carried out in Sec. II with the 
appropriate renaming of the variables. Indeed, defining in
termediate variables 

63= ~X\2 + iJi;x3' 

62= - iJi;X\2 + ~X3' 

1T3 = ~P12 + iJi;P3' 

1T2 = - iJi;P12 + ~P3' 

(3.4a) 

(3.4b) 

(3.5a) 

(3.5b) 

the transformation (X\2' X3; P12, P3) -+ (63' 62; 1T3, 1T2) is 
again a rotation, effected by e- f3L3

, where 

L3=x\2'P3 - X3·P\2=J.LIXI·P3 + J.L2X2·P3 - X3'PI - X3'P2, 
(3.6) 

and the angle (3 is defined by 

cos{3= ~, sin{3= iJi;. (3.7) 

To obtain 63 and 1T3 from 63 and 1T3 we need to have 
XI2 (P\2) and X3 (P3) multiplied (divided) by ~ and 
.Jji;, respectively. This is achieved by the unitary squeeze 
operator 

e(r12 + r3)12 exp [i[r\2(xI2'P\2) + r3(x3 'P3)]], 

where 
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(3.8) 

eI2=~, er3 = iJi;. 
This transformation results also in 

62 -+ 62 = ~J.L\2J.L3 62, 

1T2-+1T2=1T21 ~J.L12J.L3' 

(3.9) 

(3.lOa) 

(3.lOb) 

so that now the unitary squeeze operator (affecting 
only 62 and 1T2), 

e - (i12)(rl2 + r3) exp[ - i(r\2 + r3)62 '1T2], 

will effect the final transformation 

IV. CONCLUSIONS 

The transformation of the canonical variables of indi
vidual particles to those of the center of mass and the 
relative coordinates is expressed in an operator form. It 
goes without saying that applying the unitary operator to 
any state of the individual particles turns it into the corre
sponding state in the Jacobi variables. Application to the 
case of a dynamical system with harmonic potential have 
been considered many years ago, and the explicit form of 
the transformation matrix elements has been given, e.g., by 
Smirnov.3 Recently Fan I has considered the case of a 
Hamiltonian with a harmonic potential that can be diago
nalized using a unitary operator. The present work pro
vides a general unitary operator for any number of parti
cles with arbitrary masses. 
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A connection between the Sternberg construction, which allows one to introduce a symplectic 
structure on an associated fiber bundle with the base and the fiber being symplectic manifolds, 
and the reduction of symplectic manifolds is considered. It is shown that the Sternberg 
construction commutes with the reduction. 

I. INTRODUCTION 

In this paper we consider a connection between the two 
methods of constructing new symplectic manifolds from the 
given ones. The first method is called the Sternberg con
struction. The essence of this method is as follows. 

Let us have two symplectic manifolds l.2 M and Fwith 
the symplectic two-forms wM and wF

• It is clear that on the 
manifold E=.M XF there exists a natural symplectic struc
ture given by the two-form 

WE =. prtwM + pr1wF
, 

where pr M and pr F are the projections of the direct product 
M X F onto M and F, respectively. A generalization of this 
construction was considered by Sternberg3.4 when he de
scribed the motion of a particle in the Yang-Mills field. In 
his approach the symplectic manifold M was the base of a 
principal fiber bundle P with the structure group G, F was a 
left Hamiltonian G-space with an Ad*-equivariant momen
tum,1 and E was a fiber bundle with the fiber F, associated 
with the principal fiber bundle P. A symplectic two-form WE 

on E was given by introducing a connection in P. In this, it 
was supposed that the symplectic manifold M was a cotan
gent bundle with a natural symplectic structure,I.2 and the 
connection in Pwas chosen in a special way. 

We consider the generalization of the Sternberg con
struction to the case when M is an arbitrary symplectic 
manifold. In this case it appears that for the Sternberg con
struction to give a symplectic structure on E, it is necessary 
to require some additional conditions to be satisfied. We for
mulate these conditions explicitly. 

The second method to construct new symplectic mani
folds we consider, is the reduction of symplectic manifolds. 
The initial object in this method is a left Hamiltonian H
space F with a momentum mapping 'l'F. Considering the 
level F ~ of some fixed value A of the momentum mapping 
'l'F, we see that the restriction of the symplectic two-form 
wF to this level is a degenerate two-form. However after the 
factorization of F ~ with respect to the action of the isotropy 
subgroup of this momentum value we get the reduced sym
plectic manifold FA with a natural symplectic structure.5 

We suppose that the left Hamiltonian G-space F, used in 
the Sternberg construction is also a right Hamiltonian H
space with a momentum mapping 'l'F. In this case the fiber 
bundle E may also be considered as a right Hamiltonian H
space with a momentum mapping 'I1E. Perform the reduc
tion of a level A of the momentum mapping 'I1F. As a result 

we get the reduced symplectic manifold FA' This manifold is 
a left Hamiltonian G-space and can be used in the Sternberg 
construction. We may also perform the reduction of the level 
A of the momentum mapping 'I1E. It appears that as a result 
of this we get one and the same symplectic manifold. In other 
words, one can say that the Sternberg construction com
mutes with the reduction. The proof of this fact is the main 
content of the present paper which is organized as follows. 

In Secs. II and III we recall necessary definitions and 
facts on Lie groups, Lie symplectic transformation groups, 
and discuss the reduction of symplectic manifolds. In Sec. IV 
we consider the generalization of the Sternberg construction 
and formulate conditions under which it gives a symplectic 
structure on the corresponding associated fiber bundle. In 
Sec. V it is proved that the Sternberg construction commutes 
with the reduction. 

Some notations not explained in the text are: X (tp) is the 
Lie derivative of the k-form tp with respect to the vector field 
X, i(X)tp is the inner product of the vector field X and the k
form tp, and pr M; is the projection of the direct product 
MI X ... XMn onto the ith factor Mi' i = I, ... ,n. As usual, 
we consider all the manifolds to be of class Coo. 

II. LIE TRANSFORMATION GROUPS 

A Lie group G is called a Lie transformation group on a 
manifold M, if a mapping R M: M X G -+ M, satisfying the 
following conditions is given. 

C i) If for each gEG we define a mapping R 7: M -+ M by 
the relation 

R 7Cm) =.R MCm,g), 

then for any gl' gzEG the following equality is valid: 

R MoRM -RM 
g. g2 - g2gl· 

Cii) The mapping R ~, where e is the unit element of the 
group G, is an identity map: 

R~ =idM • 

In this case we also say that a right action of the group G on 
M is given, or that M is a right G-space. Often the following 
notation is used: 

m·g=.R MCm,g). 

Construct a homomorphic mapping from the Lie alge
bra IG of the Lie group G to the Lie algebra of the vector 
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fields on M, assigning to an element uelG the vector field 
UM

, given by the relation 

d 
U!(f)=- dtf(moexp (tu»lt=o, 

for any meM,jeC"" (M). 
A left action of a Lie group G on a manifold M is speci

fied by a mapping L M : G X M --+ M, which satisfies the condi
tions 

L :,oL:' = L :'g2' L ~ = idM , 

where 

L :(m) =-gom=-L M(g,m). 

In this case one constructs an antihomomorphic mapping 
from the Lie algebra IG to the Lie algebra of the vector fields 
on M, assigning to an element uelG the vector field U M, 
given by the relation 

- d 
UM(f) =- dtf(exp(tu)om)lt=o' 

Let a left action of a Lie group G on a manifold M be 
given. Introduce on M an equivalence relation, considering 
the points belonging to one and the same orbit to be equiva
lent. Denote the corresponding quotient set M /G by N. Sup
pose that it is possible to introduce on N the structure of a 
manifold in such a way that the canonical projection ,,-M : 
M --+ N be a submersion on M.I 

Proposition 2.1: If a k-form tp on M (with the values in a 
linear space L) satisfies the conditions 

R:*tp = tp, 

i( UM)tp = 0, 

for any geG, uelG, then there exists a unique k-form '" on N 
(with the values in the linear space L) such that 

"-M0,,, = tp. D 

1110 LIE SYMPLECTIC TRANSFORMATION GROUPS AND 
REDUCTION 

Let M be a manifold where a closed nondegenerate two
form wM is given. In this case M is said to be a symplectic 
manifold. 

Let M be a symplectic manifold and F be a diffeomor
phic mapping of the manifold M onto itself. If 

F*WM=WM, 

then F is called a symplectic transformation. Suppose now 
that M is a right G-space and 

(3.1 ) 

for any geG. In this case M is called a right symplectic G
space. From (3.1) it follows that 

UM(WM) = 0 

for any uelG, i.e., the vector fields U M are locally Hamilto
nian. I,2 Suppose that for any uelG the vector field U M is 
Hamiltonian,I,2 in this case one can construct a linear map
ping 

tpM: uelG--+tp':eC""(M), 
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such that 

i( U M)WM = dtp ,:. 

In such a situation M is called a right Hamiltonian G-space. 
Let IG * be the dual of IG. We associate with the mapping 

tpM the mapping <l>M: M --+ IG *, given by the equality 

(<I>M(m) lu) =-tp ':(m), 

for any meM, uelG. Here and henceforth we denote the ac
tion of an element xelG * on an element uelG by (x I u). 

Suppose that the manifold M is connected, then for any 
geG the following relation is valid: 

<l>MoR: = Ad*(g-l)o(<I>M + jtM(g», (3.2) 

wherejtM(g) isconstantonM,andAd*(g) is the operator of 
the coadjoint representation of the Lie group G, connected 
with the operator Ad(g) of the adjoint representation6,7 by 
the equality 

(Ad*(g)xlu) =- (xIAd(g-l)u), 

for all xelG *, uelG. For any g 1,g2eG from (3.2) we get 

jtM(glg2) = Ad*(gl)jtM(g2) + jtM(gl)' (3.3) 

Considering jtM as a one-dimensional cochain of the Lie 
group G with the coefficients in IG *, we conclude from (3.3) 
that jt M is a cocycle.8 

The mapping <l>M is called a momentum mapping. A 
momentum mapping <l>M is called Ad*-equivariant provided 
jtM(g) = 0 for all geG. 

Let now a symplectic manifold M be a left G-space and 

L*WM=WM 
g , 

for any geG. In this case M is called a left Hamiltonian G
space if there exists a linear mapping 

q5 M: uelG--+q5 ':eC "" (M), 

such that 

i(U M)WM = dip ,:. 

Here a momentum mapping (iiM: M --+ IG * is given by the 
equality 

«iiM(m) lu) =-(p ':(m), 

for all meM, uelG. If the manifold Mis connected, then for 
any geG the following relation is valid: 

(iiMOL: = Ad*(g)o(iiM _ jiM(g), 

where jiM is a one-dimensional cocycle of the Lie group G 
with the coefficients in lG *. If for any geG jiM (g) = 0, then 
the momentum mapping (iiM is called Ad*-equivariant, 

Let M be a right Hamiltonian G-space and <l>M be a cor
responding momentum mapping. Suppose that x is a regular 
value of the mapping <l>M then the set M: =- <l>M - 1 (x) is a 
submanifold of M. Introduce the notation 

It is clear, that the submanifold M ~ is invariant with respect 
to the transformations R:, where geG". It can be easily 
shown, that G" is a closed subgroup of the Lie group G. 
Thus, the action RM of the Lie group G on M generates the 

action R M ~ of the Lie group G" , on M :, here for all geG" 
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M~OR M~ = R MO M~ t g g t , 

where tM~ is the inclusion mapping of M ~ into M. For all 
geG" the following relation is valid: 

where 

M' M'. M 
W "=.t "w . 

It can also be shown, that 

i( UM~)WM~ = 0, 

for all uE/G". Suppose that on the quotient set M" =.M ~ /G" 
the structure of a manifold can be introduced in such a way 

that the canonical projection 1"M~: M~ -+M" be a submer
sion on M ~. From Proposition 2.1 it then follows that on M" 
there exists a unique two-form wM

", which satisfies the con
dition 

M~ M~. M" 
W = 1" W • 

It is clear that the two-form wM
" is closed. It can be shown 

that from the condition 
M' 

i(x)w "= 0, 

where xETm (M ~), mEM~, it follows that 
M' 

X = U m ", 

for some uE/G". From here we see that the two-form w
M

" is 
nondegenerate. 

Thus, the manifold M x has a natural structure of a sym
plectic manifold. This symplectic manifold is called the re
duced symplectic manifold of the level x, and the procedure 
described above is called the reduction of the level x of the 
momentum mapping <l>M.5 A detailed description of the re
duction procedure may be found in Refs. 1,2,9, and 10. 

IV. STERNBERG CONSTRUCTION 

Let E(M,F,G,u) be a fiber bundle, associated with a 
principal fiber bundle P(M,G,1T) ,6,7 {( V;.tPi)} ie/ be an atlas 
of the fiber bundle P with the transition functions gik' and 
{( Vi,91i )} ieI be an atlas of the fiber bundle E with the same 
transition functions. Consider a mapping X: P X F --+ E, given 
locally by the relation 

XI1T-'( v,) xF (p,J) ='91 ;- 1(1T( P ),tPi1T( p) (p )1)· (4.1) 

Introduce on P X F the structure of a right G-space suppos
ing that 

R :XF( p,J) =. (p.g,g-11). (4.2) 

Note that 

X( p',J') = X(p,J), 

iff there exists an element gEG such that 

(p',J') = (p,J).g, 

besides, the mapping X is surjective. Thus, one can identify E 
with the quotient set P X F / G. It can be also shown that X is a 
submersion on P XF. 

Suppose now that M is a symplectic manifold, Fis a left 
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Hamiltonian G-space with an Ad*-equivariant momentum 
<l>F. Let r be a connection form of some connection in the 
principal fiber bundle P. Construct a two-form 

wPXF=.pr~1T*wM + pr";wF - d (pr";<I>Flpr~r). 

Proposition 4.1: For any geG, uE/G the following equali
ties are valid: 

D 

From Propositions 2.1 and 4.1 it follows that there exists 
a unique two-form WE on E which satisfies the condition 

(4.3) 

Theorem 4.1: If for any xE<I>F(F) and any point pEP 
from the equality 

i(X)(1T*WM 
- (xlr» =0, 

where xETp (P), and r is the curvature form of the connec
tion, given by the form r, it follows that x = U; for some 
uE/G, then the two-form WE defines on E the structure of a 
symplectic manifold. 

Proof: It is clear that the two-form WE is closed. Let us 
prove that it is nondegenerate. Suppose that 

i(x)wPXF = 0, (4.4) 

wherexET(pJ) (P XF). Using the explicit expression for the 
two-form wP x F, it can be shown that equality (4.4) is equiv
alent to the two equalities 

i(prp (x»wF + (d<l>Fli(prp• (x»r) = 0, (4.5) 

i(prp. (X»1T*WM 
- (i(prp (x»d<l>Flrp) 

- (<I>;li(prp• (x»dr) = 0. 

From (4.5) for any uE/G we obtain 

(i(prp (x) )d<l>F Iu) = (<1>;1 [i(prp. (x) )r,u]). 

Wherefrom it follows that 

(i(prp (x) )d<l>F 1 r p) = (<1>;1 [i(prp. (x) )r,rp 1>. 
Using (4.7) and the equality6,7 

dr+! [r,r] =r, 
from relation (4.6) we get 

(4.6) 

(4.7) 

i(prp• (X»1T*WM 
- (<I>;li(prp• (x»r) = 0. (4.8) 

If the condition of the Theorem we are proving is valid, then 
from (4.8) it follows that prp. (x) = U; for some uE1G. 
From equality (4.5) we then have prp (x) = - U;, hence 

U PXF 
X = (p,f)' 

Suppose now that 

i(x' )wE = 0, 

where X'ETe (E). Consider a point (p,J)E P XFsuch that 
X( p,]) = e, and choose a vector xET(p,f) (P XF) in such a 
way that X. (x) = x'. Then for any vector )lET( p,/) (P XF) 
we have 

wPXF(x,y) = wE(x',X. (y» = 0, 

hence 

i(x)wPXF = 0, 
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and x = Ur:J> for some uE1G. As 

XoR:XF=X, 

for any geG, then 

x'=X.(x) =0. 

Thus, the two-form WE is nondegenerate. D 
Sternberg3

•
4 considered the construction described 

above for the following special choice of the principal fiber 
bundle P and the connection in it. Let Q(N,G,p) be a princi
pal fiber bundle, and {) be a connection form on Q. Put 
M == T * (N) and denote by p N: T * (N) -+ N the canonical pro
jection. We shall consider T*(N) as a symplectic manifold 
with a natural symplectic structure. 1.2 Consider the induced 
fiber bundle P = P'tv (Q) with the connection form y==p"f.,Q{)' 
where (PN,PNQ) is the canonical homomorphism from the 
fiber bundle P to the fiber bundle Q. It can be shown that 
under such a choice of Q and y the condition of Theorem 4.1 
is valid. 

An alternative version of the Sternberg construction 
was given by Weinstein. 11 He used the reduction procedure 
to build the universal symplectic manifold independent of 
any connection (see also Ref. 12). Note, that his method can 
be used only in the case considered by Sternberg. 

In the case of an arbitrary symplectic manifold M there 
arises a question, if we may choose the connection y so that 
the condition of Theorem 4.1 be valid. An answer to this 
question is unknown to us. This question and related topics 
were discussed in Refs. 13, 14. 

v. REDUCTION OF ASSOCIATED FIBER BUNDLES 

Let Mbe a symplectic manifold, P(M,G,1T) be a princi
pal fiber bundle, F be a left Hamiltonian G-space with an 
Ad*-equivariant momentum (i)F, and ybe a connection form 
on P. Consider a fiber bundle E(M,F,G,u) , asociated with P. 
Suppose that the condition of Theorem 4.1 is valid, hence the 
two-form WE, given by relation (4.3), defines on E the struc
ture of a symplectic manifold. Let a right action of a Lie 
group H is also given on F, so that F is a right Hamiltonian 
H-space. Denote a corresponding momentum mapping by 
\IIF. We shall consider that the manifold F is connected, then 

(5.1) 

where v is a one-dimensional cocycle of the Lie group H 
with the coefficients in lH *. Suppose that for any geG and 
hER 

LFoRF=RFoL F 
g h h g' (5.2) 

and besides 

\IIFoL: = \IIF, 

(i)FoR{=(i)F. (5.3) 

Let {( Vj,lfj)} iel be an atlas of the fiber bundle P with 
the transition functions gjk, and {( Vj ,(jJ j )} iel be an atlas of 
the fiber bundle E with the same transition functions. Intro
duce on E a right action of the Lie group H in the following 
way. Let eEU- 1 (Vj ), then for any hER put 

R :(e) ==(jJ j;;(!> oR {0(jJjCT(e> (e). 

Using (5.2), it is easy to show that this definition is indepen-
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dent of the choice of a chart, and 

uoR: =U. 

Defining the mapping X: P XF-+Eby Eq. (4.1), we obtain 

XoR ~XF = R :oX, 

where 

R ~XF( p,j) == (p,j-h). 

We have denoted the right action of the Lie group H on P XF 
in the same manner as the right action of the Lie group G on 
P X F given by formula (4.2). In what follows, it is always 
clear from the context the action of which group we have in 
mind. 

Define a mapping \IIPXF: P XF-+1H*, putting 

\IIPXF==\IIFoprF· 

From (4.2) and (5.3) we get 

\liP X FoR :XF = \IIPXF, 

for all geG. From Proposition 2.1 it then follows that we can 
uniquely define the mapping \liE: E -+ lH *, which satisfies 
the condition 

\IIPXF = \IIEOX. 

Proposition 5.1: The action R E of the Lie group H de
fines on E the structure of a right Hamiltonian H-space with 
a momentum mapping \liE. The cocycle V'in the relation 

\IIEoR: = Ad*(h -1)o(\IIE + V'(h» 

coincides with the cocycle v from relation (5.1). D 
Let ,.1.E\IIF(F) , suppose that necessary conditions to per

form the reduction of a level A. of the momentum mapping 
\IIF are satisfied (see Sec. III). As the result of the reduction 
we get the symplectic manifold FA ==F .... IHA, where 
F .... ==\IIF-I(,.1.), 

HA =={hER IAd*(h -1)(,.1. + v(h» = A.}. 

Denote by LF~ the inclusion mapping of F .... into F. The sym

plectic two-form W FA on FA satisfies the condition 

F' F' * F' * F 
W "= L A wF = r " w ", (5.4) 

where rF~: F .... -+FA is the canoncial projection. 
From (5.3) it follows that the submanifold F .... is invar

iant with respect to the left action L F of the Lie group G on F. 

Thus the action L F generates the left action L F ~ of the Lie 
group G on F ..... Here for any geG 

LF~oL:~ = L :OLF~. 

From (5.2) it now follows that we can uniquely define the 
left action of L FA of the Lie group G on FA' satisfying the 
condition 

(5.5) 

for any geG. 

Proposition 5.2: The action L FA supplies FA with the 
structure of a left Hamiltonian G-space with an Ad*-equi
variant momentum mapping (i)F", given by the condition 

D 
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Proceed now to the consideration of the reduction of the 
level A of the momentum mapping 'I1E. It is clear that 
AE'I1E(E) and AE'I1PXF(P XF), here 

X('I1PXF- I (A» = 'I1E- I (A), 

and, besides, 

'I1PXF- I (A) = P X'I1F- I (A). 

It is easy to see that E ~ (M,F~,G,O'~), where 
E ~ ='I1E- I (A), O'~ =O'IE", is the fiber bundle, for which the 

set {( V; ,9' ~i) lief' where 

(5.6) 

is an atlas. It can be shown that the transition functions of 
the atlas {( Vi>9' ~i ) } ief coincide with g ik' hence, the fiber 
bundle E ~ is associated with the principal fiber bundle P. 
Introduce a mapping X~ :P X F ~ ..... E ~, locally given by the 
equality 

X~ 11T-'(Vi)XFA (p,j) =9' Ai I(tr( P),t/Ji1T(P) (p)1)· 

From the definition of the mapping X~ we get 

° PXFA EAO I (5.7) X L = LX .. , 

where LPXFA is the inclusion mapping of P XF~ into P XF, 

and LEA is the inclusion mapping of E ~ into E. 
From Proposition 5.1 it follows that the submanifold 

E ~ is invariant with respect to the restriction of the action 
R E to the subgroup H ... Hence, on E ~ there is given the 

right action REA of the Lie group H .. , satisfying the condi
tion 

for any hER ... It is clear that 

I REA I 
0' .. 0 h = 0' .. , 

hence, we can correctly and uniquely define the mapping 
0' .. : E .. =E ~/H ....... M, satisfying the condition 

where 'TEA: E ~ ..... E .. is the canonical projection. 
Let iE!, for any hER .. the mapping 9' ~i> given by the 

equality (5.6), satisfies the condition 

I oR EA _ R ViXF AO ' 
9' "i h - 9' "i> 

where R :iXFA(m,f) = (m,l-h). Hence, we can uniquely 
define the mapping 9' .. i:O' .. - I ( Vi ) ..... Vi X F .. , satisfying the 
condition 

(5.8) 

VXF' F' where 'T I "(m,j) =(m,'T "( f». From here we get the 
equality 

prvi09'M = 0' ... 

It can be shown, that the mapping 9'''i is a bijection. Intro
duce on E .. the manifold structure, requiring that for all iE! 
the mappings 9' .. i be diffeomorphisms. It is easy to under
stand that we have got a fiber bundle E .. (M,F .. ,G,O' .. ), for 
which the set {( Vi>9' .. i)} ieI is an atlas. Using (5.5) and 
(5.8), one may show that the transition functions ofthe atlas 
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{( Vi>9' .. i )} ieI coincide with gik, therefore, the fiber bundle 
E .. is associated with the principal fiber bundle P. 

So, we see that necessary conditions to perform the re
duction of the level A of the momentum mapping 'I1E are 
satisfied. The symplectic two-form (j)E" on the reduced sym
plectic manifold E .. satisfies the condition 

E' 
A* E). E~ 'T (j) = (j) , (5.9) 

E' E ' • E 
where (j)" = L " (j). Introducing the mapping 
X .. : P XF ....... E .. locally given by the condition 

X .. 11T-'( Vi) XF" (p,j) =9' .. I I(tr( P),t/Ji1T( p) (p) ·f), 

the following equality is valid: 

PXF' F' where'T "(m,j)=(m,'T "(f». 

(5.10) 

Theorem 5.1: If we define the two-form (j)PXF" by 

PXF" *-* M F ( -F (j) =prp7T'(j) + pr1,,(j) "- d pr1" ~ "Ipr~r), 
then the following equality is valid: 

Proof Using Eqs. (5.10), (5.9), and (5.7), we get 

PXF'. E PXF'. P F 
'T "X!(j) " = l "(j) x . (5.11 ) 

It is easy to show that the following equality is valid: 

PXF). PXF~ prpol = prp°'T . 

From here it follows that 

PXF' PxF' 
"·pr~r='T "·pr~r. (5.13) 

It is also easy to verify the validity ofthe equalities 

F' PxF' 
'T "oprF, = prF 0'T ". (5.15) 

" " 
Using Eqs. (5.14), (5.4), and (5.15), we have 

PXF'. F PXF'. F 
" pr1(j) = 'T "pr1" (j) ". (5.16) 

Analogously, 

( 5.17) 

From (5.11)-(5.13), (5.16), and (5.17) it follows that 

PXF:. * E" PXF:. PxF" 0 'T X .. (j) ='T (j) . 

Thus, we see that to construct the reduced symplectic 
manifoldE .. one may first, perform the reduction of the level 
A of the momentum mapping 'I1F, and then use the obtained 
symplectic manifold F .. in the Sternberg construction. 

From the point of view of the alternative version of the 
Sternberg construction given by Weinstein ll we may say 
that we have proven the commutativity of the reduction in 
stages. 

In the next paper we shall use Theorem 5.1 to perform 
the reduction of cotangent bundles. 
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The problem of gravity-gyroscopic waves, which are excited 
by the oscillations of a curve 

v. M. Kharik and U. D. Pletner 
Department of Mathematics. Physics Faculty of Moscow State University. 117234 Moscow. USSR 
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The problem of the oscillations of an ideal stratified rotating fluid, which are excited by a curve 
in the case when the distribution of pressure on both sides of curve is prescribed, is considered. 
The solution to the problem, as well as results about symmetry properties of the potentials used 
for the solution of such problems, is obtained. The question of the uniqueness of the solution is 
also considered. 

I. INTRODUCTION 

Problems of the dynamics of stratified fluids are now 
under consideration by many scientists. It is necessary to 
note that the general theoretical aspects of the mathematical 
models, which describe dynamics and mechanics of such 
fluids, have been analyzed due to the success of the modern 
theory of the differential equations. One may not see the 
same situation in the case of the concrete initial-boundary 
value problems, which may have explicit solutions. This type 
of problem can be useful in applications and can help bring 
about a deeper understanding of the general mathematical 
models of the physical phenomena in fluids. 

This paper continues research started in Refs. 1-5 and is 
connected to problems of the excitation of oscillations in 
stratified rotating fluids by oscillating curves. These works 
presented solutions to these problems. Such problems are 
connected with some questions in cryogenic fluid technolo
gy and oceanography. 

This paper presents the case when the distribution of 
pressure on both sides of a curve is prescribed. In this case 
uncommon boundary conditions (which include time de
rivatives) have appeared due to the structure of the potential 
theory for the equation to be considered later (see Ref. 6). 
The solution is obtained by using two potentials, which were 
developed in Ref. 3. 

II. THE DEFINITION OF "PROBLEM W" 

We shall consider flat movements of an ideal rotating 
stratified fluid as in Refs. 1-5. The consideration of such 
problems leads to the equation of gravity-gyroscopic waves 
in two-dimensional space (see, for example, Ref. 2): 

a
2 

V2U 2U 2 at 2 +t:Uo x,x, +a Ux,x, =0, (2.1) 

where V2 is Laplace operator in two-dimensional space with 
variables XI and X2, t:U~ is the square of the Waissala-Brunt 
frequency,5 and a is the Coriolis parameter. We note that in 
this paper we do not disucuss physical aspects of Eq. (2.1); 
we suggest that the reader see Ref. 6. We only remark that 
the values t:Uo and a are given constants and t:Uo#a. The 
function U(x,t) [x = (X I,X2)] is a streamfunction, and the 
components of the velocity vector v of the fluid particles can 
be represented by this function in the following expressions: 

VI = - Ux" V2 = Ux ,' 

Let us consider the curve 

r={(XI,X2): XI = XI (s), x2 = x2(s), se[O,/]}, 

which will be called curve r, in a fluid whose dynamics are 
described by Eq. (2.1), and orient curve r by setting its sides 
r+ and r- in the following way. Notice that we have no 
requirements for the size ofthe curve r (it can be a finite or 
infinite plane in the third dimension), because we consider 
only two-dimensional space. We denote the tangent vector at 
pointx(s) = (XI (S),X2(S» of the curve rbyr" and the nor
mal vector at x(s)er of the curve r by ii s • If we rotate rs for 
1T/2 counterclockwise we shall obtain ii s • We shall call the 
side of the curve r that we see by looking toward the vector 
iis by r+ and the opposite side of the curve r by r-. 

We assume that before time t = 0 there was no move
ment of fluid and curve r. After time t = 0, the pressure 
distributions on the two sides of the curve r are, in general, 
different. Mathematically it is equivalent to the prescription, 
on both sides r ±, of boundary conditions of the following 
uncommon kind (see, for example, Ref. 6) for the function 
U(x,t): 

(..IV,x U(x,t» I x = X(.')Er ± 

_(a
2 

au .. au 
= -a 2-a +t:Uocos(nsx l )-

t ns aX I 

+ a 2 cos(iisX2) au) I = cp ± (s,t). (2.2) 
aX2 x = X(S)Er ± 

Our assumptions require that the function U(x,t) must 
satisfy the following initial conditions: 

U(x,O) = u, (x,O) = O. (2.3) 

To select the unique solution to the problem we have to 
set, as in Ref. 5, the following conditions of regularity at 
infinity for the function U(x,t): 

ID ~U I <Adt)/lxl, ID ~Dxj U I <Ak (t)/lxI2, (2.4) 

for Ixi = (xi +xD I/2 .... + 00, where 

D kU_=_ak u 
, at k ' 

K= 1,2,' 

a 
DxU=- U, j= 1,2; 

J aX
j 

1422 J. Math. Phys. 31 (6), June 1990 0022-2488/90/061422-04$03.00 @ 1990 American Institute of Physics 1422 



                                                                                                                                    

and A k (t) and A k (t) are continuous non-negative functions 
oft. 

Since the geometry of the field has singular points at the 
ends of curve r, then we naturaliy assume that the function 
U(x,t) or its gradient may have singularities in the neighbor
hoods of the end points of curve r. We obtain the following 
conditions in the neighborhoods of the ends of the curve 
(exactly as, for instance, in Ref. 1) by considering more 
closely the possible character of these singularities. The 
function U(x,t) and its derivative Ut (x,t) are'bound in the 
neighborhoods of the end points of curve r. Other kinds of 
derivatives of this function, DXj U(X,t) , D ;Dxj U(x,t), behave 
like 

wherej = 1,2 and r l ,2 is the distance to the ends of curve r. 
Problem w.. Find the continuous function U(x,t) in the 

space for t>O, which has continuous derivative Ut (x,t) and 
satisfies Eq. (2.1) in the classical sense, in the space R 2'\r 
with initial conditions (2.3), boundary conditions (2.2) on 
the sides of curve r, and conditions of regularity at infinity 
(2.4), Moreover, the function U(x,t) must satisfy condi
tions (2.5) in the neighborhoods of the end points of curve 
r. 

III. THE CLASSICAL SOLUTION TO PROBLEM W 

To find the classical solution to problem W we need 
several important results, which will help us to obtain this 
solution and show some interesting properties of the poten
tials used to find explicit solutions to such problems. 1-5 

Let us give the following definitions. We shall say that a 
function v(s) belongs to the C j~ih) (r), which is given on the 
curve r, if the function d(S)V(S)EC(O,h)(r), where d(s) 
== Ix(s) - x(O) 1

112 lx(s) - X(/) 1
1/2

, X(O) = (XI (0),x2 (0», 
and x(/) = (XI (/),x2 (/»· The points x(O), x(/) are end 
points of the curve rand Ix(s) - x(O) I, Ix(s) - x(/) I are 
distances from point x(s) = (XI (s),x2(s» to the end points 
of the curve r . We denote the sets offunctions 

C(O)[O,T;C(O,h)(r) ] 

=={,u(S,t)EC(O)[O,t;C(O,h)(r)] : 

f-l(s,O) = f-l, (s,O) = o}, 

C62) [O,T;Cj~ih)(r)] 

== {f-l(S,t)EC(2) [O,T;C i~2h) (r) ]: 

flf-l(u,t)dU=O, tE[O,Tl}. 

Let us consider the dynamic logarithmic potential and 
the angle potential for Eq. (2.1) (see Ref. 3): 

V[f-l ](x,t) = i f-l(s,t)lnlx - y(s) Ids + f i f-l(s,t - '1') 

xJ...[I_cos[lx-Y(S)ln r]]dsdr, (3.1) 
'1' Ix - y(s)1 

T[V](x,t) = i v(s,t)'I'(x,s)ds 

-f i v(s,t - r)<I>['I'(x,s);r]ds dr, (3.2) 

where 

Ixl = (x~ +XDI/2, Ixl. = (a2x~ +(()~X~)1/2, 
y = (vI (S)'Y2(S»Er, 

<I>(5,t) = f· «(()~ sin2 0 + a 2 cos2 0) 1/2 

X sin{(()~ sin2 0 + a 2 cos2 0) 1/2t }dO, 

and 'I'(x,s) is the kernel of the angle potential, which is de
fined in the following way7: 

cos 'I' (x,s) = X I - YI (s), sin 'I' (x,s) = X2 - h(s) . 
Ix - y(s) I Ix - y(s) I 

To assure single-valuedness of the function (3.2) we 
shall require, as in Ref. 3, 

(1'V)L,(rJ = i v(s,t)ds = 0. 

We assume that the curve rEA (I,A), o<"t < 1.8 We may 
easily prove the following lemma by using the results of the 
theory of dynamic potentials for Eq. (2.1) developed in Ref. 
3. 

Lemma 1: If 

rEA (I,A), v(s,t)'f-l(S,t)EC62)[0,oo;q~2h)(r)], 

then the following hold. 
(1) The potentials T[v](x,t), V[,u](x,t) satisfy Eq. 

(2.1) in the field R 2,\r, the initial conditions (2.3), the con
ditions of regularity at infinity (2.4), and the conditions 
(2.5) in the neighborhood of the end points of the curve r, 
and are continuous inR 2,\r(thepotential V[,ul (x,1) is con
tinuous in R 2). 

(2) If the point x(s) is not the end point of the curve r, 
then 

lim StxT[,u](x,t)=a.aV[f-l](X,t)= r f-l(u,t) I sinO(s,u) du+(a2-(()~) (' r f-l(u,t-r)cos'l'(s,u) 
X-X(S)Er± 'S Jr x(s) - y(u) I Jo Jr 

1423 

X sin 'I'(s,u) 'sin{r[ (()~ sin2 'I'(s,u) + a 2 cos2 'I' (s,u) 1 1/2} cos O(s,u) du dr, 
Ix(s) - y(u) I 
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where V[jl ](x,t) is the value of the potential V[jl] on the 
curve r, ()(s,O') is the angle measured counterclockwise be
tween the vectors iis and x (s)y(cl>, to the point 

and 

. . 
Ix(s) - yeO') I'SlO ()(s,O') = - 1'sx(s)Y(O') 

jl(s,t) = f (t -1')/-L(s,1')d1', 

v(s,t) = f (t - 1') ·v(s,1')d1'. 

Later we shall need one more result, which we formulate 
in a kind of lemma. 

Lemma 2: If 

rEA (I,A), V(S,t)EC&2)[0,00;q~ih)(r>], 

and a point xes) is not the end point of the curve r, then 

lim fIX V [ii] (x,t) 
X-X(S)Er ± 

lim ~ T[v](x,t) 
X-X(S)Er ± a1's 

= ± Tr(E - waS"",!")(E - aSal' )v(s,t) 

+D [v](s,t), 

where 

D[ -] ( ) -1-( ) cos ()(s,O') d v s,t - v O',t 0' 
r Ix(s) - yeO') I 

i'1- Ix(s) - yeO') I· - V(O',t -1') -----'-
o r Ix(s) - yeO') I 

. ( Ix(s) - yeO') I.) 
X SlO l' -----

Ix(s) - yeO') I 

X cos ()(s,O') dO'd1', 
Ix(s) - yeO') I 

v(s,t) = (:t22 + w~ ) (:t22 + a 2
) f (t - 1')v(s,1')d1', 

and (E - /3SPI' ) is an operator defined by the expressions 

(E - /3SPI' )v(t) = v(t) - /3 f S(f3' (t - 1'»'v( 1')d1', 

S(/3t) = - (PI J. (S) ds, (3.3) 
Jo s 

where J. (S) is the Bessel function of the first order. 
Proof Let us consider the system of equations 

( a22+W~)UX = -Vx" (a22+a2)Ux,=Vx.(3.4) 
at ' - at -, 

This system was used in Ref. 3 for the construction of the 
dynamic angle potential and plays the same role for Eq. 
(2.1) as the Cauchy-Riemann system for the Laplace equa
tion. One can show by direct calculation that the functions 

v = V[v] (x,t), U = T[ vo] (x,t), 

{V(S,t)EC 62
) [O,oo;C l~ih) (r) ], 

vo(s,t) = f (t - 1')V(s,1')d1'} , 
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satisfy the system of equations (3.3) in R 2 \ r. It can be 
shown by using this fact that, for arbitrary xER 2\r, 

f,x V [ii](x,t) = - ~ T[v](x,t). 
a1's 

It is important for later consideration that 

V(S,t)EC(O) [0, oo;C (O,h) (r)]. 

We use that and the results of Ref. 3 to obtain the formula 

lim fIX V [ii] (x,t) 
X_X(S)Er± 

= lim ~T[v](x,t) 
X_X(S)Er ± a1's 

= ± Tr(E - w~",,,,.)(E - aJal • )v(s,t) + D [v]. 

One can show by using the Laplace transformation with re
spect to t that 

± Tr(E - W~'v"I' ) (E - aJal • )V(s,t) 

= ± (E - WaS",,,I' ) (E - aSal' )v(s,t), 

where the operator (E - /3SPI') is the defined by formula 
(3.3) and 

(E - /3Jpl ' )v(t) = v(t) - /3 f J.(f3(t - 1'»v( 1')d1'. 

The lemma has thus been proved. 
Lemmas 1 and 2 show some symmetry properties of the 

operators V(x,t) and T(x,t). 
Let us make several remarks. Everywhere later we shall 

assume that rEA (2,A) and the functions rp ± (s,t) in the 
boundary conditions (2.2) belong to C(O)[O, oo;C (O,h) (r)] 
and satisfy the following condition of the correspondence: 

L [rp+(s,t) -rp_(s,t)]ds=O, tE[O,oo). (3.5) 

We shall look for a solution to problem W of the kind 

U(x,t) = V[ii] (x,t) + T[,u] (x,t), (3.6) 

where v(s,t),jl(S,t)EC62) [O,oo;q~ih)(r)]. According to 
Lemma 1 the function U(x,t) satisfies all the conditions of 
problem W except the boundary conditions (2.2). We ob
tain the following system of integral equations for functions 
/-L and v by using Lemmas 1 and 2: 

a-
as V [/-L](s,t) + Tr(E - waS",,,,.)(E - aSal' )v(s,t) 

+ D [v] (s,t) = rp+(s,t), 
(3.7) 

a-
- V[u](s,t) -Tr(E - waS,v ,.)(E - aSal' )v(s,t) 
as r " 

+ D [ii ](s,t) = rp _ (s,t). 

By adding and subtracting Eqs. (3.7) we may obtain 

(E - waS",,,,.)(E - aSal' )v(s,t) 

= (l/2Tr)(rp+(s,t) -rp_(s,t», (3.8) 

i. V [/-L ](s,t) = 1- [rp + (s,t) + rp _ (s,t)] - D [ii ](s,t). 
as 2 

(3.9) 
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We can find the explicit solution to Eq. (3.8). It is 

v(s,t) = (11217') (E - waf",,,t. ) (E - aJat • ) 

X(9?+(s,t) -9?_(s,t». 

This solution belongs to the C f/) [0,00 iC ~~i") (n ], because 
the functions 9? ± (S,t)EC(O)[O, ooiC (O.h) (n]' therefore the 
function 

V(S,t)EC(O) [0, 00 iC(O,a) (n]. 

Notice that the operators (E - waf",,,t. ). (E - aJat .) and 
(E - woS"",t. ) (E - aSat. ) appear often in the solutions to 
problems of gravity-gyroscopic waves. 

One can show by using the earlier representation of the 
operator D[ v] and rEA (2,A) that, for arbitrary functions 
17 (S,t)EC (0) [0,00 iC (O.h) (n ], 

D [17 ](S,t)EC(O)[O, ooiC (O,A) (r». 
Thus we reduce the problem of classical solvability to 

the problem of the solvability of Eq. (3.8), which has the 
right side from C(O)[O,ooiC(O'Y)(n]' r = min{a",n in the 
set off unctions C ~2) [0,00 iC ~~ih) (n ]. This equation was 
carefully considered in Ref. 4. We therefore shall not repeat 
this work, but we shall formulate the final result. 

Lemma 3: Equation (3.9) has a unique solution from 
the set off unctions C ~2) [0, 00 iq~ih) (n] for an arbitrary 
right side chosen from the set of functions C (0) [0,00 ; 
C(O'Y)(n ]. 

In summary, as a result of all the lemmas we obtain the 
following theorem. 

Theorem 1: Problem W has the classic solution (3.6), 
where 

v(s,t) = (1/217') (E - waf{~"t.) (E - aJa,.) 

X [9?+(s,t) -9?_(s,t)] 

and,u(s,t) is the solution ofEq. (3.9) from the set offunc
tions C ~2) [O,oo;C l~ih) (n ] for arbitrary v ± (s,t) 
EC (0) [O,oo;C (O,a) (r) ], which satisfy the conditions of cor
respondence (3.5). 

Let us consider the question of uniqueness of the solu
tion (3.6). We may obtain the energetic relation for the 
equation (2.1) by the product of Eq. (2.1) and Ut and by 
carrying out the integration of some compact field D in R 2, 

which has the smooth boundary aD: 

:t {~ IIV U,IILD) + ~~ II Ux , IILDl + ~2 II Ux , IILDl } 

= r (JV,x' U) U, deaD), JaD 
where Ii in the expression for the,A/',x is the external normal 
vector to the boundary of the field D. 

Following Ref. 4 we obtain the next theorem. 
Theorem 2: Solution (3.6) to problem W is the unique 

solution. 

IV. ANALYSIS OF THE RESULTS 

We should note that we have considered the general 
form ofthe curve r. Ifsome scientists or engineers use the 
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results of this paper and consider the specific forms of the 
curve, then problem W can be solved more easily. 

For example, if we replace curve r by the line 

r O=:{(X I,X2): XI = S'cos 9?, 

X 2 = s'sin 9?, - 1 ";;;s";;; l}, q?E[0,17'12], 

where 9? is angle between the axis OX I and the line ro then 
the second equation of the system (3.8) and (3.9) may be 
written in the form 

II ,u(u,t) du= -~ [9?+(s,t) +9?_(s,t)]. (4.1) 
-I u-s 2 

This equation was studied in Refs. 1 and 2 and has the explic
it unique solution, in the set of the functions C ~2) [0,00; 
C\~ih)(n ], 

,u(s,t) =_1_ (1-r)-1/2I
1 

(1-5
2

)1/2 

217' -I 5 - s 

X [9?+(s,t) +9?_(s,t)]d5' (4.2) 

One can prove the following theorem by using our remark, 
Theorem 1, and Theorem 2. 

Theorem 3: In the case where curve r is replaced by the 
line r 0' problem W has the explicit unique solution defined 
by the expression 

U(x,t) = V[v](x,t) + T[,u](x,t), (4.3) 

where 

v(s,!) = (1/217') (E - waf"",t.) (E - aJa ,.) 

X [9?+(s,t) -9?_(s,t)] 

and ,u(s,t) is defined by the expression (4.2), for arbitrary 

9? ± (s,!) EC (0) [O,oo;C (O.k) (n]. 
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Conserved quantities and symmetries of the KP equation from the point of view of the Sato 
theory that provides a unifying approach to soliton equations is studied. Conserved quantities 
are derived from the generalized Lax equations. Some reductions of the KP hierarchy such as 
KdV, Boussinesq, a coupled KdV, and Sawada-Kotera equation are also considered. By 
expansion of the squared eigenfunctions of the Lax equations in terms of the T function, 
symmetries of the KP equations are obtained. The relationship of this procedure to the two
dimensional recursion operator newly found by Fokas and Santini is discussed. 

I. INTRODUCTION 

The discovery of the inverse scattering transform (1ST) 
for the Korteweg-deVries (KdV) equation was a big break
through in the analysis of nonlinear evolution equations. I 
Since then, many soliton equations have been revealed to be 
exactly solvable by the method. A key step of the finding was 
in the calculation of the conserved quantities of the equation. 
Miura succeeded in proving the existence of an infinite num
ber of conserved quantities by using the transformation 
between the KdV and the modified KdV equations, which is 
now called the Miura transformation.2 The transformation 
actually gave a hint to derive the eigenvalue problem of the 
1ST for the KdV equation. 

Conserved quantities are closely related to symmetries 
of equations. The existence of an infinite number of con
served quantities or symmetries is a widely accepted defini
tion of complete integrability of equations. 3 We now know 
that most of the soliton equations possess such properties. 
Extension of the concept to equations in the higher-dimen
sional case has also been done. Fokas and Santini proved the 
existence of the recursion operator which generates infinite
ly many symmetries for the Kadomtsev-Petviashvili (KP) 
equation.4

-6 

Besides the 1ST, there are several analytical methods for 
obtaining solutions of soliton equations. In Hirota's method, 
we transform an equation into a bilinear form, from which 
we can get soliton solutions successively by means of a kind 
of perturbational technique. The Backlund transformation 
is also employed to obtain solutions from a known solution 
of the concerned equation. The existence of such analytical 
methods reflects a rich algebraic structure of soliton equa
tions. In 1981, based on algebraic analysis, Sato presented a 
theory that provides a unified description of the soliton 
equations. 7-9 We call it the Sato theory hereafter. The origin 
of the Sato theory was the discovery that there is a bijection 
between a class of microdifferential operators and the solu
tion space of soliton equations that is seen as a Grassmann 
manifold. Time development of the coefficients ofmicrodif
ferential operators are governed either by the Sato equation 
or by the generalized Lax equations. The Sato equation is 

solved by means of the T function, which closely relates to 
the representation theory of groups. It satisfies a certain 
class of bilinear equations obtained from Plucker's relations. 
The equations are called the KP hierarchy, in which the KP 
equation is the simplest one. 

The Sato theory also clarifies the relationship among the 
1ST, Hirota's method, and the Backlund transformation. It 
may be expected that the theory is also a powerful tool to 
understand the algebraic structure of soliton equations. Mo
tivated by this expectation, we investigate the symmetry 
properties of soliton equations based on the Sato theory. 

In Sec. II, we give a brief introduction of the Sato theory. 
We first present the generalized Lax equation, which is writ
ten by a microdifferential operator. We see that the eigen
function of the linear system can be expressed by the T func
tion, which satisfies all of the KP hierarchy. We then briefly 
mention the reduction procedure of the hierarchy. The in
troduction of infinitely many time variables in the Sato theo
ry helps to understand the existence of an infinite number of 
conserved quantities of soliton equations. In Sec. III, we give 
the definition of symmetries, recursion operators, and con
served quantities of nonlinear evolution equations in one
spatial and one-temporal dimensions. We also refer to the 
extension of these quantities to the higher-dimensional case. 
In Sec. IV, we show that the conservation laws for the KP 
hierarchy are naturally derived from the generalized Lax 
equations. Ifwe perform suitable reductions of the KP hier
archy, we obtain a series of equations such as the KdV, the 
Boussinesq, a coupled KdV, and the Sawada-Kotera equa
tions. The conservation laws for these equations are also ob
tained by the reduction procedure. 

As mentioned before, the existence of the conserved 
quantities is closely related to that of the symmetries. For the 
KdV equation, the squared eigenfunction and their corre
sponding linear operator play an important role to obtain 
symmetries. We show in Sec. V that the same situation holds 
for the KP equation. The squared eigenfunction can be ex
pressed as a series expansion whose coefficients are differen
tial polynomials obtained from the microdifferential opera
tor. From this fact we can get a series of commuting 
symmetries of the KP equation. The existence of an infinite 
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number of symmetries indicates that of the recursion opera
tor. Finally in Sec. VI, we discuss the relationship between 
our result and the recursion scheme for symmetries of the 
KP equation which has been obtained by Fokas and Santini. 

II. SA TO THEORY 

Let us introduce a microdifferential operator, 

L = a + U2 a -I + u3 a -2 + U4 a -3 + ... , (2.1) 

where a denotesalax, and Un n = 2,3, ... , arefunctionsinx 
and infinitely many time variables t = (t1,t2,t3,t4, ... ).1t is 
noted that t 1 is identified with x. We define B n as the differ
ential part of L n. For example, 

BI=a, 

B2 = a 2 + 2u2, 

B3 = a 3 + 3U2 a + 3u3 + 3u2,x' 

B4 = a 4 + 4u2 a
2 + (4u3 + 6u2,x)a 

(2.2a) 

(2.2b) 

(2.2c) 

+ 4u4 + 6u3,x + 4U2,xx + 6u~, (2.2d) 

where subscript x denotes partial differentiation in x. 
Consider a system of linear equations for an eigenfunc-

tion "", 

L",,=Ar/J, 

a -a r/J = Bn r/J, n = 1,2, .... 
tn 

(2.3) 

(2.4) 

From the compatibility condition of Eqs. (2.3) and (2.4), 
we have 

aL 
-= [Bn,L] =BnL-LBn, 
atn 

or equivalently 

(2.5) 

aBm aBn 
---= [Bn,Bm ]. (2.6) 
atn atm 

The KP hierarchy are obtained from Eqs. (2.5) or (2.6). 
Especially, ifn = 2andm = 3 are taken, Eq. (2.6) gives the 
KP equation itself, 

~ (aU2 _ J... a 3
u2 _ 3U2 au2) _1.- a

2
u2 = O. (2.7) 

ax at3 4 ax3 ax 4 ati 

The linear system, Eqs. (2.3) and (2.4), has a formal 
solution of the form, 

r/J = (I + j~1 WjA -j)exp g(t,A.), 

where 
00 

g(t,A.) = I tnA n, 
n=1 

and the w/s are related to the u/s as 

(2.8) 

(2.9) 

(2.1Oa) 

(2.1Ob) 

(2.1Oc) 

From the theory of solution space of the KP hierarchy, 

1427 J. Math. Phys., Vol. 31, No.6, June 1990 

i.e., the theory of the Grassmann manifold and 7' function, it 
is shown that Wj is expressed as 

Wj = [1/7'(t) ]Pj ( - CJ)7'(t), (2.11) 

wherepj,j = 1,2, ... , are polynomials defined by 

exp Ctl tnA n) = j~/j(t)Aj, (2.12) 

and CJ is a differential operator given by 

- (a 1 a 1 a ) 
a = at:'2 at

2 
'3 at

3 
,... . (2.l3 ) 

Then we find that the eigenfunction can be written in terms 
of the 7' function as 

(2.14 ) 

From Eqs. (2.4), (2.10), and (2.14), we see that the Un are 
also written in 7' and its derivatives; for example, 

(2.15a) 

(2.15b) 

Thus the KP hierarchy can be rewritten into a set of nonlin
ear differential equations for a single function 7'. According 
to Ref. 10, the 7' function satisfies 

for any y = (y 1 ,Y2'Y3'''')' where we have used Hirota's opera
tors defined by 

Dja'b = (~_~)ma(t)b(t')lt=t' 
atj at; 

am 
=-a(tj +sj)b(tj -sj)ls=o, 

asj J 

(2.17) 

and 

- (1 1 ) D= D1'2D2'''''"7;Dn, .... (2.18 ) 

Equation (2.16) includes 

(D i + 3D ~ - 4D1D3) 7" 7' = 0, (2.19) 

which is the bilinear form of the KP equation. 
Instead of the linear problem for r/J, we can consider that 

for the adjoint wave function r/J*, which is given by 

r/J* = (1 + j~1 wjA -j)exp{ - g(t,A)}, (2.20) 

with 

or 

(2.21) 

r/J* = 7'(t 1 + 1/ A,t2 + l/U 2, ... ) exp{ _ g(t,A.)}. 
7'(tI,t2, .. · ) 

(2.22) 

The linear problem for r/J* is written as 
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L ."'. = ;"",., 

~ .1 •• = - B *.1 •• 

a Of' nOf' , 
tn 

(2.23) 

(2.24) 

where L • is adjoint of Land B ~ is the differential part of 
(L .) n. If we demand that 'T does not depend on t(,t2(,t3(,'" 
for a positive integer t, the system of nonlinear equations 
given by the compatibility condition of the linear problem 
(2.3) and (2.4) is called the {'reduction of the KP hierarchy. 
In this case, '" satisfies 

~ '" = ;., ""', at" 

B ,,'" = ;., "",. 
The two-reduction includes the KdV equation 

aU2 _..!... a 3
u2 _ 3U2 aU2 = 0, 

at3 4 ax3 ax 

(2.25) 

(2.26) 

(2.27) 

and the three-reduction does the Boussinesq-like equation 

3 a
2

U2 + a 4
U2 + 6 a

2
u2 = 0, (2.28) 

at~ ax4 ax2 

which reduces to the Boussinesq equation by means of a 
suitable variable transformation. Moreover, the four-reduc
tion includes 

aU2 _ a
3
u2 _ 3 a

2
u3 _ 3 aU4 _ 6U2 aU2 = 0, (2.29a) 

at3 ax3 ax2 ax ax 

aU3 + ~ a 4U2 + 2 a 3U3 + ~ a 2U4 + ~ U
2 

a 2U2 
at3 4 ax4 ax3 2 ax2 2 ax2 

+ ~ (au2)2 + 3u2 aU3 + 3 aU2 U3 = 0, (2.29b) 
2ax ax ax 

aU4 3 a5U2 3 a 4u3 1 a 3u4 3 a3U2 ---------------u2 --
at3 8 ax5 4 ax4 4 ax3 4 ax3 

_ ~ aU2 a
2
u2 + 3u

2 
a2U3 _ ~ aU2 aU3 _ ~ 

4 ax ax2 ax2 2 ax ax 2 

X a 2U2 + 6 aU4 3 aU3 + 9 2 aU2 - 0 (2 29 ) --2 u3 u2-+ u3- u2 --, . c 
ax ax ax ax 

which reduce to a coupled KdV equation II 

au 1 a 3u au a 2 
-=--+3u-+3-( -¢ +W), 
at3 4 ax3 ax ax 

a¢ = _..!... a
3
¢ -3u a¢, 

at3 2 ax3 ax 

aw = _..!... a
3
w _ 3u aw , 

at3 2 ax3 ax 

by rewriting 

(2.30a) 

(2.30b) 

(2.30c) 

(2.31a) 

(2.31b) 

(2.31c) 

There exists another hierarchy which is called the BKP 
hierarchy. \0 The BKP hierarchy is the system of nonlinear 
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differential equation.s obtained from the linear problem 
which has the same form as Eqs. (2.3) and (2.4), but in
cludes only the odd time variables t l, t3, ts,'" and is imposed 
by the constraint that the constant terms of B n for 
n = 1,3,5, ... should vanish. The three-reduction of the BKP 
hierarchy includes the Sawada-Kotera equation, 

aU2 1 5 
-= --u --U2U2 aX

5 
9 2,xxxxx 3 ,xxx 

55 2 -"3 U2,xU2,xx - U2U2,x· (2.32) 

For further details of the Sato theory, a reader may refer to 
Ref. 9. 

III. CONSERVED QUANTITIES AND SYMMETRIES 

We here give a brief survey of conserved quantities and 
symmetries of the 1 + 1 (say x and t)-dimensional nonlinear 
evolution equations. Consider an evolution equation, 

u, = K(u), (3.1) 

where K is a functional of u. The following equation is called 
the linearized equation of Eq. (3.1): 

S, = K'(u) [S], (3.2) 

where K' (u) [S] means the Frechet derivative of K at the 
point u in the direction of S, i.e., 

K'(u) [S] = !..-K(u + ES) I . 
aE .-=0 

(3.3 ) 

A functional S(u) satisfying Eq. (3.2) is called a symmetry. 
From the equation 

s, =S'[ud, 

it follows that a symmetry S must satisfy 

[S,K] ::S'[K] - K'[S] = O. 

An operator satisfying 

R'[K] + [R,K'] =0 

(3.4 ) 

(3.5) 

(3.6) 

is called a recursion operator. It is easily shown that recur
sion operators maps symmetries into symmetries. 

A functional I is a conserved quantity, iff 

I, = 0 (3.7) 

or 

I'[u/ ] =I'[K] = (gradI,K) =0, 

where 

(3.8) 

(f,g):: f fg dx. (3.9) 

Differentiating this equation in the arbitrary direction v, it 
follows that y is the gradient of a conserved quantity I iff 

y[K] + K'*[y] = 0 (3.10) 

and 

r=Y'*, (3.11) 

where the asterisk denotes the adjoint. The functional y is 
called a conserved covariant. The adjoint R * of R, which is 
often called the squared eigenfunction operator, maps con
served covariants into conserved covariants. The quantity p 
satisfying 
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p,=divJ, (3.12) 

is called a conserved density. Obviously, S p dx is a con
served quantity. For further details of symmetries and con
served quantities, a reader may refer to Ref. 3. The recursion 
operator plays an important role in the theory for equations 
in one time and one spatial variable (1 + 1). This motivated 
the research for recursion operators for equations in one 
time and two spatial variables (2 + 1). Fokas and Santini 
succeeded in obtaining it for the KP equation.4

-6 They con
sidered the equation as a reduction of a 3 + 1 system, i.e., a 
system in the variables x, t, Y I' Y2' The notions of symmetries, 
conserved covariants, and recursion operator are general
ized to the extended 3 + 1 case by introducing a new suitable 
bilinear form and a directional derivative for 3 + 1 quanti
ties. Then they discovered an extended recursion operator 
mapping symmetries to symmetries. The adjoint of the re
cursion operator in the extended sense maps conserved co
variants into conserved covariants. Finally, by taking the 
limit Yz -+ YI of extended symmetries and conserved covar
iants, they obtained symmetries and conserved covariants of 
the KP equation in the usual sense, which satisfy Eqs. (3.2) 
and (3.10), respectively. 

IV. CONSERVED DENSITIES OF KP HIERARCHY 

Let us expand a( = a lax) in powers of the microdiffer
ential operator L, 

a = L + u\I)L -I + uil)L -2 + uil)L -3 + .... (4.1) 

The coefficients uJ I) are determined by comparing Eq. (4.1) 
with Eq. (2.1). In the Appendix, the list of uJ I) is given for 
1 <.j<.7. Applying Eq. (4.1) on the eigenfunction", and us
ing Eq. (2.3), we have 

a", '" u( I) '" -=A"'+ L _i_. , (4.2) 
ax j~ I Ai 

which gives 

a '" u(\) 

-log "'=A + L _i_ .. 
ax j~1 Ai 

(4.3) 

We now define d l
) by 

'" u(1) a 
dl)= L _i_. = -log'" - A. 

j~ I Ai ax 
(4.4) 

Differentiating Eq. (4.4) with respect to one of the time vari
ables, say tn' we obtain the formula of conservation law, 

-=- -log"'. ad I) a ( a ) 

atn ax atn 

(4.5) 

Each uJ I) gives a conserved density of the KP hierarchy. We 
shall show later that the conserved densities of several soli
ton equations are derived from uJ I) through the reduction 
procedure. 

We may consider conservation laws in the other direc
tions. Let us expand Bm in powers of L, 

Bm = L m + u\m)L -I + uim)L -2 + uim)L -3 + .... 
(4.6) 

Applying Eq. (4.6) on "', we obtain 
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a.l• '" u(m).I. 
-'" =A m",+ L -j-."', 
atm j~ 1 Ai 

(4.7) 

from which we find that 

'" u~m) a 
u(m) = L _i_. = --log'" - Am 

j~ I Ai atm 
(4.8) 

satisfies the conservation law 

au(m) = ~ (~log "') . 
atn atm atn 

(4.9) 

In the Appendix, we give the list of u;m) for 2<.m<.5 and 
14<.8-m. 

It is possible to express uJm) in a compact form by means 
oftherfunction. SubstitutingEq. (2.14) intoEq. (4.8), we 
obtain 

(m) _ a {I (1 1) 
u -atm ogrt l -;:,t2 - U2 "" 

-log r(tl,t2, ... ) + '~I t(A '} - A m 

= f. ~ {Pj( -;9) log r}, 
j~ I atm Ai 

which gives 

(4.10) 

a -
u(m) =--p.( -a)logr. (4.11) 

i atm i 

By using a property of the polynomial Pj (t), we can show 
that 

( 4.12) 

We now derive the conserved densities of the KP Eq. 
(2.7) from uJI) obtained in the above. Since Eq. (2.7) is 
written only in terms of U2, we have to eliminate U3, U4 , ••• 

from uJ I). For the purpose, we employ Eq. (2.5) with n = 2. 
Equating the coefficients of a -j,j = 1,2,3, ... , we obtain 

U2.y = 2u3.x + U2.xx ' 

U3.y = 2u4•x + U3.xx + 2U2U2.x ' 

U4•y = 2us.x + U4•xx - 2U2U2.xx + 4U3U2.x ' 

(4.13a) 

(4.13b) 

(4.13c) 

( 4.13d) 

where we have changed the variable t2 into Y for conven
ience. From Eqs. (4.13), we have 

U3 = !a; I U2.y - !u,.x' 

I 2 + I + la -2 I U4 = - 2U2 "U2.xx "x U2.yy - lU2.y ' 

Us = - u 2a; I U2.y + ~U2U2.x - -AU2.xxx + ~U2.xy 
+ -Aa x- 3U2.yyy - ~a ; I U2.yy + !a; I (U~ ) y' 

U6 = !U~ + ~(axU2)2 - iU2 a x-2U2.yy - !(a; I U2.y )2 

(4.14a) 

(4.14b) 

(4.14c) 

+ i a x- I (U2 a; IU2.yy ) + {2u2 a; IU2.y - ~(U~)x 

+ I 3} + {I a -4 I a- 2 
11,u2.xxx - 16U2.xy x 16 x U2•yyy - g x U2.yy 
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- !U2,Y +! a.,,-2(uDy -! a ;2U2,yy + iu~ + !U2,YY}Y' 

(4.14d) 

where a ; 1 denotes the integration with respect to x. Substi
tution ofEqs. (4.14) into of) gives 

0'\1) = - U2, 

O'r) = -! a; IU2,y + !u2,x, 

0'(\) - IU2 IU + (IU 1 a -2U ) 3 - - ~ 2 - ~ 2,xx 2 2 - 4 x 2,y y' 

0'11) = -iU2a;IU2,y -2a;IUu~)y +~(u~)x 

( 4.15a) 

(4.15b) 

(4.15c) 

+!a;3U2 ,yyy -!a;IU2,yy +iU2,xy -!a;l(u~)y 

la-I 1 +I( 2) - Ii x U2,YY - lIU2.xxx 4 U2 x' ( 4.15d) 

which are the conserved densities of the KP equation. 
We next derive the conserved densities of the equations 

obtained from the KP hierarchy through the reduction pro
cedure. The first example is the KdV Eq. (2.27). Since Eq. 
(2.27) is included in the two-reduction of the KP hierarchy, 
it holds that L 2 = B2• This condition demands that all the 
coefficients of a-I ,j > 0 in L 2 should be zero. Hence we have 

U3 = - !U2,x' 

u4 = !U2,xx - !U~ , 

Us = - Au2,xxx + ~U2U2,x' 
u6 = -hU2,xxxx - iU2UZ,xx - -\}uL + !uL 

Substituting Eqs. (4.16) into O'J I), we obtain 

0'\1) - u2, 

0'1
1

) = - !uz,x' 

O'~I) = - (u~/2 + uz.xx /4), 

0'1
1

) = (U2,xx/8 + u~/2)x' 
(\) _ u~ . uL (3U~ u2,xx) 

0'5 -----+ --+-- , 
2 8 8 16 xx 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

(4.17a) 

(4.17b) 

( 4.17c) 

(4.17d) 

(4.17e) 

which are conserved densities of the KdV equation. We note 
that trivial conserved densities appear at two intervals. This 
fact can be explained by Eq. (4.12). In the case of tceduc
tion, l' does not depend on t; U; ... ,nt; ... . Therefore we have 

1 nf-I aO'Cfl) . 
(I) ~ n -} 12 

O'nf =- £.. ---, n= , , .... 
nt'j=l atj 

(4.18 ) 

By means of Eq. (4.7), the above equation reduces to 

(I) _ 1 a (nf - 1 U) ) 
0' --- 0'. nf L? a .L nf -} , 

n( x }= 1 

( 4.19) 

which shows that the trivial conserved densities of the equa
tions in the t' reduction of the KP hierarchy appear at t' 
intervals. 

The second example is the Boussinesq-like Eq. (2.28). 
For this equation, we have the condition L 3 = B3 , which 
yields 
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u4 = - u3,x - !u2,xx - u~, 

Us = ~U3,xx + !u2,xxx + 2u2uZ,x - 2U2U3, 

u6 = - ju3,xxx + 4u3,xU2 - iju2,xxxx - u2UZ,xx 

(4.20a) 

(4.20b) 

(4.2Oc) 

Substituting Eq. ( 4.20) into O'J \), noticing 
U3 = !a; IU2,t, - !u2,x and introducing u = a; IU2.t" we ob
tain the conserved densities ofEq. (2.28); 

0'\1) = - u2 , 

0'(\)-1 1 
2 - ~U2,x - ~u, 

O'~I) = f,( - uZ,x + 3u)x' 

0'11) = - !U2U + ( - jux - !u~ )x, 

O'~ I) = !u~ - !u2 - nU~,x + ( - nU2,xxx 

+ ~U2U2,x + !U2U + f,uxx )x, 

(4.21a) 

(4.21b) 

(4.21c) 

(4.21d) 

(4.21e) 

The third example is the coupled KdV Eq. (2.30), 
which belongs to the four-reduction of the KP hierarchy. 
From the condition L 4 = B4 , we have 

0'\1) - U2, 

0'11)= -U3' 

O'~ I) = - U4 - uL 
0'1

1
) = !(6u4 + 4u3,x + U2,xx + 5u~ )x, 

O'CI) - u3 IU Z + 1 2 1 5 - - 2 - ~ 3 - U4U2 4UZ,x - 2U2U3,x 

+ A( - lOu4,x - lOu3,xx - 12u2u3 

- 3uz,xxx - 22u2uZ,x )x, 

( 4.22a) 

(4.22b) 

(4.22c) 

( 4.22d) 

(4.22e) 

Substituting Eqs. (4.22) into O'J I) and transforming the vari
ables as Eqs. (2.31), we obtain the conserved densities ofEq. 
(2.30); 

0'\1) = - u, (4.23a) 

0'1
1

) = !(u - 2</1)x' (4.23b) 

O'~ I) = -! (u2 - 2</12 + 2eu) + ! ( - u x + 4<P x ) x , 

(4.23c) 

0'11) = !(Uxx + 4u2 
- 4</1xx - 12</12 + 12eu)x, (4.23d) 

0'~1) = - !(u3 
- !u~ - 2u</12 + </1~ + 2ueu) 

+ -h( - Uxxx - 12uux - 16u</1x 

(4.23e) 

Finally, we discuss the conserved densities of the BKP 
hierarchy. From the constraint that the constant terms of B n 

for odd n vanish, we have the relations 

u3 = - uZ,x' 

Us = - 2u4 ,x + UZ,xxx' 

U7 = - 3u6,x + 5u4,xxx - 3u2,xxxxx' 
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Substituting the above into 0') I), we obtain the conserved 
densities ofthe BKP hierarchy, 

0'\1) = - U2' 

a~l) = u2•x ' 

a~ \) = - U4 - uL 
ail) = (2u~ + 2u4 - U2.~)x' 

a~\) = (1lu4 u2 + lfu3 + 3u6 - SU4•xx 

+ 3U2.xxxx + Sutx - 3U2U2.xx ) x' 

( 4.24a) 

(4.24b) 

(4.24c) 

(4.24d) 

(4.24e) 

(4.24f) 

Let us derive the conserved densities of the Sawada
Kotera Eq. (2.32). Since the equation is included in the 
three-reduction of the BKP hierarchy, we have the conditon 
L 3 = B3, which yields 

u4 = - u~ + ju2.xx ' 

U6 = ju~ - Su~.x - SU2U2.xx + ~U2.xxxx' 
(4.2Sa) 

(4.2Sb) 

Substituting Eqs. (4.2S) into Eqs. (4.24), we obtain the con
served densities ofEq. (2.32); 

0'\1) = - u2, 

a~l) = u2•x ' 

a~l) = - ju2•xx ' 

ai I) = !u2.xxx ' 

a~\) = !(u~ - u~.x) + fs(3u 2 - 2u2.xx )xx, 

a~\) = - i(u~ + U2U2.xx )x, 

( 4.26a) 

(4.26b) 

(4.26c) 

( 4.26d) 

(4.26e) 

(4.26f) 

We note that the a?)'s for j = 2,4,6, ... andj = 3,6,9, ... are 
the trivial conserved densities. The former is due to the prop
erty of the BKP hierarchy and the latter to that of the three
reduction. 

V. SYMMETRIES OF THE KP EQUATION 

In this section, we consider symmetries of the KP equa
tion. As mentioned in Sec. II, the KP Eq. (2.7) is obtained 
from the compatibility condition of 

a1/1 = B21/1 = a 21/1 + 2u1/1 (S.1) 
at2 ax2 

and 

a1/1 = B31/1 = a 31/1 + 3u a1/1 + ~ ~1/1 
at3 ax3 ax 2 ax 

+~(a-I aU)." (S.2) 
2 x at

2 
'1', 

where we have used Eq. (4.l3a) to eliminate U3 and rewrit
ten U2 as u for simplicity. The adjoint linear problem is given 
by 

(S.3 ) 
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and 

If we integrate Eq. (2.7) with respect to x, we obtain 

~_~ a
3
u _ 3u~-~a x-I a

2
u = O. (S.S) 

at3 4 ax3 ax 4 at~ 

Hence the linearized KP equation may be written by 

as _~ a
3
s -3.!-.(uS) -~a;1 a

2
s =0.(S.6) 

at3 4 ax3 ax 4 at~ 

Using Eqs. (S.l )-(S.4), we find that 1/11/J* satisfies 

~_~ a 3
s _ 3u~-~a -I a

2
s =0 

at3 4 ax3 ax 4 x at ~ , 
(S.7) 

which means that (a lax)( 1/11/1*) is a solution of Eq. (S.6). 
By the definition in Sec. III, (a lax) (1/11/1*) gives a symmetry 
of the KP equation. We show that it also generates an infinite 
number of symmetries. From Eqs. (2.8) and (2.20), we ob
tain 

00 

1/11/J* = L SnA. -n, 
n=O 

where 

n 

Sn = L WjW~_j' 
j=O 

and where Wo is defined to be 1. Therefore, 

a s" = -S", n = 1,2,3, ... 
ax 

(S.8) 

(S.9) 

(S.lO) 

give a series of symmetries. By expressing Wj and wj in terms 
ofu, we find 

a 
SO=- (1), 

ax 
a 

SI =- (0), 
ax 
a 

S2 =- (u), 
ax 
a 

S3 =- (u), 
atz 

S =~ a
3

u 3u~ ~a -I (aZu) 
4 4 ax3 + ax + 4 x at ~ , 

(S.lla) 

(S.lIb) 

(S.lIc) 

(S.lld) 

(S.lIe) 

(S.l1f) 

WenowexpressS" by the Tfunction. FromEqs. (2.14) and 
(2.22), we have 
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1/11/1* = r(ll - lIA, t2 - lI2A 2, ... )r( t, -: lIA, t2 + lilA 2, ... ) , 

r(t l,t2,···) 

= _1_2 exp (f aYn,,)rU + y)r(t - y) I ' 
r(t) n=lnA y=o 

= ~ f Pn (iJ)1""r . 
r ,,=0 A" 

Comparing Eq. (5.12) with Eq. (5.8), we obtain 

sn = (lIr)p" (D)1""r. (5.13) 

If we expand Eq. (2.16) in powers ofyj' we have 

n~o Pn ( - 2Y)Pn + I (.D) { 1 + ito YiDi 

+~(.f YiDi)Z + ... }r.r=o. (5.14) 
2 .=0 

The coefficient of the linear term iny" gives 

!D,Dn1""r=p,,+ I (D)r·r. 

Therefore, Sn may be written by 

Sn = (2r)-ID IDn_ I1""T, 

which reduces to 

S =a-'~ 
" x at

n
_

1 

(5.15 ) 

(5.16 ) 

( 5.17) 

by means of Eq. (2.15a). The bilinear Eq. (5.15) is then 
written by 

au a 
-=-Sn+1 =5n+" (5.18) 
atn ax 

which forms a subset of Eq. (2.16) and is considered as a 
higher-order KP equation for n>4. The symmetries Sm and 
Sn satisfy 

S~[Sm] =_a- Sm , 
atn _ 1 

a2u 
=-----

a 
=---S, 

atm _ 1 " 

= S;" [Sn], 

where the prime is the Frechet derivative introduced in Sec. 
III. Therefore, the higher-order KP equations constitute a 
hierarchy of commutative equations. 

VI. RECURSION OPERATOR 

As mentioned in Sec. III, Fokas and Santini have pre
sented a recursion operator mapping symmetries of the KP 
equation into symmetries. In this section, we discuss the re
lationship between the recursion operator and the results 
obtained in Sec. V. Before considering the KP equation, we 
briefly study the KdV equation in order to demonstrate the 
basic idea. 

Since the KdV equation belongs to the two-reduction of 
the KP hierarchy, Eqs. (5.2)-(5.5) hold for the KdV case 

1432 J. Math. Phys., Vol. 31, No.6, June 1990 

(5.12) 

by taking au/at2 = 0, a1/1/at2 = A 21/1, and a1/1*/ 
atz = - A 21/1*. Then it is straightforward to show that #* 
satisfies 

(6.1 ) 

or 

R*s=A 2s, 

where 

(6.2) 

1 a2 

R * =~-+2u -a -IU 4ax2 x x 
(6.3 ) 

is known as the squared eigenfunction operator. This opera
tor maps conserved covariants of the KdV equation into 
conserved covariants. The adjoint operator, 

1 a2 

R = - -2 + 2u + u x a; I, (6.4) 
4 ax 

is the recursion operator which maps symmetries into sym
metries. In fact, substituting Eq. (5.8) into Eq. (6.2) and 
using Eq. (5.10), we can show that 

(6.5) 

where the Sn's are the symmetries of the KdV equation ob
tained by applying the two-reduction on Eqs. (5.11). 

The two-dimensional version of the recursion operator 
presented by Fokas and Santini5 is written as follows: 

11>(2) = ~ + q+ + J!.-. + a - I + -a - I - a - I 
ax2 ax q 

x q x q x' 

(6.6) 

where 

q ± = q(1) + q(2) + a(_a_ + _a_) 
- at~\) ati2 )' 

(6.7) 

and qO)(x,t i\) and q(2)(X,t i2» are the solutions of the KP 
equation possessing the prescribed arguments, respectively. 
The extended symmetries are given by 

S~\2) = (1I>02»nS6\2), n = 0,1,2, ... , 

where 

S612 ) = (11)02) !)1 

(6.8) 

oq(t) aq(2) = __ + __ + (qO) _ q(2»a x- I (qO) _ q(Z» 
ax ax 

+ a a -'(bo) - b<z»). (6.9) 
x ati') atiZ) 

The two-dimensional version of the squared eigenfunc-
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tion operator is the adjoint cp(2)* of (6.6). The associated 
linear problem is written by 

a au> ",U> = aa 22 ",V) + qV)",V), j = 1,2, (6.10) 
at 2 x 

where ",0) and ",(2) have the arguments (x,t i I» and 
(X,t f», respectively, and a is an arbitrary parameter. Fo
kas and Santini have shown that 

(6.11 ) 

and cpO 2) gives the recursion operator for the KP equation, if 
the limit of t i2) -+ til) is taken. 

We now compare these results with those obtained in 
Sec. V. If a = 1 and qV) = 2uV) for j = 1,2 are taken, Eq. 
(6.7) reduces to Eq. (5.1). Then the eigenfunction in Sec. V 
satisfies 

CP(2)*",(I)",(2)* = 0, (6.12) 

where ",(I) and ",(2) correspond to the potentials qV) = 2uU) 

forj = 1 and 2, respectively. FromEqs. (2.8) and (2.20), we 
obtain 

00 

s(t (I),t (2» = L Sn (t (I),t (2»11. - n, 
n=O 

where the two sets of infinitely many time variables, 

tV) = (t1,t¥),t3 , ••• ), j= 1,2, 

are introduced and Sn (t (I), t (2» are given by 
00 

Sn (t (I),t (2» = L Wj (t (I)W: _ j (t (2». 
j=O 

Equation (6.13) gives 

(_a ___ a_) ",0)",(2)* 

aliI) ati2) 

(6.13 ) 

(6.14 ) 

(6.15 ) 

= {(_a _ _ _ a_)s+ u 2}exp{(t(1) _ t2)11. 2} 
atil) ati2) 2 2 

and 

(
_a_ + _a_)n ",(1)",(2)* 
at il) at i2) 

= {(_a_ + _a_)ns}exp{(t(1) _ t (2»11. 2}. 
atil) ati2) 2 2 

Substituting Eqs. (6.16) into Eq. (6.12), we obtain 

CP(2)*S(t(I),t(2» = 411. 2S(t(I),t(2». 

Consequently, we have from Eq. (6.14) that 

u\I) = - u2 , 

ui l
) = u3, 

u~ I) = - U4 - uL 
ui I) = - Us - 3U3U2 + U2U2.x' 

( 6.16a) 

(6.16b) 

( 6.17) 

Icp(2)*S (t (I) t (2» - s (t 0) t (2» 
4 n , - n+2 , , (6.18 ) 

which is the two-dimensional version ofEq. (6.5). Thus Eq. 
(6.18) is the link between the Sato theory and the two-di
mensional recursion operator of Fokas and Santini. The 
symmetries obtained by both schemes are given by Eqs. 
(5.11). 

Fokas and Santini also presented a theorem that 

(6.19) 

gives an auto-Backlund transformation for the KP equation 
and its higher-order equations. We here consider this result 
from the view point of the Satotheory. For n = 0, Eq. (6.19) 
is written by 
oq(1) aq(2) --+ --+ (q(1) - q(2»a x-l(q(1) _ q(2» 
ax ax 

+ a a -1(~41) - b(2») = O. (6.20) 
x atil) atf) 

By chosing a = 1, changing the dependent variables as 
41) = 2(a 2/ax2)log ,fl)(x,t il) and 42

) = 2(a 2/ax2) 
X log ,f2)(X,t f», and taking (il) = t f)( = t2), Eq. (6.20) 
is reduced to 

(6.21 ) 

which is nothing but the lowest order of the equations in the 
first modified KP hierarchy, or in other words, an auto
Backlund transformation for the KP equation. 

From Eqs. (6.18), we see that (a lax)sn (I (1),t(2» corre
sponds to the extended symmetry S ~ 12). By following the 
same procedure to get Eq. (5.13), we find that 

S~12) = [~n (D),fi)',f2)]/,fi),f21, (6.22) 

where we again take til) = t f)( = (2)' Hence, Eq. (6.19) 
gives 

~n (D),fi)',f2) = O. (6.23) 

It has been shown by Date et al. 10 that the mth modified KP 
hierarchy is given by 

n~o ~n ( - 2Y)~n + m + I (D)exp(~o y;D; )1"'1"' = O. 

(6.24) 

The terms which do not include y in Eq. (6.24) yields 

~m+ dD)'T'1"' = O. (6.25) 

Therefore, Eq. (6.23) is considered to be a part of the modi
fied KP hierarchy. 

APPENDIX 

We here give a list of uJm) for l<m<5 and 14<8 - m: 

u~1) = - U6 - 4U4U2 - 2u~ - 2u~ + U3•xU2 - U2.xx U2.x + 3U3U2.x' 

u~1) = - U7 - 5usu2 - 5u4u3 - 10u3ui + 6uiu2.x + 6U4U2.x - 4U3U2.xx + U2U2.xxx + 3U3U3•x - U2U3•xx + U4.xU2, 
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ujl) = - Us - 6U6U2 - 6U5U3 - 3u~ - 15u4u~ - 15u~u2 - 5ui + 29u3U2U2,x + lOu5u2,x - 6U2UL - 8U~U2,xx 

- 10u4u2,xx + 5U3U2,xxx - U2U2,xxxx + 7U3U~ + 6U4U3,x - 4U3U3,xx + U2U3,xxx + 3U3U4 ,x - U2U4,:X + U2US,X, 

ul 2
) = U 2,x + 2u3 , 

U~2) = U~ + U3,x + 2u4 , 

uf) = 4U2U3 + U4,x + 2u5 , 

ui2
) = U2,xxU2 - uL - 3u2,xU3 + 2u~ + U2U3,x + 6U2U4 + 3u~ + us,x + 2u6, 

U~2) = - U2,xxxU2 + U2,xxU2,x + 5U~,xxU3 - 4U2,XU~ - 4u2,xU3,X - 8u2,xU4 + 12u~u3 + U2U3,xx + 2U2U4,x 

+ 8U2US - 2u3,xU3 + 8U3U4 + U6,x + 2u7, 

U~2) = U2,xxxxU2 - U2,xxxU2,x - 6u2,xxxU3 + 8U2,XXU~ + 4u2,xxU3,x + 14u2,xxu4 - 30u2,xU2U3 + U2,xU3,xx 

- 7u2,x U4,x - 15u2,x U5 + 5ui - 2u~ U3,x + 20u~ U4 - U2U3,xxx + 20U2U~ + U2U4,xx + 3u2u S,x + lOu2u6 

+ 5u3,xxU3 - 3uL - 7u3,xU4 - U3U4,x + lOu3us + 5u~ + U7 ,x + 2ug, 

ul 3
) = U2,xx + 3u~ + 3u3,x + 3U4' 

uf) = 6U2U3 + U3,xx + 3u4,x + 3u5, 

U~3) = 2u2,xx U2 - uL - 3u2,xU3 + 4u~ + 3U2U3,x + 9U2U4 + 3u~ + U4,xx + 3us,x + 3u6, 

ui3
) = - U2,xxxU2 + 6u2,xxU3 - 6U2,xU~ - 6u2,x U3,x - 9u2,xU4 + 18u~u3 + 3U2U3,xx + 6U2U4,x + 12u2u 5 + 9U3U4 

+ US,xx + 3u6,x + 3u7, 

U~3) = U2,xxxxU2 - U2,xxxU2,x - 6u2,xxxU3 + ui,xx + 12u2,xxui + 5u2,xxU3,x + 16u2,xxu4 - 36uz,xU2U3 - 2u2,xU3,xx 

- 13u2,xu4,x - 18uz,xus + 9ui + 30uiu4 - U2U3,xxx + 24u2U~ + 4U2U4,xx + 9u2uS,x + 15u2u6 + 7u3,xxU3 - 5u~,x 

- 6u3,xU4 + 3U3U4,x + 12u3u5 + 6u; + U6,xx + 3u7,x + 3us, 

ul4
) = UZ,xxx + 6uZ,xu2 + 12u2u3 + 4u3,xx + 6u4,x + 4us, 

U~4) = 2u2,xx U2 - utx + 4u~ + 6U2U3,x + 12u2u4 + U3,xxx + 6u~ + 4u4,xx + 6us,x + 4U6' 

U~4) = 6UZ,xxU3 - 6u2,xU3,x - 6U2,xU4 + 24uiu3 + 6U2U3,xx + 12u2u4,x + 16u2us + 12u3u4 + U4,xxx 

+ 4us,xx + 6u6,x + 4u7• 

ui4
) = UZ,xxxxU2 - 2uz,xxx u z,x - 5UZ,xxxU3 + utxx + 12uz,xx ui + 5UZ,xx U3,x + 16u2,xx u4 - 6Ui.xu2 - 30UZ,x U2U3 

- 5UZ,xU3,XX - 16uz,xu4,x - 16uz,xus + 9ui + 6uiu3,x + 36uiu4 

+ U2U3,xxx + 36u2U~ + 10u2u4,xx + 18u2us,x + 20U2U6 

+ lOu3,xxu3 - 5u~,x - 6u3,x U4 + 6U3U4,x + 16u3us + 6u; + us,xxx + 4u6,xx + 6u7,x + 4ug• 

u\S) = uZ,xxxx + lOuz,xxu2 + 5ui,x + lOu2,x + lOu~ + 20U2U3,x + 20uZu4 + 5u3,xxx + lOu~ + lOu4,xx 

+ lOus,x + 5u6• 

u~S) = lOuz,xxu3 + 30uiu3 + lOu2u 3,xx + 20U2U4,x + 20u2uS + U3,xxxx 

+ lOu3,xu3 + 20U3U4 + 5u4,xxx + lOus,xx + lOu6,x + 5u7• 

u~S) = 2u2,xxxxU2 - 2uz,xxxuz,x - 5UZ,xxxU3 + ui,xx + 2ouz,xxui + 5UZ,xxU3,x + 20UZ,xxU4 - 20u2,xU2U3 - 5UZ,xU3,xx 

- lOuz,x u4,x - lOu2,x u5 + 15ui + 20uiu3,x + 50uiu4 + 5U2U3,xxx + 4OU2U~ + 20U2U4,xx + 30U2US,x + 25u2U6 

+ lOu3,xx u3 - 5uL + lOu3u4,x + 20u3uS + U4 ,xxxx + lOu; + 5us,xxx + lOu6,xx + lOu7 ,x + 5us• 
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The method of stationary phase is discussed in a mathematically rigorous way. A resulting 
lemma is used to derive the asymptotic localization of position probability under the evolution 
operator U, = F- 1 exp( - iwl)F, where w is a continuous function of the wave vector 
k = (kl, ... ,kN ) (N = 1,2, ... ) with continuous first and second derivatives. The measurement of 
velocity is discussed, and the interpretation of the self-adjoint operator i\ = F -IVjwF as 
representing the ith component of velocity is also discussed. 

I. INTRODUCTION 

The method of stationary phase has long been known to 
physicists as a heuristic method of determining where a wave 
function is concentrated. It rests on the observation that the 
integral 

rk'M(k)exP[iA (k) ]dk, 
Jk, 

(1.1 ) 

where M and A are real functions and M is non-negative, is 
"small" if the rate of oscillation of A(k) as k increases from 
k 1 to k2 is sufficiently great. 

Suppose a wave packet t/J at time zero, moving in the 
space ]RN (N = 1,2, ... ), evolves into the wave packet U, t/J at 
time t, where 

U, t/J(x) = (21T') - N 12J Ft/J(k)exp [i(k·x - wl)]d Nk. 

( 1.2) 

Here x = (x1,,,,,XN )e]RN, k = (kl, ... ,kN ), Fis the Fourier
Plancherel operator, w = w(k) is real, dN k = dk l" 'dkN , 

and the integral is over all ]RN. If w = lik 212m, Ut is the 
evolution operator for the free motion of a nonrelativistic 
particle in N dimensions. The method of stationary phase 
suggests that when t is large, U, t/J should be concentrated in 
the "classically allowed" region where x - (V w ) t vanishes 
for at least one value of k in the support of Ft/J. 

A rigorous discussion of this is given in Appendix 1 to 
Sec. XI.3 of the book by Reed and Simon,1 based on work by 
Hormander (see the note on p. 348 of Ref. 1). There it is 
shown that if t/J is a continuous function with continuous 
derivatives of all orders, and Ft/J has compact support, U, t/J 
does indeed fall off rapidly outside the classically allowed 
region when t --+ 00. They also point out that the result in the 
case w = (k 2 + m2

) 1/2 is important in the case of Haag
Ruelle scattering theory, and discuss the application of the 
result to proofs of asymptotic completeness. 

Wan and McLean have also studied this problem.2,3 In 
Ref. 3 they prove that 

lim IIE(xe[vt,wt]) V,t/JII 
1- ± 00 

= lim IIE(like[mv,mw]) V,t/JII, (1.3 ) 
1- ± 00 

for all ¢'EJY' = 2' 2(]RN), whereE(p) is the projection oper
ator associated with the propositionp, Iik = li(kl, ... ,kN ) is 

the momentum, v and ware in ]RN , and [a,b] is the rectangu
lar parallelopiped [al,b l ] X ... X [aN,bN ]. In (1.3), V, is 
the evolution operator for the nonrelativistic Hamiltonian 
Ho + V, where Ho is the kinetic energy operator -f1ZV2 I 
2m. To prove this they assumed asymptotic completeness, 
when it follows immediately from their previously proved 
result that 

lim IIE(xe[vt,wt ])U,t/J112 
1- ± 00 

= IIE(like[mv,mw] )t/J112, (1.4) 

in the case where U, is the evolution operator for a nonrela
tivistic particle moving freely in N dimensions. 

The result expressed by the statement, "For a free quan
tum mechanical particle, the probability that a position mea
surement will find the particle in a region tA at time t, tends 
as t --+ 00 to the probability that the velocity is in A," has also 
been obtained in the nonrelativistic case by Strichartz,4 as a 
consequence of work on the asymptotic behavior of waves. 

In this paper we shall consider evolution under an evolu
tion operator U, of the form 

U, = F -I exp( - iwt)F, ( 1.5) 

where w is a continuous function of k = (kl, ... ,kN ) with 
continuous first and second derivatives. According to the 
principles of quantum mechanics, if 

v=F-1VwF, (1.6a) 

or, equivalently, 

Vj =F-1VjwF (i= 1, ... ,N) 

where 

aw 
Vjw = ak' 

I 

(1.6b) 

( 1.7) 

then Vj is a self-adjoint operator and so can, iri principle, 
represent an observable. Any state p, will therefore assign to 
the proposition veq; (where q; is a Borel subset of RN) a 
probability Prob (veq; Ip,). Suppose q; is the region between 
the planes Vj = u, Vj = W (u < w), so vEq; is equivalent to 
v j e [ u,w ]. We shall show that if the state evolves according to 
(1.5) then 

A 

lim Prob{xjE[ut,wt] 1U,p,) = Prob{vjE[u,w] Ip,), 
'-00 
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where ilt is the evolution operator in state space induced by 

Ut • 

Our result is attractive in several ways. First, it requires 
of 0) only that it be continuous with continuous first and 
second derivatives. Second, it is true for any quantum state. 
Finally, it leads to the interpretation ofv as the velocity by 
the time-of-flight method. Although the time-of-flight defin
ition of momentum is not new-see, for example, Refs. 5 and 
6 in the nonrelativistic case-our results are, we believe, 
more general. 

The plan of the paper is as follows. In Sec. II we derive a 
simple lemma on stationary phase. This is used in Sec. III to 
derive the asymptotic localization of wave packets, and in 
Sec. IV to derive the asymptotic localization of position 
probability. In Sec. V the measurement of velocity is dis
cussed in the light of these results, and we summarize our 
conclusions in Sec. VI. 

II. A BASIC LEMMA ON THE OSCILLATION OF CERTAIN 
INTEGRALS 

Let O( . ) be a continuous function with continuous first 
and second derivatives on the real finite interval [k l ,k2 ] 

such that 

10'(k)l>m', 10"(k)I";M" (k l ..;k..;k2 ), (2.1) 

where m' and M" are positive constants, and let t/J be the 
complex number 

l
k' 

t/J = exp[iO(k) ]dk. 
k, 

(2.2) 

Since 10 '(k) I >m' > 0, Oiseitherstrictlyincreasingorstrict
ly decreasing. For definiteness we shall suppose that 0 is 
strictly increasing, since the other case is similar. 

Let n be the largest non-negative integer such that 

O(k l ) + 2mr..;0(k2), O(k l ) + 2(n + 1)1T> 0(k2). 
(2.3 ) 

Furthermore, by the intermediate value theorem we can de
fine a finite, strictly increasing sequence of points 
KO,KI> ... ,Kn + I by 

O(K,) =O(kl ) +2m (r=O, ... ,n), Kn+1 =k2. 
(2.4 ) 

We now define complex numbers t/J1, ... ,t/Jn + I by 

t/J, = f~, exp[iO(k)]dk (r= I, ... ,n + 1); (2.5) 

then, by (2.2), 
n+1 

t/J= L t/J,. (2.6) 
,= I 

Suppose l..;r..;n. By (2.4) and (2.5), 

i
B,+217 dk 

t/J, = exp[iO(k)]- dO, 0, = O(K'_I). 
B, dO 

Therefore 

i
B
,+ 217[ 1 I] t/J, = --- -- exp[iO(k) ] dO, 

B, O'(k) O'(K,) 

since the second integral vanishes. It follows by the mean 
value theorem that 
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I
B,+ 217 (K - k)O" (K) 

t/J, = ' 2 exp[iO(k) ] dO, 
B, [O'(K)] 

where K,_I <K<K,. Since K,_I ..;k";K" we easily deduce, 
using (2.1) that 

It/J, I ..;21T(K, - K,_) )M" !(m,)2 (r = I, ... ,n). 
(2.7) 

Note that Ko = k) and Kn ..;k2, so it follows from (2.7) that 

I ± t/J, I ..;21T(k2 -,k;)M" (2.8) 
,=) (m ) 

By the mean value theorem, 

(k2-Kn)0'(K) =0(k2) -O(Kn), 

whereKn <K<k2.SinceO(k2) - O(Kn) <21TandO'(K»m', 
we obtain k2 - Kn ..;21T!m'. Now, k2 = Kn + ), so (2.5) gives 

It/Jn+ 11..;21T!m'. 

Combining (2.6), (2.8), and (2.9), we obtain 

1t/J1..;21T(k2 - k)M" !(m,)2 + 21T!m'. 

(2.9) 

A similar argument is applicable in the case when 
O'(k)..; - m' (k)..;k..;k2). We have thus proved the follow
ing lemma. 

Lemma 2.1: Let O( . ) be a continuous function with con
tinuous first and second derivatives on the finite interval 
[k),k2 ] such that 

10'(k)l>m'>0, 10"(k)I";M" (k l ..;k..;k2). (2.10) 

Then if 

l
k' 

t/J = exp[iO(k) ]dk, 
k, 

1t/J1..;21T(k2 - kl)M" !(m,)2 + 21T!m'. 

III. THE ASYMPTOTIC LOCALIZATION OF WAVE 
PACKETS 

(2.11 ) 

(2.12) 

Let % be the finite N-dimensional parallelopiped 
[k l ,k2 ]. Cy be the characteristic function of %, and 
t/J = (21T)NI2 P-1Cy, where P is the Fourier-Plancherel 
operator. Define the evolution operator Ut by 

Ut = p-) exp( - iO)t)P. (3.1) 

This Ut is the evolution operator corresponding to a Hamil
tonian Ho = fzF -IO)p; 0) = O)(k) will be assumed to be con
tinuous, and to have continuous first and second derivatives, 
everywhere in k-space. Since t/J = (21T)N12 p-1c.r, 

Ut t/J(x) = f Cy (k)exp[i(kox - O)t)]d Nk. (3.2) 

Suppose N>2, and let k; = (O, ... ,O,k;.O, ... ,O), 
kt = (k1,···,k;_),0,ki+ 1,·.·,kN ), with x; andxtdefinedsimi
larly. Then k = k i + kt and x = Xi + xt. 

Denote by d N - I X i the volume element 
dXI·"dxi_ldxi+I···dxN and by S···dN-1xt an integral 
over all values of the N - 1 coordinates X1,. .. 'Xi _), 
x i +) , ••• ,XN' with a similar notation with k replacing x. A 
straightforward calculation using (3.2) and Fourier's inter
gral theorem yields, if N>2, 
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fIU,,,,(x)12dN-IX} 

= (21T)N- Jlfcy (k)exp[i(kjxj -ltJt)]dkj r 
XdN-1k}. (3.3) 

If N = 1, (3.3) remains valid if the integrals over x} and k} 
are omitted and i = 1. 

When nonzero, the integral between the modulus signs 
on the right-hand side of (3.3) is of the form (2.11) with 

()(kj) = kjxj - wt, 

the other components ofk being fixed. Recalling (1.6), 

a() 
-=x·-v·t. ak

j 
I I 

(3.4) 

Suppose that VL and Vu are real numbers satisfying 

VL < Vjmin =min Vj' Vu > Vjmax = max Vj; (3.5) 
ke.>Y keY 

such numbers exist since Vj = aw/akj is continuous every
where by hypothesis. Suppose further that t> 0; then, by 
(3.4) and (3.5), 

(3.6) 

Finally supposexj,vLt. Then, by (3.6), Xj - vjmint<O, so 
we can apply Lemma 2.1 with m' = IXj - Vjmint I 
= Vjmint - Xj' Also, from (3.4), since Vj = aw/akj , 

a 2() a 2W --= ___ to 
ak 2 ak 2 

' 
I I 

hence, if 

n .. = maxi a
2

w I' (3.7) 
II k67£ ak2 

I 

wecantakeM" = njjt. Thus by (2.11) and (2.12) (Lemma 
2.1), 

Ifcy (k)exp[i(kjxj - wt) ]dkj I 
21T {(k2.-kl .)n .. t } 

, I I II + 1 
Vjmint-Xj Vjmint-Xj 

(3.8) 

where the last inequality follows from the fact that x j 'v Lt. It 
now follows immediately from (3.3) and (3.8) that, if N;;.2, 

flU,,,,(x)1 2 d N - 1X}, _ c 2' (3.9) 
(xj Vjminf) 

where 

U#i) 
(3.10) 

If N = 1, (3.9) and (3.10) remain valid if, in (3.9), the inte
gral over x} is omitted while in (3.10) the product over j is 
omitted, and i = 1. 
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From (3.9), we obtain 

f
VL

' dXjfdN-IX}IU,,,,(xW, c -+0 
- 00 (vjmin - vL)t 

when t-+ 00. 

If N = 1, this is valid if the integral over x} is omitted and 
i = 1, and so 

limIIE(x;E( - oo,vLt nU,"'1I2 = 0 (NEN). (3.11a) 
'-00 

Similarly 

limIlE(xjE[vut,oo »U,"'1I2 = 0 (NEN). (3.11b) 
,- 00 

We have proved (3.11) on the assumption that 
'" = (21T) N12F- 1c.r and % istheparallelopiped [k l ,k2]. It 
follows from the linearity ofthe operators involved that it is 
also valid if'" is a finite linear combination of such functions, 
VL and Vu still being given by (3.5), but now % = supp F"" 
the support of F"'. Such linear combinations are dense in the 
space of wave functions whose Fourier transforms have sup
port contained in some compact subset % of ]RN; finite v L 

and Vu then exist that satisfy (3.5) since v; is everywhere 
continuous by assumption. Since the operators involved are 
bounded it is straightforward to show that (3.11 ) are valid if 
supp F"'~ %. Finally suppose of", only that v; is bounded 
on supp F"'. Then V;min and v;max may not exist, but the 
greatest lower bound I!i and least upper bound Vj do. Thus '" 
can be approximated arbitrarily closely by functions whose 
Fourier transforms have compact support [for example, by 
E(kEY)"" where Y is a sphere of arbitrarily large radius 
and center the origin], and so (3.11) remains valid in this 
case also if VL < I!i' Vu > vj. We have therefore proved the 
following proposition. 

Proposition 3.1: Suppose f/!e.Y2(RN) has the property 
that V;w is bounded on % = supp F",. Let VL, Vu be 
numbers satisfying VL < I!;, Vu > Vi' where I!i and V; are the 
greatest lower bound and least upper bound, respectively, of 
v; = V;w on supp F"'. Then 

lim E(X;E( - oo,vLt nU,'" = 0, 
'-00 

(3.12a) 

lim E(X;E[Vut,oo »U,,,, = o. 
'-00 

(3.12b) 

It will be convenient from now on to abbreviate our no
tation. Let I be an interval of R; then we write 

(3.13) 

For example, Ev (u,w] means E(V;E(U,W]), etc. In this 
notation Eqs. (3.12) may be written 

lim Ex( - oo,vLt]U,"'=O, (3.14a) 
t-oo 

lim Ex [vut, 00 ) Ut '" = O. (3.14b) 
,- 00 

Let u, w, and 6 be real numbers such that 
U < U + 6 < w - 6 < w, and consider 

Ex ( - oo,ut] U,Ev [u,w]",. 

This may be written 
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Ex { - 00 ,ut ] UtEv [u,u + 15] tP 

+ Ex { - oo,ut] UtEv {u + 8,w]tP. 

Suppose 

Ev [u,u + ]tP= lim Ev [u,u + 8]tP = o. 
b-O+ 

Then given £ > 0 we can choose 15 (depending on tP) so that 

IIEv [u,u + 8]tPll < !£, 

hence 

IIEx{ - 00,ut)UtEv[u,u+8]tPlI<~£· 

By Proposition 3.1, we can choose to, depending on 8 and tP, 
so that, for 1',to, 

IIEx{ - oo,ut) UtEv (u + 8,w]tPll <!£. 

It follows that, for t>to, 

IIEx ( - oo,ut] UtEv [u,w]tPll <£ 

and so Ex { - oo,ut] UtEv [u,w]tP-+Owhent-+ 00. Similarly 
if Ev [w - ,w] tP = 0, then Ex [wt, 00 ) UtEv [u,w] tP-+ 0 when 
t-+oo. 

Our results are summarized by the following proposi
tion. 

Proposition 3.2: Suppose Vi is bounded on Supp FtPwhile 
u and ware real numbers such that u < w; suppose further 
that 

Ev [u,u + ]tP = Ev [w - ,w]tP = O. (3.15) 

Then 

lim Ex( - oo,ut] UtEv [u,w]tP = 0, (3.16a) 
1- cq 

lim Ex [wt, 00 ) UtEv [u,w] tP = O. (3.16b) 
t- 00 

Equation (3.15) may not be satisfied. For example, sup
pose N = 1 and w = ck, where c is a positive constant, while 
u = c. Then Ev [u,u + 8] = Ev [c,c + 8] = I, since the ve
locity dw/dk = CE[C,C + 8], for all positive values of 8. On 
the other hand, if Vi is a strictly increasing or decreasing 
function of k i when the other components of k are fixed 
(3.15) is valid for all tP. 

Proposition 3.3: Suppose 

Ev [u,u + ]tP = Ev [u - ,u]tP = Ev [w - ,w]tP 

=Ev[w,w + ]tP= 0; (3.17) 

then 

lim {Ex [ut,wt] UttP - UtEv [u,w]tP} = 0, (3.18) 
t_ 00 

lim IIEx [ut,wt] UttPll = IIEv [u,w]tPli. (3.19) 
t- 00 

(This result asserts the asymptotic localization of a wave 
packet with velocities in the interval [u,w] in the interval 
[ut,wt] [cf. (1.4)].) 

Proof 

Ex [ut,wt] UttP - Ex [ut,wt] UtEv [u,w]tP 

= Ex [ut,wt] UtEv( - oo,u)tP + Ex [ut,wt] 

X UtEv{w,oo )tP. (3.20) 
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Now 

Ex [ut,wt] UtEv { - oo,u)tP 

= Ex [ut,wt] UtEv { - oo,u')tP + Ex [ut,wt] 

X UtEv[u',u)tP, (3.21) 

where u' < u. Since Ex [ut,wt] and Ut are bounded and 
Ev ( - 00 ,u')tP-+O when u' -+ - 00 we can choose u' so that 
the norm of the first term on the right-hand side of (3.21) is 
less than ~£. Also 

IIEx [ut,wt] UtEv [u',u)tPlI<IIEx [ut,oo) UtEv [u',u]tPlI, 

which tends to zero when t-+ 00 by (3.16b), since 
Ev [u - ,u]tP = O. We can therefore choose to so that, ift>to, 
the norm of the second term on the right-hand side of (3.21 ) 
is less than !£. It follows that, for t>to, the norm of the left
hand side of (3.21 ) is less than £; that is, the first term on the 
right-hand side of (3.20) tends to zero when t tends to infin
ity. Similarly the second term on the right-hand side of 
(3.20) tends to zero when t tends to infinity, so 

lim {Ex [ut,wt] UttP - Ex [ut,wt] UtEv [u,w]tP} = o. 
t_ 00 

Note now that 

Ex [ut,wt] UtEv [u,w]tP - UtEv [u,w]tP 
= -Ex( - oo,ut)UtEv[u,w]tP 

- Ex (wt,oo) UtEv [u,w]tP. 

(3.22) 

By Proposition 3.2 each term on the right-hand side tends to 
zero when t tends to infinity since Ev [u,u + ] tP 
= Ev [w - ,w]tP = 0, so 

lim {Ex [ut,wt] UtEv [u,w]tP - UtEv [u,w]tP} = o. 
t- 00 

(3.23) 

Equation (3.18) now follows from (3.22) and (3.23). 
Equation (3.19) is an immediate consequence of (3.18), 
since Ut is unitary. D 

IV. THE ASYMPTOTIC LOCALIZATION OF POSITION 
PROBABILITY 

A general state f-l in quantum mechanics assigns to every 
proposition p a probability Prob(plf-l). By Gleason's 
theorem it is given by 

Prob(plf-l) = L Wj IIE(p)tPj 11
2

, (4.1) 
j 

where {wj } is a countable set of positive numbers with unit 
sum, and {tP) is a corresponding set of unit vectors in,7('. 
The pair 

({w),{tP) (4.2) 

determines the state, but the converse is false. Given any 
state f-l there is usually more than one pair of the form (4.2) 
(Ref. 7, p. 9). We shall call the pair (4.2) a representation of 
the state. 

If f-l is the state at time zero it becomes ~ state Utf-l at time 
t represented by the pair ( {wj}, {Ut tPj}) [Ut is a (nonlinear) 
mapping of states into states]. If u and ware real and u<w, 
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Prob(xiE[ut,wt] IUt,u) = L WJE(XiE[ut,wt]) UttPjllz. 
j 

In the abbreviated notation (3.13) this is written 

Prob(xiE[ut,wt] IUt,u) = L wjllEx [ut,wt] UttPjllz. 
j 

(4.3) 

Suppose that, for all values ofj , 

Ev [u - ,u]tPj = Ev [u,u + ]tPj = Ev [w - ,w]tPj 

= Ev [w,w + ]tPj = o. (4.4 ) 

Since the series on the right-hand side of (4.3) is uniformly 
convergent we can use (3.19) (Proposition 3.3) to obtain 

lim Prob(xiE[ut,wt] IUt,u) = L wjllEv [u,w]tPjllz. 
t-oo j 

(4.5) 

The right-hand side of (4.5) is the probability in the state,u 
that the value Vi of the observable represented by the self
adjoint operator Vi = F -IV iCtJF is in the closed interval 
[u,w]; that is, 

lim Prob(xiE[ut,wt] IUt,u) = Prob(viE[U,W] l,u). 
t- 00 

Since 

Prob(viE[u,w] l,u) = L wjllEv [u,w]tPjIlZ, (4.6) 
j 

it is easy to see that the condition ( 4.4 ) is logically equivalent 
to 

Prob(viE[u - ,u] l,u) = Prob(viE[u,u + ] l,u) 

= Prob(viE[w - ,w] l,u) 

= Prob(viE[w,w + ] l,u) = o. 
(4.7) 

It is straightforward to show that (4.7) is equivalent to say
ing that the probability distribution of Vi is not concentrated 
at either u or w. We have therefore proved the following 
theorem. 

Theorem 4.1: Let u and w be real numbers such that 
u < w. If the probability distribution of the observable 
Vi = F -IViCtJF is not concentrated at either of the points u 
and w of the real line, then 

lim Prob(xiE[ut,wt] IUt,u) = Prob(viE[u,w] l,u). 
t_ 00 

(4.8) 

Theorem 4.1 has a simple consequence. Suppose the 
state,u is such that all values of Vi must lie in [u,w], so that 
the right-hand side of (4.8) is unity. If this is the case the left
hand side is also unity; this means that asymptotically the 
probability distribution of the ith position coordinate is lo
calized in [ut,wt]. 

V. THE MEASUREMENT OF VELOCITY 

In this section we shall discuss the measurement of ve
locity in quantum mechanics in the light of Theorem 4.1. 

First, we note that if t > 0 the proposition u<:;x;lt<:;w is 
logically equivalent to the proposition XiE [ut,wt ]; hence, by 
(4.8), 

1439 J. Math. Phys., Vol. 31, No.6, June 1990 

A 

lim Prob(u<:;x;lt<:;wl Ut,u) = Prob(viE[u,w] l,u). 
t-oo 

(5.1 ) 

Now to measure the velocity given the initial state ,u we 
should (i) take a large time t so that initial and final uncer
tainties in the position are small, and (ii) ensure that the 
particle is moving "freely" throughout. The proposition 
u<:;x;lt<:;w becomes, in the limit as t-+ 00, the proposition 
"u<:;the ith component of velocity <:;w," so (5.1) gives 

Prob(u<:;ith component of velocity <:;wl,u) 

= Prob(viE[u,w] l,u). (5.2) 

Equation (5.2) shows that vJs the self-adjoint operator rep
resenting velocity provided Ut represents "free" motion. 

We need to discuss the notion of "free motion." This is 
easy to answer in the case of the motion of a particle in three 
dimensions under nonrelativistic quantum mechanics with a 
local potential V, since, by Ehrenfest's theorem, 

d Z 

dtZ(xi ) = (- Vi V). (5.3) 

This means that if (x;) is a linear function of time, ( - vY) 
vanishes for all states. From this it is easy to see that V V = 0 
and so Vis a constant. Conversely, if Vis constant, VV = 0, 
and so, by (5.3), (Xi) is a linear function of time. If free 
motion means the absence of a force it is therefore equivalent 
to saying that (Xi) is a linear function of time. 

In other cases "free motion" is a question of definition. 
However, it can be shown that if Ut = F - I exp ( - iCtJt)F 
the expectation value of position, if it exists, is a linear func
tion of time (the proof is given in the Appendix) . 

An interesting special case is given by 

CtJ = (/iZk 2c2 + m Zc4 )1/2//i (m >0), (5.4) 

which is important in the case of the motion of a particle in 
relativistic quantum mechanics, where c is the speed oflight. 
In this case 

VCtJ = Iikc2(/izk2cZ + m2c4 )-1/2. (5.5) 

From (5.5) we see immediately that Ivl = IVCtJI <c, as re
quired by special relativity. 

This result has also been derived by Ruijsenaars, who 
termed it "asymptotic causality."s This does not mean that 
superluminal velocities cannot be observed over finite dis
tances, but Ruijsenaars has argued that such superluminal 
velocities can never be observed in practice. S 

VI. CONCLUSIONS 

If a particle moves in N dimensions under the evolution 
operator Ut = F -I exp( - iCtJt)F, where CtJ is a continuous 
function of k with continuous first and second derivatives, 
and Vi = F -IViCtJF, then the probability distribution of Vi 
satisfies the asymptotic condition (4.8) provided it is contin
uous at u and w. Further, if the expectation value (Xi) of the 
ith position coordinate exists then it is a linear function of 
time, its time rate of change being (Vi)' consistent with the 
interpretation of Vi as the velocity. However, in relativistic 
quantum mechanics there are deep problems involved with 
the position operator which are outside the scope of this pa
per (see, for example, Ref. 8, and references therein). 
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APPENDIX 

Note: In this appendix x, v, and v will be used as abbre
viations for Xi' Vi' and Vi' respectively. 

The assertion in Sec. VI that the time rate of change of 
(x) is constant and equal to (v) is made precise by the fol
lowing theorem. 

Theorem A.I: Let (v) be the expectation value ofv in the 
~ate p and (x), be the expectation value of x in the state 
U,p. If (v) exists, and (x) t exists for all real t, then 

~(x), = (v). (At) 
dt 

The purpose of this appendix is to prove Theorem A.I. 
In order to do this we shall need two preliminary lemmas. 

Lemma A. J: Let r/J be an arbitrary function in the Hil
bert space of square-integrable functions on RN

, and define 
the bounded operator Ut (0) by 

Ut (0) = F- 1 exp[ - im(k - Oe)t 1F, (A2) 

where 0 is a real number and e is the unit vector in the direc
tion of the ith coordinate axis. If m is everywhere continuous 
with continuous first and second derivatives, 

lim [ Ut (O)r/J - Utr/J] = o. 
e-o 
Proof Let Y be the sphere {k: I kl <K}, where K is some 

positive number, and Y' be the rest ofk-space; then 

II [U,(O) - U, ]r/J1I2 

= (L, + L){exp [ - im(k - Oe)t 1 

- exp[ - im(k)t ]}Fr/J(kW dNk. 

If e is a positive number, the integral over Y' can be made 
smaller than !e by taking K sufficiently large. Since Vjm is 
continuous and therefore bounded on Y, the mean value 
theorem may be used to show that the integral over Y is less 
than !e for all sufficiently small O. This establishes the 
lemma. 0 

Lemma A.2: If r/J is in the domains of x and v then so is 
Ut r/J; moreover, 

xU,r/J = U,xr/J + vtU,r/J. 

Proof First note that 

Fexp(ixO) U,r/J(k) = FU,r/J(k - Oe) 

(A3) 

= exp[ - im(k - Oe)t 1Fr/J(k - Oe) 

= exp[ - im(k - Oe)t 1Fexp(ixO)r/J; 

so, by (A2), 

exp (ixO) U, r/J = u, ( 0) exp (ixO) r/J. 
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Ifwe subtract Ut r/Jfrom both sides, divide by 0 i=O, and then 
rearrange the right-hand side, we obtain 

exp(ixO) - I U .1. o ,.,., 

_ U exp(ixO) - I .1. 
- t .,.,+ o 

Ut(O) - U, 
o r/J 

+ [U,(O) - U, JAer/J, (A4) 

where Ae = [exp(ixO) - I ]10. 
Let 0---0. Since r/J is in the domain of x, Stone's theorem 

shows that the first term on the right-hand side of (A4) 
tends to i Utxr/J. Since r/J is in the domain of v it is easy to see 
that U, r/J is also in this domain; hence by Stone's theorem the 
second term tends to ivt Ut r/J. Stone's theorem also shows that 
Aer/J---ixr/J = ¢, say. Now 

[U,(O) - U, ]Aer/J= [U,(O) - U,]¢ 

+ [Ut(O) - Ut](Aor/J-¢). 

The first term on the right-hand side tends to zero when 0 --- 0 
by Lemma A.I, while 

II[Ut (O) - Ut ][Aer/J-¢]1I<2I1Aer/J-¢i1---0 

when 0---0, so the third term on the right-hand side of (A4) 
tends to zero when 0---0. It follows that the left-hand side of 
(A4) has a limit as 0---0; hence, by Stone's theorem, U, r/J is 
in the domain of x, and the limit of the left-hand side is 
ixU,r/J. Equation (A3) now follows from (A4). 0 

The premises of Theorem A.t shows that each r/Jj is in 
the domain of x and D, so it follows from Lemma A.2 that, for 
each value ofj, 

(A5) 

We can multiply (A5) by Wj and sum overj to obtain 

(x)t = (x) + (v)t, (A6) 

the convergence of the series being assured by the premises 
of Theorem A.t. Equation (A6) implies (A I), so Theorem 
A.I follows. 0 
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The one-dimensional Coulomb potential as a generalized function 
and the hidden 0(2) symmetry 
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The one-dimensional hydrogen atom problem is solved by treating the potential, - AI I x I, as 
a generalized function. The solutions (although nondegenerate) are nonunique unless 
fixed by some physical constraint. It is also shown that the hidden 0(2) symmetry is a 
consequence of using solutions that are eigenfunctions of the operator sgn x=x1 I x I. 

I. INTRODUCTION 

Over the years there has been much discussion l
-
1 con

cerning the bound state solutions of the one-dimensional 
SchrOdinger equation (m = Ii = 1) 

Ht/J = Et/J, (1) 

with 

Because of the singularity at the origin, solutions must be 
obtained separately for regions x> 0 and x < 0 and then 
matched appropriately at x = O. Since H is symmetric in x, 
a solution for x> 0 can be extended to x < 0 to obtain even 
and odd wavefunctions. We obtain two candidates for the 
even wavefunction 

t/JI(x,k) =Adxle- klxlM(1 - Alk, 2, 2klxl). (2a) 

and 

where AI and A2 are normalization constants and M and U 
are the regular and irregular confluent hypergeometric 
functions. 8 These wavefunctions are linearly dependent for 
the special cases where Alk is a positive integer. The odd 
extensions are given by 

(3) 

The wavefunction t/JI is bounded as I x I ..... 00 only if M 
is a polynomial, i.e., only if Alk = n; n = 1,2, ... , the usual 
spectrum of the three-dimensional hydrogen atom in the 
case of zero angular momentum. This same energy spec
trum applies to t/J3' implying a double degeneracy. On the 
other hand, the wavefunction t/J2 is continuous at x = 0 and 
is Lebesque square integrable for all values of k > 0; a result 
that implies a negative energy continuum.2 

These strange results arise because t/JI.2,4 are not solu
tions of Eq. (1). In particular, the matrix elements of 
(H - E) with either t/J2 or t/J4 diverge.1 Although both t/JI 
and t/J3 satisfy 

(4) 

for the same eigenvalues E (i.e., doubly degenerate), t/JI 
does not satisfy the original Schrodinger equation at the 
origin but rather the equation 1 

(5) 

where the prime denotes differentiation. 
Loudon I attempts to regularize the potential by replac

ing it with 

v= -lim[A/( Ixl + a)] (6) 
a-O 

and finds a ground state at E = - 00 with the correspond
ing eigenfunction 

(7) 

This ground state is not required for completeness in the 
expansion of square integrable functions. 3 The regulariza
tion (6) is inappropriate because the conditions placed on 
the wavefunction at the origin (i.e., t/J and t/J' continuous) 
are not satisfied in the limit of a = O. This is reminiscent of 
the Klauder phenomena.9 

In Sec. II, we treat the potential as a generalized func
tion and obtain regularized solutions that are even and odd 
but exhibit no degeneracy. Since I x I - I is not uniquely 
defined as a generalized function, the discrete energy spec
trum of the even wavefunctions is arbitrary unless fixed by 
some physical constraint. 

Davtyan et al.6 attempt to solve the one-dimensional 
hydrogen atom by multiplying the Hamiltonian by I x I , 
thereby removing the singularity in the potential. They 
start their analysis by transforming the equation, 

IxIH= IxIEt/J, (8) 

to the momentum representation and obtain the interesting 
result that the double degeneracy mentioned above is a 
manifestation of a hidden 0(2) symmetry. In Sec. III, we 
show that this result is due to the symmetry, 

sgnxlxlHsgnx= IxIH, (9) 

valid when applied to wavefunctions zero at the origin. The 
double degeneracy then follows from the nonzero commu
tator of sgn x with the parity operator. The condition 
t/J(O) = 0 on all wavefunctions effectively divides the space 
into two disjointed half-spaces. This rather unsatisfactory 
condition is removed when the potential is treated as a 
generalized function. 
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II. THE POTENTIAL AS A GENERALIZED FUNCTION 

Since the Hamiltonian of the one-dimensional hydro
gen atom is symmetric under parity, we seek even and odd 
wavefunctions continuous at the origin. The odd wavefunc
tions are constructed from the regular solutions since these 
are zero at the origin. On the other hand, the even wave
functions, if they exist, must be constructed from the ir
regular solutions that are nonzero at the origin. However, 
the derivative of these even wavefunctions will then have 
an infinite discontinuity at the origin. Any regularization of 
the potential must take this into account. The appropriate 
condition on the derivative is obtained by integrating the 
Schrooinger equation across the origin. Thus 

1/J'(x) -1/J'( - x) 

= -2 J~x (E+Alx'I-
1
)1/J(x')dx'. ( 10) 

The derivative 1/J'(x) for the odd wavefunctions must 
be continuous since these wavefunctions are zero at the 
origin thus making the integrand finite throughout the 
range of integration. For these wavefunctions we therefore 
choose the odd extensions of the regular solution, 1/J3(x,k), 
where the eigenvalue k is given by 

Alk=n; n= 1,2,3, .... (11 ) 

For the even wavefunctions, the integral is undefined if 
I x I - 1 is treated as an ordinary function. But I x I - 1 

treated as a generalized function regularizes the integral 
while satisfying the equation 

x/ex) =sgn x. (12) 

A representation of this generalized function given by 
Lighthill lO is 

(13) 

It is apparent that this representation is not unique since 
another solution of (12) can be obtained by adding to/ex) 
an arbitrary constant times the Dirac [, function. In the 
following we use 

1 
Ixl- 1=lim I I [1 +2aln (qa)[,(x)] 

a_O x + a 
(14) 

d 
= lim -d sgnx[ln( Ixl + a) + In q] , 

a-O X 
(15) 

which is clearly equivalent to (13) but with the added term 
2ln q[,(x), where q is a real positive constant. 

Substituting the representation (14) into Eq. (10) 
gives for small positive x, 

1/J'(x) = -U1/J(O) lnqx, (16) 

where 1/J'(x) is odd since 1/J(x) is even. Note that this con
dition on the derivative is independent of the limiting pa
rameter a unlike the result obtained from the prescription 
given in (6). The actual derivative of the irregular 
solution8,l1 for small positive x is 
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1/J'(x) = - U1/J(O) 

( 
k r'(1-Alk)} 

X U+ln2kx+r(I_Alk)+2r +O(x), 

(17) 

where r is Euler's constant. Comparing (16) and (17) 
yields, 

k 2k r'(1- Alk) q 
U +lny+ r(1-Alk) +2r=ln:x, (18) 

the equation for the eigenvalues k. 
The even wavefunctions that are continuous at the or

igin and satisfy the derivative condition (16) are the even 
extensions of the irregular solutions 1/J2(x,k), where the 
spectrum is given by (18) for a specific q. As already men
tioned, the odd wavefunctions are 1/J3(x,k), where k is 
given by the usual S wave spectrum of the hydrogen atom, 
Eq. (11). We take these even and odd wavefunctions to 
form the complete set of solutions of the Schrodinger equa
tion for the one-dimensional hydrogen atom. 

Note that the bound state spectrum exhibits no degen
eracy. In fact, for q = A we find that the ground state is 
described by the even wavefunction with 

Alk=0.656. (19) 

As expected the energy levels alternate between even and 
odd with the even levels approaching the odd from below 
as k -+ 0. Let us repeat that unless q is determined by some 
physical constraint, the potential - A I x I - 1 is not 
uniquely defined. 

It can be verified that the Hamiltonian is Hermitian 
when acting on the wavefunctions 1/J2(x,k) and 1/J3(x.k), 
but it is no longer so if the domain is extended to include 
even wavefunctions with a different constant q or if it is 
extended to include 1/Jl(x,k). 

III. SOLUTIONS IN MOMENTUM SPACE 

Following Davtyan et al. 6 we seek a solution to 

Ixl1/J"(x) +2(Elxl + A)1/J(X) =0 (20) 

by transforming to momentum space. The usual procedure 
is to treat the Fourier transform of I x 11/J" (x) as the con
volution of the individual transforms. However, 1/J" (x) 
goes as I x I - 1 at the origin if 1/J( 0) =#=0. In this case both 
the transform of I x I and of 1/J" (x) exist only as generalized 
functions. Unfortunately, the convolution of two general
ized functions can only be interpreted under very special 
circumstances. 12 In order to avoid this difficulty, we take 
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the Fourier transform of Ixltf.r"(x) and make two succes
sive integrations by parts, 

1 f"" . - Ixltf.r"(x)e-'PXdx 
21T - "" 

-2ip f:"" Sgnxtf.r(X)e-;PX dX+4tf.r(0)} , (21) 

and then replace the Fourier transform of each product by 
the corresponding convolution of transforms. These trans
forms are 

1 f"" tf.r(x)e- ipx dx=a( p), 
21T - "" 

(22) 

1 f"" Ixle-ipx dx= - ~, 
21T _ "" 1Tp 

(23) 

and 

1 f"" . 1 -2 sgnxe-1pxdx=-.. 
1T _ co 1Tlp 

(24) 

where I x I and sgn x are treated as generalized functions. 10 

Doing the prescribed manipulations, we obtain 

~ f"" Ixltf.r"(x)e-ipXdx 
21T - "" 

= tf.r(0) + ~ fco p,2a(P'),d{, 
1T 1T _"" (p-p) 

(25) 

which when applied to (20) along with the transform of 
the remaining terms, gives the momentum representation 

(p,2 + kf)a(p')dp' tf.r(0) 

( 
,)2 + -= - 2A.a( p), 

p-p 1T 
(26) 

where E = - kf 12. This integral equation can be cast 
into the form 

k f1T X (t/Odt/J' kf tf.r(0) 
;. -1T l-cos(t/J-t/J') + cos2(t/J12) 1T 

by changing to the variable t/J defined by 

p=k tan(t/J12) , 

along with the definition 

- 2A.X(t/J) 

(27) 

(28) 

X(t/J) = (p2 + kf)a(p). (29) 
Our purpose in deriving Eq. (27) is to demonstrate the 

presence of the term containing tf.r(0) which is missing 
from the equation obtained by Davtyan et al. Thus the 
condition tf.r(0) = 0 is implicit in their work. We make no 
attempt to solve Eq. (27) for tf.r(0)::;60 since the corre
sponding configuration space wavefunctions are presum
ably the even functions tf.r2(x), which we have thoroughly 
discussed in Sec. II. In the following we set tf.r(0) = 0 to 
discuss the results of Davtyan et aL 6 

1443 J. Math. Phys., Vol. 31, No.6, June 1990 

With tf.r( 0) = 0, the normalized solutions of (27) are 

(30) 

where n is a positive integer. These functions obviously 
exhibit an 0(2) symmetry since they are eigenfunctions of 
the operator - i(alat/J). From the definitions in (28) and 
(29) the corresponding solution in momentum space is 
found to be 

a±(p)= - (n)-3/2(p2+kf)-1 p--. , (2)1/2 ( + ik)±n 
n 1T p_~ 

(31) 

where k = .iVn. It is easily demonstrated that an+ (p) cor
responds to configuration wavefunctions zero for x < 0 
while those of an- (p) are zero for x> O. The degeneracy 
arises since there are two distinct wavefunctions for a given 
integer n. These two configuration wavefunctions are 
eigenfunctions of the operator sgn x with eigenvalues ± 1. 
We can demonstrate that this follows from the 0(2) sym
metry mentioned earlier by writing the operator sgn x in 
terms of the variable t/J. Thus 

x - i(alap) 
sgnx=~= li(alap) I 

- i(alat/J) 

li(alat/J) I . (32) 

The solutions Xn(t/J), since they are eigenfunctions of 
- ial at/J, must give configuration wavefunctions that are 

eigenfunctions of sgn x. 
We emphasize here that the 0(2) symmetry occurs 

only ifthe origin is excluded and the condition tf.r(0) = 0 is 
imposed. Since there can be no current across the origin if 
tf.r(0) = 0, the space is effectively divided into two half
spaces entirely separated from each other.4

,7 The regular 
solution can thus be extended to give either an odd or even 
wavefunction with the same value of k. On the other hand, 
if one includes the origin, the even extension of the regular 
solution does not satisfy the Schrodinger equation but 
rather Eq. (5), one is led to consider the irregular solutions 
as was done in Sec. II. 

For the continuous spectrum E> 0, similar results 
hold. For tf.r(0) = 0, Davtyan et al. 6 again uncover a hid
den symmetry that, in configuration space, corresponds to 
symmetry under the operator sgn x. Their solutions are 
eigenfunctions of sgn x and just as for the case of the bound 
states, the space is divided into two disjointed half-spaces. 

IV. CONCLUSION 

Unlike earlier investigations, we have found the spec
trum of the one-dimensional hydrogen atom to be nonde
generate. The fault in the earlier work is the acceptance of 
wavefunctions that are not solutions to the Schrodinger 
equation but rather to Eq. (5). Our work here may be 
criticized on the grounds that we have not used the Cou
lomb potential but have modified it with the addition of a 
c5-function term. We make the following remarks. 

( 1) The strong singularity of the Coulomb potential at 
the origin completely dominates the additional c5-function 
term. 

(2) In contrast to other regularizations, the treatment 
of the Coulomb potential as a generalized function that 
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requires the additional IS-function term preserves the con
nection formula needed to match t/J and t/J' at x = 0 in the 
limit as a-+O [see Eqs. (14) and (16)]. Otherwise the point 
x = 0 divides the space into two disjointed halves. 
(3) The earlier results of a degenerate spectrum can be 
obtained from our results by taking the limit q -+ 00 in Eq. 
(18). Note that in this limit, the IS-function term is part of 
the potential. 
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The Casimir surface force on a spherical shell is calculated, assuming the material to be 
satisfying the condition E(CU)f.l(CU) = 1, E(CU) being the spectral permittivity andf.l(cu) the 
spectral permeability. The basic formula for the force is given under general conditions, 
without any restrictive assumption on the thickness of the shell or on the specific dispersion 
relation. When it comes to numerical evaluations, it is assumed that the shell is of small 
thickness, and also that the simple form f.l(cu) = f.ls (cu<,cuo), f.l(cu) = 1 (cu> CUD)' for the 
dispersion relation. The special case when f.ls -+ 00 or 0 is given particular attention, since this 
case appears to be of main physical interest and also since it implies mathematical 
simplifications. The force Y may then be written as the sum of two terms: one "normal" term 
.Yi0

) containing an attractive dispersion-induced part as well as a repulsive, nondispersive finite 
part, and one "abnormal" term.Yi1) that becomes divergent when summed over all angular 
momenta. This particular behavior of.Yi I) is a consequence of the assumed small magnitude of 
the shell thickness. A similar analysis of the opposite extreme case of dilute media is also made, 
and analogous angular moment divergent results are found. The extraction of physically 
meaningful information from the divergent expressions is discussed. In general, numerical 
methods are necessary to handle the Riccati-Bessel functions, although in the special cases 
mentioned, useful analytic results are obtained using the Debye expansion. The numerical 
calculation of the Casimir force on shells ofjinite thickness is also commented upon, and in the 
Appendix the generalization of the theory to the case of finite temperatures is discussed. 

I. INTRODUCTION 

An important progress in the theory of the electromag
netic Casimir effect I in dielectric media in recent years is the 
realization of the importance of the dispersive effect. It was 
Candelas,2 in particular, who stressed the need of taking this 
particular effect into account. The presence of dispersion 
implies, according to Candelas, that there is a strong, nega
tive, cutoff-dependent contribution to the Casimir energy of 
a perfectly conducting spherical shell. Candelas' general ar
guments were in essence supported by the specific model 
calculation carried out in Ref. 3 for a dispersive, compact 
spherical ball. We obtained a strong, attractive, contribution 
to the Casimir surfaceforce. 

Also from a mathematical point of view, the inclusion of 
dispersion is welcome since under usual physical conditions 
(i.e., in the absence of singularities) one avoids the "infinity 
plus small remainder" expressions that made the extraction 
of physical results so difficult in earlier investigations. In 
particular, one no longer has to worry about the legitimacy 
of interchanging an infinite sum with an integral: In the con
ventional nondispersive calculations one is confronted with 
a frequency integral of an infinite sum over all angular mo
mentum variables t. The series, usually calculated by means 
of the Debye expansion, is an asymptotic high-t' expansion 
and thus not uniformly convergent. If one simply inter-

aJ Present address: Department of Physics. Temple University. Philadel
phia. Pennsylvania 19122. 

changes the sum with an integral one runs the risk ofloosing 
a constant, which is infinite in the case of a nondispersive 
medium. Problems of this kind are avoided when the medi
um is taken to be dispersive from the outset. The compact 
sphere calculation of Ref. 3 is typical in this respect. 

For reference purposes we mention that the first calcu
lation of Boyer4 on the Casimir force on a nondispersive 
perfectly conducting spherical shell of vanishing thickness 
gave a repulsive result. More refined calculations-Refs. 5, 
6, and 7 for instance-similarly found the force to be repul
sive. As already mentioned, the development took a new 
turn when Candelas2 and others discovered the importance 
of dispersion in the present problem. In the model calcula
tion of Ref. 3 at zero temperature, the permittivity E(CU) and 
the permeability f.l (cu) of the medium were assumed to satis
fy the condition 

E(CU)f.l(CU) = 1. (1.1 ) 

Moreover, a one-absorption-frequency Sellmeir dispersion 
relation was adopted. In a recent papers we have extended 
these considerations on a compact sphere to a case of finite 
temperatures. 

The purpose of the present paper is to calculate the Casi
mir surface force on a spherical shell. The medium is still 
required to satisfy ( 1.1 ). When it comes to numerical evalu
ation of the force, we adopt as the dispersion relation the 
simplest imaginable form: 
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{

II. llH;;,WO' 
JI-(W) = r-s' 

I, w> WO, 
( 1.2) 

where Jl-s and Wo are constants. The corresponding permit
tivity follows from (1.1). Our calculational procedure is 
mainly the same as the one worked out in earlier papers9

•
10 

for the case of spherical shells. Another feature of our nu
merical calculations is that we consider in the main text only 
the special case of geometrically very thin shells. This feature 
brings an element of singularity into our calculations that in 
turn implies that terms occur in the force that diverge when 
summed up to t = 00. On physical grounds we have to trun
cate the sum at a finite upper limit ~. The sum-integral 
interchange problem mentioned above is accordingly re
moved as the series contains only a finite number of terms. 

In the following section we work out the general formal
ism for the Casimir force. Because of the complexity, nu
merical work is generally required for a complete evaluation. 
The important special case in which Jl-s .... 00 or 0 considered 
in Sec. III is to a large extent amenable to an analytic treat
ment. We find in this case that for a very thin shell the force is 
the sum of two terms: First, there is a term yeo) that is pre
cisely of the form that we would expect for an ordinary per
fectly conducting shell in electrodynamics, consisting of an 
attractive dispersion-induced part and a repulsive nondis
persive part. Secondly there is a term y(J) that diverges 
when summed over t. This term, absent in the case of a com
pact sphere has to be a consequence of the geometrical singu
larity of the shell. The extraction of physically meaningful 
results is discussed. Section IV is considered with the case of 
dilute media. Also in this case, divergent terms are found in 
the force expression. 

In order to elucidate the role played by the geometrical 
singularity, we consider in Sec. V the Casimir force on a shell 
whose width is not necessarily small. If the outer radius is 
infinite (at fixed inner radius ), the force becomes easily 
calculable. Taking into account the Debye expansion, we 
can write the force expression with excellent accuracy in a 
very simple way. When the outer radius decreases, numeri
cal calculations indicate that the force stays finite down to a 
surprisingly low value of the outer radius/inner radius ratio, 
viz. to about 1.1. Only when a shell is thinner than this, do we 
become confronted with the peculiarities of thin-shell theo
ry. 

In Appendix A we compile some information about the 
generation of Riccati-Bessel functions on a pc computer. 
Appendix B contains an analysis of how the essentials of the 
Casimir shell theory can be generalized to the case of finite 
temperatures. 

In this paper, ~ and c are put equal to unity. 

II. GENERAL FORMALISM FOR THE SPHERICAL SHELL 

A. Basics 

The geometry of the shell is sketched in Fig. 1. The inner 
radius is a, the outer is b, and the medium in between satisfies 
( 1.1 ). In the two regions r < a, and r> b, we assume there to 
be a vacuum. When dealing with the general theory below, 
we assume the thickness (b - a) of the shell to be arbitrary. 
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To begin with, no explicit choice is made for JI-(w). 

If one makes use of the conventional point-splitting for
malism in field theory, one can write the surface force den
sity F (Ft on the inner surface, F2 on the outer surface) as a 
Fourier integral 

F = foo dw e - i"'TF(w) , (2.1) 
- 00 21T 

with r = t - t ' denoting the time splitting between the two 
space-time points x and x'. This is because the stationarity of 
the problem means that the force depends only on the time 
difference between the two points. In nondispersive theory, r 
plays the role ofa cutoffparameter,just as it does in conven
tional field theory. In the present dispersive theory, there is 
no need to keep this parameter in the formalism. We accord
ingly put r = 0 in the following. 

Making use of Maxwell's stress tensor, we obtain for the 
Fourier component F, (w) of the surface force density F t : 

FI(w) = JI-(w) - 1 [(E~(a _ »'" + _1_ 
2 JI-(w) 

X(Ei(a- »'" __ 1_ (H~(a- »'" 
JI-(w) 

- (Hi (a - )}"']. (2.2) 

Here r = a - is the position just inside of the inner shell, and 
the subscripts rand 1 refer to the radial and the orthogonal 
direction. 

The expectation values of the products of field compo
nents are evaluated by means ofScwinger's source theory. 11 

The electric field E(x) is related to the polarization P(x) 
through a dyad r(x,x'): 

E(x) = f dx' r(x,x')P(x'), (2.3) 

where the Fourier component of r satisfies the governing 
equation 

- curl curl r(r,r',w) + w2r(r,r',w) 

(2.4 ) 

The effective product of two electric field components is 

i(Ei(r)Edr'»", = rik(r,r',w). (2.5) 

The solution of (2.4) contains two scalar Green's functions 
F~ and G~, which can be expressed in terms of spherical 
Bessel and Hankel functions. We write down the expressions 
for the effective products of the electric field components at 
r=7'=a-: 

FIG. I. Geometry of the spherical shell. 
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i(Ei(a-»", 

00 21+ 1 [ 2 1 a a ] = L-- wF,+--r-rG, . 
,=1 41T a2 ar ar r=r=a-

(2.6) 

Note that since the fields are evaluated in the vacuum region 
on the inside of the shell, the material permittivity or perme
ability do not occur in these expressions. The analogous 
magnetic field products i(H;(a - »'" and i(Hi(a - »'" 
are obtained from (2.6) upon the substitutions G~F,. In
serting the four effective field products in (2.2), we obtain 
the force density on the inner surface expressed in terms of 
F,and G,. 

Analogous considerations apply to the calculation of 
the force density F2 (w) on the outer surface. It is now con
venient to exploit the electromagnetic boundary conditions 
across the surface r = b so as to permit the force to be ex
pressed in terms of the vacuum fields on the outside: 

F2(w)=J.l(w)-1 [-(E 2(b+» __ 1_ 
2 r '" J.l(w) 

x(Ei(b+ »'" +_1_ (H;(b+ »'" 
J.l(w) 

+ (Hi(b+ »"']. (2.7) 

We write down the effective products for the electric 
field components on the outside: 

(2.8) 

00 21 + 1 [ 2 1 a a ] = )' --- w F'+-2 -r-rG, . 
;:-1 41T b ar ar r=r=b + 

The magnetic field products are analogous. These expres
sions are to be inserted in Eq. (2.7). 

We shall be interested in the total surface force Y on the 
shell. It is defined as 

(2.9) 

Its Fourier component Yew) can in view of the above ex
pressions be written 

cz- J.l(w) - 1 ~ I {([ hI 2 2 [ F,] a a [G, ]) Y (w) = . £. (2 + 1) q + 1) -w a] G,--- +-r-r ---F, 
21 1'=1 J.l(w) ar ar J.l(w) r=r=a-

( 
2 2 [ FI'] a a [GI' ]) } - [41+ 1) -w b ] GI'--- +-r-, r ---F, . 

J.l(w) ar ar J.l(w) r= r = b+ 
(2.10) 

From this equation the advantage of expressing FI (w) and 
F2 (w) in terms of the effective products on the inside, respec
tively on the outside of the shell is apparent: We need only to 
use explicitly the scalar Green's functions in the two vacuum 
regions, 

r,r <a, 

FI',GI'=ikjl'(kr< )[h~\)(kr» -AF.dAkr> )], 

r,r' > b, (2.11) 

F"GI' = ik [jAkr < ) - BF.Gh ~I)(kr < )]h ~\)(kr > ), 

withk= Iwl. TheconstantsAF•G andBF,G have to be deter
mined by the electromagnetic boundary conditions across 
the surfaces r = a and r = b. This procedure makes it neces
sary to invoke the Green's function in the intermediate re
gion a < r < b also. We abstain from going into detail here
the reader is referred to an earlier paper9 -and we confine 
ourselves to writing down the expressions for those terms 
that are needed in (2.10): 

2 2 [ F, ] [ 4 1+ 1) - w a] G, - -- (a - ,a - ) 
J.l(w) 

= ks~(1){[~ - J.l~) ]eA 2)Qr(2) 

+ [~ - J.l<;) ]er(2)Q,}, (2.12) 

a a [G, ] -r-r ---F, 
ar ar J.l(w) r=r=a-
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= ksr(1){[~ - J.l~) ]eA 2)Qr(12) 

+ [~ - J.l<;) ]er(2)Q r( 1)}, 

[41+ 1) -w2b2][G,-~](b+,b+) 
J.l(w) 

= - ker(2){[~ - J.l~) ]SAl)Qr(l) 

+ [~ - J.l<;) ]sr(1)Q,}, 

a a [G( ] -r-r ---F( 
ar ar J.l (w) r = r = b+ 

= - ker(2){[~ - J.l~) ]S((1)Q~(12) 

+ [~ - J.l<;) ]sr( I)Q r(2) }. 

(2.13 ) 

(2.14 ) 

(2.15 ) 

In these expressions s(z) = zj(z) and e(z) = zh ~\)(z) 
are the Riccati-Bessel functions; for notational convenience 
s( 1) =s(ka), s(2) =s(kb), etc. Prime means differenti
ation with respect to the whole argument. The symbol Q and 
its various derivatives are defined as 

Q( = s( 1 )e(2) - e( 1 )s(2), 

Q r(1) = sr( 1)e(2) - er( l)s(2), 

Q r(2) = s((1)er(2) - e((1)sr(2), 

I. Brevik and R. Sollie 
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Q7(12) =sr(1)er (2) -e{(1)sr(2). 

Finally, the symbols Nand N are defined as 

N = e,(2) [s(I)Q{(12) -jt(w)sr(1)Qr(2)] 

- jt(w )er(2) [s,(1)Q ((1) - jt(w )sr(1 )Q( ], 

N =er(2)[s{(1)Q,-jt(w)s((1)Q{(1)] (2.17) 

- jt(w )e,(2) [sr(1)Q ((2) - jt(w )s( I) Q ((12) ]. 

When deriving these expressions we made use of the basic 
differential equation satisfied by the Riccati-Bessel func
tions. 12 

B. Frequency rotation. General expression for the force 

Inserting the expressions (2.12)-(2.15) in (2.10) we 
can calculate the Fourier component of the force. The phys
ical force on the shell is in accordance with (2.1) equal to 

Y = J"" dw Yew), (2.18) 
- "" 21T 

when the cutoff parameter is equal to zero. As in the nondis
persive case, for a medium satisfying the condition Ejt = 1, 
there is no need of taking into account contact terms. 13 

The frequency integral in (2.18), which implies the 
Feynman path of integration, can in view of symmetry about 
the origin be replaced by twice the integral from zero to 
infinity. We perform a complex frequency rotation, w--+tw, 
and integrate along the imaginary frequency axis. Since only 
positive frequencies are now involved, the frequency rota
tion implies 

(2.19) 

where the last equality holds because the refractive index of 
the medium is equal to unity; cf. (1.1). It is convenient to 
define nondimensional frequencies x and y: 

(2.20) 

(they were called x I and X 2 in Refs. 9 and 10). The quantities 
defined in (2.16) and (2.17) nowbecomefunctionsofixand 
iy. As in Ref. 3 we retain the symbols unchanged, implying 
that s,(ix) --+st'(x), etc. The Riccati-Bessel functions are, 
with v = t+ 112, 

sAx) = (1Tx/2)1/2/v (X), 
(2.21) 

corresponding to the Wronskian W{st',et'} = - 1. The 
quantities QI' and N are transformed similarly; for definite
ness we write down here the new versions of the two first of 
Eqs. (2.16) and the first ofEqs. (2.17): 

Q, = s,(x)eAy) - e,(x)s,(Y), 

Q rex) = sr(x)e,(y) - er(x)sAy), 

N = e,(Y) [s,(x)Q 7 (x,y) - jt(x)sr(x)Q ;'(y)] 

- jt(x)er(y) [s,(x)Q rex) - jt(x)s;,(x)Q,]. 

Introducing the magnetic susceptibility 

x(x) = jt(x) - 1, 

(2.22) 

(2.23) 

we arrive after some calculation at the following general 
expression for the force: 

Y=~ r""dxxx(x) I (2t+ I){[~- jt<!)] [(s(x)e;'(y) +s;'(x)e(y»Q{(x,y) +s,(x)e{(y)Q{(x) 
21Ta Jo ,= INN 

+ s{(x)e(y)Q ;'(y)] + [~ - jt~) ] [(si(x)e{ (y) + s{(x)ei(y»Q( + s{(x)ei(y)(Q ((x) + Q r(y»] }. 

The force expression written in this way is convenient for 
further numerical processing. Assume, for instance, that 
both functions s, and e, and their first derivatives are acces
sible from a computer library. Then (2.24) is in principle 
directly computable, for a given dispersion relation x(x), 
when in addition one takes into account that the second de
rivatives are calculable from the basic differential equation 
for the Riccati-Bessel functions in the form (2.21): 

{s7(X)} = [1 + ctt+ I) ]{S,(X)}. 
e{(x) x2 e,(x) 

(2.25) 

For analytic purposes it is usually more convenient to 
rewrite Y in a more compact form by introducing the opera
tor L: 

a a 
L=-+-, ax ay (2.26) 

x and y being considered as independent variables in a func
tion on which L acts. We can then write 

1 L"" "" Y =-2 dxxX(x) L (2t+ 1) 
21Ta 0 ,=1 
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(2.24) 

(2.27) 

This formula gives the total surface force as defined in (2.9) 
on the shell. Let us summarize here the basic assumptions on 
which (2.27) rests: The formula holds at zero temperature 
for a medium satisfying condition (1.1). No explicit choice 
of the dispersion relation X (x) is made so far. Noris there at 
this stage any restriction on the thickness (b - a) of the 
shell. 

For the remainder of this paper we shall chiefly be con
cerned with numerical calculations under certain restrictive 
conditions implying, in the first place, adoption of the dis
persion relation (1.2). It corresponds to 

{
xs> x<xo, 

X(x) = 
0, x>xo, 

(2.28) 

with XS = jts - 1. Secondly, we specialize to the case of a 
geometrically thin shell. Thus 
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b=a(1 +S-), withS-<1. (2.29) 

In the following section we consider the case where It. is 
either a very large or a very small quantity. 

III. EXTREME PERMEABILITIES 

We examine the case where It. satisfies one of the follow
ing two conditions: 

It.-+ { 

00, 

O. (3.1 ) 

These two possibilities can be treated analytically on the 
same footing; they will lead to the same expression for the 
force. Note that in view of the condition (1.1) a very large 
value of It. corresponds to a very small value of E. ( = lilt.). 

For convenience we may start from the general force 
expression in the compact form (2.27). It is apparent that 
the two terms having the form L [ ... ] are independent of 
It(x). The permeability turns up only in these terms' prefac
tors: 

x(x) [1.- _ It<!) ] -+ - 1 , 
N N s,(x)e,(y)Q r(x,y) 

(3.2) 

x(X)[~ _1t(X)]-+ -1 , 
N N s;-(x)e;-(y)Q, 

valid whenever one of the conditions (3.1) is satisfied. Tak
ing into account the dispersion relation we write the total 
force :7 as a sum of two terms: 

(3.3 ) 

where the first term can be expressed in the following two 
alternative ways: 

:7(0) = - ~ (X"dx xi: (2t' + 1) 
21Ta Jo (= 1 

[
s;"(X) s/(x) e;"(y) e/(y)] 

X --+--+--+--
s(x) s;"(x) e(y) e;"(y) 

Ii"" 00 = - 2 dxx L (2t'+ I)L 
21Ta 0 (= 1 

Xln[ -s(x)s;,,(x)e(y)e;"(y)]. (3.4) 

The second term can analogously be expressed as 

y(\) = -=--!.. (X"dx xi: (2t' + 1) [Q;" (x) + Q ;"(y) 
21Ta2Jo (=1 Q( Q( 

+ -(-- ( + -(-- --(--s"(x) Q' (y) e"(y) Q' (x) ] 

s(x) Q/(x,y) e(y) Q/(x,y) 

1 iX

" 00 =~ dxxL (2t'+ l)Lln[ -Q(Q/(x,y)]. 
21Ta 0 (=1 

(3.5) 

It is seen that the permeability It. has dropped out explicitly 
from these expressions. Note that the logarithmic arguments 
in (3.4) and (3.5) are both positive. The latter expressions 
are in agreement with the nondispersive expressions given in 
Eq. (10) of Ref. 10 if the cutoifparameter in that paper is put 
equal to zero and the frequency integration terminated at XO' 
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We now consider the two terms in the force separately. 

A. The term .710) 

This term is, as we will see, the "normal" term since it 
gives results that are in accordance with what we would ex
pect in the electrodynamic theory of an ordinary dielectric 
medium. Also, no divergences are encountered. The term is 
at once seen to possess particularly simple properties in the 
limiting case when the thickness of the shell shrinks to zero: 
there is no presence of Q, or any of its derivatives in (3.4). 
As is seen from the definition Eqs. (2.22), the QI are thick
ness quantities which go to zero wheny-+x. This means that 
:7(0) does not require any expansion in the thickness param
eter, and we can simply replace y by x in (3.4). This property 
makes it relatively easy to calculate :7(0) analytically, mak
ing use of the Debye expansion of the Riccati-Bessel func
tions. 12 For our purpose it is convenient to quote from Ref. 
14 the following expansion for the product that is needed in 
(3.4): 

- sr(x)s;-(x)er(x)e;-(x) = HI - t 6/4v + O( v-4
)], 

(3.6) 

where 

t(z) = (1 +,r)-I12, z=x/v. (3.7) 

Expanding the logarithm of expression (3.6) to the lowest 
order, and using that L ( t) = - zt 3/ v we obtain, writing the 
force as :7(0) (a,a) for clarity, 

:7(O)(a a) = -=- dx x2 "" ----. 3 i"" 00 v 
, 21Ta2 0 ;~l (v + X 2 )4' 

(3.8) 

The sum over t' can be calculated using the Euler-Ma
claurin formulal2 in the form 

20 

I n(-2"a\~''') 

15 
t,.-2OO 
1.-100 
("-50 

10 Xo= 10 

-16 -14 -12 -10 -8 -6 -4 -2 0 

log (~) 

FIG. 2. Force term .r(O) for an extreme-permeability shell, as calculated 
from thebasicEq. (3.4). Here, t.,denotes the upper limit in the t' sum and S 
is the thickness parameter. The square point on the left ordinate axis is cal
culated from (3.12). Here, log denotes the logarithm with base 10 whereas 
In is the natural logarithm. 
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As discussed in connection with Eq. (3.3b) of Ref. 8, the 
form (3.9) is quite accurate even for low values of x. Insert
ing (3.9) in (3.8) we obtain 

or(O) _ - 3 {LXoIWd [w z'> 
.7 (a,a) ---2 z - -2 3 

211"a 0 6 (1 + z- ) 

+~ z2 +..2... z2 
2 (1 + z2)2 3w (1 + z2)4 

2 z2 ] 4 rXolV 
dz z2 } 

+ 3w (1 + z2)S + 1-1JO (1 + z2)4 • 

(3.10) 

It is here of interest to examine the limiting case xo"" 00. The 
first term in (3.10) then diverges; the other terms remain 
finite. To show the structure of the divergent term explicit, 
we first rewrite it as 

w rXolW dz z'> xo xo 7 + 9X~/W2 
"6 Jo (1 + z2)3 ="6 + 48 (1 + X~/W2)2 

--arctan -55 (xo) 
32 w ' 

(3.11) 

valid for arbitrary Xo (cf. for instance, formulas 2.213 in Ref. 
15). The divergence occurring when Xo"" 00 is thus seen to 
be linear. The remaining terms in (3.10) simplify to beta 
functions, and we obtain altogether: 

Y(O) (a a) = -~ + _3_ for large Xo' (3.12) 
, 411"a2 6402 ' 

This simple expression makes the main structure ofthe par
ticular force term Y(O)(a,a) explicit: There is an attractive 
part in the force, being due to dispersion. Although the 
mathematical condition for the simple proportionality 
spelled out in the first term in (3.12) is, strictly speaking, 
that Xo is a large quantity, it turns out numerically that the 
formula is surprisingly accurate even when Xo is not very 
much larger than unity. In fact we have made a direct nu
merical calculation of the basic expression (3.4) (first ver
sion) for Y(O), with y = x inserted, without invoking the 
Debye expansion at all. (How the Riccati-Bessel functions 
can be generated on a pc computer is discussed in Appendix 
A.) It turned out that even for a value of Xo as low as 1.4, the 
error in the formula (3.12) amounted to less than 1 %. For 
Xo = 1, the error was 10%, and for Xo = 2 it was about 0.1 %. 
This is a striking demonstration of the usefulness of the ana
lytic formula (3.12). (The physical importance ofthe term 
Y(O)(a,a) is larger than one might expect at the present 
stage; we will return to this point in connection with the 
discussion on thick shells in Sec. V.) The attractiveness of 
the dispersion-induced part of the force-and also the pro
portionality with Xo inferred at large or moderate xo-are 
properties that are in accordance with those found in Ref. 3 
in the case of a compact spherical ball. 

The second finite term in (3.12) is a repulsive term. It is 
interesting to note that this term, which is not related to 
dispersion, is just the term that was found in the earlier cal
culations based upon a nondispersive material model from 
the outset. Adopting such a model, the dispersive term was 
simply missed. We ought to mention that the term 
3/6402 = 0.09375/2a2 is the result of an approximate calcu· 
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iation; we have made use of the lowest-order expansions of 
the Riccati-Bessel functions only. The most accurate calcu
lation of the dispersion nonrelated term for a singular shell 
was given by the calculation of Milton, DeRaad, and 
Schwinger7 (MDS): 

Y MDS = 0.09235/202
• (3.13) 

The agreement with the second term in (3.12) is thus quite 
good. 

How "thin" must a shell be before the basic expression 
(3.4) for Y(O) reduces the expression y<O)(a,a) characteriz
ing a singular shell? To investigate this point, we have calcu
lated (3.4) numerically for various input values S (not using 
the Debye expansion). Figure 2 shows the calculated results 
for the case Xo = 10, which is a typical value for the frequen
cy cutoff. It is seen that it is in fact necessary to go to quite 
low values of S before one with sufficient accuracy is within 
the "singular shell" region, corresponding to y = x. It is nec
essary that the calculated results are independent with re
spect to variations in S. The figure shows that under the 
conditions chosen we are on safe ground when 

ss, 10- 10• 

This estimate depends slightly on Xo. It is only when S 
reaches these extremely small values that we can replace 
Y(O) with Y(O)(a,a). Without computer assistance, this re
quired smallness of S would not have been so easy to recog
nize. 

There are two other useful observations to be made from 
this figure. First, the result corresponding to Xo = lOis in 
excellent agreement with the analytic high-xo approxima
tion given in (3.12). [The point, marked with a square, on 
the left coordinate axis is calculated from (3.12).] Secondly, 
the figure indicates how far it is necessary to extend the t 
summation in (3.4) in order to represent "infinity" with 
reasonable accuracy. It appears that an upper limit of 

to- 5xo, 

is sufficient for this purpose. The same conclusion is ob
tained more clearly from an inspection of Fig. 3, which 
shows a direct calculation of the force term Y(O) (a,a) for a 
singular shell, for various values of to. [The two curves are 
terminated at the limits of the computer capacity, whereas 

4~----------------------~ 

3 

2 

.1 

I n(-2na\~'"'(a,a») 

~x •• 50 
/ r-x.-l0 

o+-~~--~~~~~--~~~ 
0.00 0.02 0.04 0.06 0.08 0.10 0.12 

1/1. 
FIG. 3. Same quantity as in Fig. 2 when the shell is geometrically singular, 
i.e.,y = xors = O. This case is referred toasy(O)(a,a). Square points to the 
left are calculated from (3.12). 
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the square points to the left are calculated from (3.12).] 
Again, to - 5xo' appears to be adequate as an upper limit. 

B. The term .711) 

The structure of this term is different from that of y(O) 

since Qt' as well as its derivatives approach zero when y ap
proaches x. We therefore have to perform a limiting proce
dure in the expression (3.5) for y(I), using 5 as a smallness 
parameter. To this end we may again use the Debye expan
sion. From Eq. (27) in Ref. 10 we quote the expansion 

In[ - Qt'Q ; (x,y) ] 

= 21n(v5 It) - (t2/4v) + 0(5) + 0(v- 3
), (3.14) 

whereby after application of the operator L 

(3.15 ) 

Insertion in (3.5) yields, upon neglect of the higher-order 
terms, 

This expression, in which 5 is nowhere present, possesses the 
remarkable property that the sum over tis diverging. This 
kind of behavior contrasts that found earlier for a compact 
spherical ball made of the same kind of material; 3 in that case 
all sums over t were found to be finite. The divergence of 
( 3.16) therefore has to be related to the thin shell geometry. 
However, in spite of this behavior it is still possible to use 
(3.16) to make an estimate of the force term y(I). The im
portant point here is that on physical grounds the large con
tribution from the higher values of thas to be a spurious 
effect. Because of the dispersion relation, the presence of the 
medium cannot be felt for photons having frequencies above 
WO' If a photon of limiting frequency Wo just touches the 
surface of the sphere, its angular momentum is equal to Well, 
i.e., to xo. If the photon impact parameter is much larger 
than a, we do not expect it to be physically significant. (Ar
guments of the same kind were given also by Candelas.2

) 

Thus, we may estimate the magnitude of the physical force 
component y(I) by truncating the sum in (3.16) at to = [xo, 
where [is a factor. In analogy with what we found in the 
previous subsection, we expect that [- 5 is a sufficient value 
for most practical purposes. 

Integrating over x in (3.16) we obtain finally 

2 I.. [ ( 1 ) (x ) x v ] Y(l) = -2 I v - - arctan -2 + 0 2 . 
rra f ~ 1 8 v 8 (v + Xo ) 

( 3.17) 

When Xo and to are given, this sum is easily evaluated nu
merically. The curve (b) in Fig. 4 shows how y(1), calculat
ed from (3.17), varies with to if Xo = 10. The curve (a) 
shows for comparison the same result as calculated numeri
cally from the first line in Eq. (3.5). It is seen that if we 
choose [= 5, which in the present case corresponds to 
1/ to = 0.02, the agreement between the two curves (a) and 
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11 xo .. l0 
10 

7+-__ ~ ______ ~~~ __ ~ __ -
0.00 0.02 0.04 0.05 0.08 0 10 0.12 

1/t. 
FIG. 4. Repulsive term 5'(1) versus upper limit to. Curve (a) is calculated 
numerically from Eq. (3.5); curve (b) follows from the semianalytic ap
proximation (3.17). 

(b) is very good, so that the formula (3.17) is adequate. The 
force term y(1) is strong, and repulsive. For Xo = 10 and 
[ = 5, it is seen from Figs. 4 and 3 that y(l) dominates com
pletely over Y(O)(a,a). 

As noted above,s has dropped out from the analytic 
approximation (3.16). This is a consequence of the fact that 
5 has been assumed small in the derivation of this expression. 
One may wonder how small it is necessary to make 5 in the 
basic expression (3.5) for y(l) before the singular shell re
gime is attained, i.e., before the expression becomes insensi
tive with respect to variations in 5. Numerical trials indicate 
that 5 _10- 3 is sufficient. In this sense the term y(1) is seen 
to be not so delicate at small values of 5 as is the term Y(O). 

Finally, it is of interest to compare the above result for 
y(1) with that obtained on the basis of nondispersive theory. 
In the latter case we quote from Eq. (30) of Ref. 10: 

y(1) = ~ ( _ ~ + ~) (nondispersive theory), 
a2 8 t? 

(3.18 ) 

where 8-+0+ is the time-splitting cutoff parameter. We can 
recover the finite part of this expression from our dispersive 
result (3.17) above, if we first simply put Xo = 00 (for a 
finite value of to) and thereafter put to = 00. This procedure 
leads to the sum 

y(1) =~ i: (v -~), 
a f~1 8 

(3.19) 

which can be further processed in a very simple way by mak
ing use of the standard analytic continuation of Riemann's 
zeta function: 

00 I V= (2- S -1);( -s). 
f~O 

This expression implies the following substitutions: 

00 00 1 I y<J = - 1, I v = - - , 
f~1 f~1 4 

which, upon insertion in (3.19), yield the answer 

y(l) = _ 1/8a2. 

(3.20) 

(3.21 ) 

(3.22) 

The comparison between the dispersive and the nondisper
sive theories is thus seen to give a satisfactory result: If we 
eliminate the influence from Xo in the dispersive theory by 
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putting Xo = 00, we recover the expression (3.22) that is 
identical with the finite part of the nondispersive expression 
(3.18). Moreover, the presence of the cutoff parameter in 
the second term in (3.18) reflects in an indirect way the 
cutoff dependence of the result that is shown in an explicit 
way in our basic expression (3.17) for y(t). 

IV. DILUTE MEDIA 

This case is characterized by a small susceptibility 

Xs.( 1. (4.1 ) 

We go back to the general force expression (2.27). It is use
ful to note the general relationship 

N - N = [p2(X) - 11[ s(x)e,(x) - s(y)e(y)], (4.2) 

cf.(2.22), and also that 

N=N= 1, when p(x) = 1. (4.3) 

Expanding in X(x) as a smallness parameter, we obtain us
ing Eqs. (4.2) and (4.3) 

liN - p(x)IN 

= - X(x) [ 1 + 2s(x)e,(x) - 2s(y)e(y) + O(x)], 

liN - p(x)/N 

= - x(x) [ 1 - 2s(x)et<x) + 2s({y)et<y) + O(X)]. 
(4.4) 

Comparing with (2.27), it is already at this stage apparent 
that the force varies quadratically with the susceptibility X. 
This feature is characteristic for the case of dilute media. 

The smallness of the thickness parameter 5 has so far not 
been invoked. Turn now to an expansion in s. To this end it is 
convenient to use again the Debye expansion. Since lO 

s(e, = HI + t 3/2v + 0(v- 3
)], (4.5) 

we obtain 

1 p(x) _ {3Sr-t 5 
N- N - -X(x) 1+~[1+0(s) 

+0(v- 2
)] +O(X)}, 

(4.6) 

~ _ p(x) = _ X(X){I- 3sz
2

t
5 

[1 + 0(5) 
N N 2v 

+0(v- 2
)] +O(X)}. 

There are thus three expansion parameters in this problem: 
shell thickness 5, susceptibility X, and Debye parameter lIv. 
To the lowest order, both expressions in (4.6) reduce to 
- X(x). Then (2.27) yields 

x2 iX" 00 y =--; dxx)' (21'+ 1)L 
21ra 0 1:'1 

x [st<x)et<y)Qr(x,y) +s(x)e(y)Q(]. (4.7) 

The operator L when applied to the square parenthesis in 
( 4. 7) may be rewritten as 

L [ ... ] = SxL(s,er - s(e() 

= sxL [(s(e,)' - 2s(e(] , (4.8) 
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to the lowest order in S. Making use of (4.5), together with 

s(e(= (-lI2tz)[1 + 0(v- 2 »), 
L(t) = - zt 3 lv, L(tz) = t 3 lv, 

we obtain: 

L["') = ( - st Iz)[1 + 0(v- 2 »). 
Then the force becomes 

(4.9) 

(4.10) 

y =x;~ (""dx ~ ~ [1 + 0(v-2 »). (4.11) 
1ra Jo 1:'1 ~:yz + X Z 

The same kind of divergence is seen to occur here as in the 
previous case when we were dealing with y(t). We terminate 
the sum at to = Jxo as before, omit the O( v-2

) term, and 
integrate over x to obtain 

y =r.~ ~ ~ln{X. + ~1 + xl }, 
1ra 1:'1 v V 

( 4.12) 

to the lowest order in S. 
A noteworthy feature of this expression is that 5 appears 

as a factor, so that the force becomes significantly sup
pressed for very thin shells. 

Figure 5 shows results for y, calculated from (4.12), 
for some different value of the factor! The force is seen to be 
repulsive; this behavior is analogous to that of y(O above. 

V. CONCLUSION AND FINAL REMARKS 

We have assumed throughout that the medium satisfies 
the condition (1.1). The theory in the main text applies to 
the case T = 0 (some remarks on the case of finite tempera
tures are made in Apendix B). 

We may conclude this work as follows. 
(1) Using Schwinger'S source theory, together with 

Maxwell's stress tensor, we have calculated the total surface 
force Y, as defined in (2.9), on the sh~ll. The general 
expression is given in (2.24). For a further analytic process
ing the compact form (2.26) may be more convenient. At 
this stage no restriction is imposed on the thickness (b - a) 
of the shell; nor is the dispersion relation specified. No ap
proximation is so far made on the Riccati-Bessel functions. 

When proceeding to numerical calculations we have 
made two further assumptions; first that the susceptibility X 

I n(.ji ·na1X;~) 
35-·~----~~=------------------, 

30 

25 

20 

15 

10 

20 40 60 

f:100 

__ - f=10 
f· 5 
f·2 
f = 1 

80 100 x. 
FIG. 5. Force.'7 on a shell when the medium is dilute. The parameter f is 
the factor occurring in the angular momentum effective cutoff ea = fxo. The 
curves are calculated from Eq. (4.12). 
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FIG. 6. Finite temperature force yIO}T(a,a} on a geometrically singular 
shell, as calculated from Eq. (B4). The flat plateau shows the extent of the 
low-temperature region. The square point to the left is calculated from 
(3.12). 

satisfies the simple equation (2.28); secondly that the thick
ness parameter S is small. 

(2) The limiting case of fL. -+ OCJ or 0 is of main interest, 
both because of the formalism's analytic manageability, and 
because we are able to draw lines to results that are expected 
for ordinary perfectly conducting media. The surface force 
Y is in this case naturally written as the sum of two terms, 
Y = Y(O) + y(J); cf. (3.4) and (3.S). The physical mean
ing of this decomposition is most clear cut when S is very 
small, SS,lO- lO• Then Y(O) reduces to the singular-shell 
quantity Y(O)(a,a) , as defined by (3.4) withy = x, and rep
resented with surprisingly high accuracy by the analytic ap
proximation (3.12), derived by means ofthe Debye expan
sion. Here, Y(O) (a,a) shows just the dispersion-induced 
attractiveness and the nondispersive repulsiveness that is ex
pected for an ordinary perfectly conducting medium in elec
trodynamics. The second term y(J) is however strange, in 
that it diverges when summed over t. On physical grounds 
we expect that it is appropriate to truncate the sum at an 
upper limit to, being equal to a moderate factor f times Xo ( a 
photon at frequency UJo and impact parameter a has angular 
momentum equal to xo). Numerical trials indicate that f - S 
is suitable in order to extract the order of magnitude of the 
physical part of y(J). Figures 2-4 show numerical and ana
lytical results for this case of extreme permeabilities. The 
agreement between numerics and analysis is generally good. 
The cutoff independent part of y(I), which may be derived 
by first letting Xo -+ OCJ and thereafter to -+ OCJ, is given in 
(3.22) and is in agreement with the cutoff independent part 
of our earlier result given in Ref. 10, based upon nondisper
sive theory from the outset. 

(3) One may wonder if the strange behavior of y(J) is 
related to the fact that we have assumed an extreme perme
ability of the medium. (We recall from Ref. 10 that in such a 
case the total electromagnetic energy within the shell is fi
nite, i.e., the energy density is infinite in the interior.) How
ever, this does not appear to be so: The calculation of Sec. IV 
shows that the repulsive angular momentum divergence per
sists even if the medium is assumed to be dilute. We thus 
arrive at the conclusion that it is the geometrical singularity 
of the shell as such which is responsible for the strange be
havior of the Casimir force. 
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(4) To elucidate the role played by the geometrical sin
gularity more explicitly, we shall finally make some com
ments on the theory of thick shells. We assume again that the 
permeability is extreme, and apply formulas (3.4) and (3.S) 
to the case of an infinitely thick shell, i.e., a finite and b -+ OCJ. 

Since we can substitute 

st'(y) = !e", eAy) = e- Y, 

wheny-+ OCJ, we obtain in this way 

Y(O) (a,b -+ OCJ ) 

(S.1) 

=- dxx) (21'+ 1) --+---2 , - 1 L"" 00 [st-(X) s;:(x) ] 
211'a2 

0 t:"1 sAx) st-(x) 

(S.2) 

y(J)(a,b-+ OCJ) 

=- dxx) (21'+ 1) --+--+2 . - 1 Lx" 00 [e;"(x) el'(x) ] 

211'a2 
0 t:"1 eAx) e;"(x) 

(S.3 ) 

In each of these expressions, the last term is seen to be diver
gent when summed over t. However, the important point 
here is that these infinities cancel when the expression for the 
total force Y = Y(O) + y(J) is formed: 

1 L"" 00 Y(a,b-+OCJ) = - 2 dxx L (21'+ 1) 
211'a 0 (= 1 

[
s;"(X) sl'(x) e;"(x) el'(x)] 

X --+--+--+-- . 
s,(x) s;"(x) e,(x) e;"(x) 

(S.4) 

This expression is exactly the same as the expression for the 
term Y(O)(a,a) occurring in the theory for extremely thin 
shells, S S, 10- 10

; cf. Eq. (3.4). Also, the analytic formula 
(3.12) is immediately applicable for very thick shells. There 
is thus no need of imposing a finite upper limit in the I'sum
mation in this case. 

It ought to be mentioned that the force (S.4) is equal to 
the force Y 1 = 411'a2 F, that acts on the inner surface, r = a. 
This can be verified explicitly by starting from the expression 
(2.2) for F, (UJ) and calculating herefrom the expression for 
Y I' Actually this fact can also be seen directly, without cal
culation, since the force on a surface is inversely proportion
al to the square of the radius, so that the force Y 2 on the 
outer surface tends to zero when the radius b -+ OCJ • 

For decreasing outer radii the force Y gradually 
changes. This paper does not discuss the evaluation of Y for 
a moderately thick shell (this will be done elsewhere). We 
have merely made some numerical trials in order to test for 
how small values of S the above-mentioned cancellation 
between divergent terms ceases to exist. It is indicated that 
S - 0.1 marks the transitional region in this sense. As regards 
the total Casimir force on the shell, we thus expect to en
counter the thin shell peculiarities when S S, 0.1. 
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APPENDIX A: NUMERICAL METHOD AND RESULTS 

We are faced with the task of numerically evaluating the 
following expressions for the two parts (3.4) and (3.5) of 
the Casimir force 

-21Ta2Y(0)=ixodxxI (U"+ 1)[s~(X) + sr(x) 
o ,,= 1 s,,(x) s~(x) 

+ e~(y) + er(y)], 
e,,(y) e~(y) 

(AI) 

= iX,'dX x I (21'+ 1) [ Q ;"(x) + Q ;"(y) 
o ,,= 1 Q" Q" 

+ sr(x) Q ~(y) + er(y) Q ;"(x) ]. 

s,,(x) Q r(x,y) eAy) Q r(x,y) 

Here, Q" and its derivatives are defined in Eq. (2.16). 
The main problem is to generate the Riccati-Bessel 

functions s,,(x) and eAx), and their first derivatives, for 
XE[O,Xo] and 1'= 1, ... , to. These are in principle available 
from libraries of numerical algorithms via the standard 
Modified Spherical Bessel functions of first and third kind. 
However, the vast range of the parameters Xo and to required 
in the present problem makes these routines inaccessible, 
mainly due to the use of single instead of double precision in 
these old routines. 

To generate the functions, two simple recursion rela
tions are applicable 

S,_l (x) = s,+ 1 (x) + [(U'+ l)lx]sAx), 

e,+ 1 (x) = e,_l (x) + [(21'+ 1 )/x]e,(x). 
(A2) 

These two recursion relations are of slightly different nature. 
For eAx) we start from low values 1'= 0,1 and iterate up
wards to higher values. For sAx) the recursion goes down
wards, starting from 1'= to, to - 1. Trying to start an up
ward recursion for s,(x) by using s(+ 1 (x) = S(_l (x) 
- (21'+ 1 )s,(x)lx will in generallead to an unstable recur

sion and wrong results. 
The initial values at 1'= to,to - 1 may, for low values of 

x, be generated by the expansion 

sAx) = X,+l N (21'+ I)!! ~ (A3) 
(21'+ I)!! n~o (21'+ 2n + I)!! n! ' 

where N is a parameter to be chosen. We use N = 20 and can 
thereby utilize this expansion for values of x up to x = 10. 
This may seem as an overshoot, but we avoid the problems of 
Ref. 3, where the x axis had to be divided into three intervals. 
The calculations were performed on an IBM PS2, model 80, 
which was so fast that summing up to lower values than 
N = 20 would not make any big difference in CPU time. For 
higher values of x, i.e., x > 10, we used a Debye expansion to 
the fourth order. This Debye expansion is really not neces
sary. One could start from arbitrary values, do the recursion 
and normalize afterwards (p. 385 in Ref. 12). 

The functions have been generated and checked with the 
tables in Ref. 12. We reproduce essentially all digits given at 
pp. 469-475 (at most we see a discrepancy in the last digit for 
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a few cases). Some unimportant misprints are also detected. 
The first derivatives of the Riccati-Bessel functions are 

calculated by the recursion relations 

s;"(x) = s('_ 1 (x) - (t'lx)s,,(x), 

e;"(x) = - e('_l (x) - (t'lx)eAx), 
(A4) 

which involves no numerical difficulties. A check performed 
is that the Wronskian is - 1: 

W{s"e,}=s,(x)e;"(x) -s;"(x)e,(x) = -1. (A5) 

The second derivatives are naturally given by the gov
erning differential Eq. (2.25). 

One numerical problem that occurs is the over- and un
derflows of the Riccati-Bessel functions for extreme values 
of x and t. This sets the limit of I' and x. Let us first consider 
Y(O). UsingEq. (2.25) we can rewrite the first ofEq. (AI) 

on a form that only involves the ratios s ,Is;" and e ,Ie;". These 
ratios stay finite for a large range of the parameters x and t.1t 
is convenient therefore to generate the logarithm of the func
tions, thereby avoiding the over- and underflows of the Ric
cati-Bessel functions that occur for extreme values of x and 
t. This is not so easily done for yO), imd therefore the values 
of Xo and to are more restricted in this situation. We plan to 
extend these numerical computations elsewhere, in connec
tion with calculations on a thick shell. 

APPENDIX B: THE CASE OF FINITE TEMPERATURES 

The results derived in this paper hold at zero tempera
ture. It is worthwhile to comment upon the finite tempera
ture generalization of the theory, not least so because the 
range of validity of the T = 0 formulation will be of experi
mental interest. We shall however not enter into a complete 
study of all the finite temperature force terms here. To exhib
it the main behavior of the theory, we restrict ourselves to the 
specific term Y(O)(a,a) in the case of extreme permeability, 
I1-s --+ 00 or O. The reason why this term is chosen is of course 
that it is the "normal" term: it is finite, dispersionally attrac
tive, and is moreover of physical interest for thick shells. 

We thus start from the expression (3.8) for Y(O)(a,a), 
which is a T = 0 result obtained with recourse to the Debye 
expansion. The transition to finite temperatures is accom
plished by means of a discretization of the imaginary fre
quency 

(Bl) 

where n is an integer in the range < - 00,(0) and {3 
= 1/ k B T (cf. for instance, Ref. 8). The general rule for 

going from frequency integral to sum is 

100 

dx--+tnto', (B2) 

with 

t = 21Tal{3 (B3) 

denoting a nondimensional temperature and the prime in 
(B2) meaning that the n = 0 term is counted with half
weight. 

Thus the finite temperature generalization Y(O)T(a,a) 
of y(O) (a,a) is 
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c;r10)T - 3t 3 ~, 2~'" Y (B4) 
of' (a,a) = --2- ~ n ,,1 2 2 4 ' 

217"a " = 0 = 1 ( + t n ) 
where no = [xoIt], i.e., the largest integer smaller than or 
equal to xolt. The sum over (' in (B4) has been given earlier, 
in (3.9). The remaining sum over n in (B4) is easily calculat
ed numerically, and so we arrive at an expression for the 
temperature dependent force with t and Xo as input param
eters. 

In the special case then t ..... 0, and when Xo is large, the 
result (B4) must necessarily be in agreement with our pre
vious expression (3.12). It is of interest to investigate how 
far the low temperature region extends. In this context the 
following simple argument may be given. We expect to stay 
within the low temperature region as long as the most signifi
cant frequencies in the thermal radiation field are much 
smaller than the cutoff frequency Wo introduced by the dis
persion relation. It is natural to identify the most significant 
frequency with the value Wm corresponding to the maximum 
of the blackbody energy distribution. From Wien's displace
ment law we have Wm = 2.8/p. Our low temperature condi
tion Wm «wo thus implies p> 2.8/wo, which is equivalent to 
t « 2xo, This simple argument is supported by a direct nu
merical calculation of the expression (B4). Figure 6 shows 
how y(O)T(a,a) varies with t in the case of Xo = 100. The 
square dot on the left ordinate axis is calculated from (3.12). 
The T = 0 approximation is seen to be adequate until t - 2, 
which is much less than 2xo = 200. [The irregular variation 
to the right in the figure is due to the discontinuous variation 
of no in (B4).] 

Note that, in dimensional terms, t = (21T'a/fIc)kB T. 
From Ref. 8 we recall, as a useful rule of thumb, that in order 
to employ the low temperature approximation for the nondi
mensional temperature t, the radius a must at room tempera
ture be smaller than about 1 pm. 

Consider finally the special case t> 1. Since8 

i (,,1 V 2 2)4=6! 2[1+0(t-4»). (BS) 
f= 1 + tnt n 

for n> 1, we obtain 
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ytO)T(a,a) = - ~ ~ [1 + O(t -4)] = - ~ [xo], t> 1. 
41T'a ,,= 1 417"a t 

(B6) 

If, as an additional assumption, Xo is much larger than t, we 
can simply approximate [xolt] by xolt and so obtain 

Y(O)T(a,a) = - xol417"a2, t> 1, xolt> 1. (B7) 

This force term is attractive and temperature independent, 
and is actually seen to be identical with the first term in the 
zero temperature result (3.12). This means, physically, that 
the cutoff frequency Xo is assumed so high that it washes out 
the influence from the thermal field. 

If, on the contrary, Xo is so small that it lies below t, then 
[xolt] = o and so the force (B6) vanishes. [Note that in the 
general expression (B4) there is no contribution from 
n = 0.] The Casimir force does not survive in this approxi
mation. Physically, this means that the dominant frequen
cies in the thermal radiation field are higher than the cutoff 
frequency WO, and under these conditions the medium be
haves essentially like a vacuum. 
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An analysis is presented of the Bianchi type I cosmological models with a bulk viscosity when 
the universe is filled with the stiff fluid p = E while the viscosity is a power function of the 
energy density, such as 'TJ = aiEl". AlthOUgh the exact solutions are obtainable only when the 
2n is an integer, the characteristics of evolution can be clarified for the models with arbitrary 
value of n. It is shown that, except for the n = 0 model that has solutions with infinite energy 
density at initial state, the anisotropic solutions that evolve to positive Hubble functions in the 
later stage will begin with Kasner-type curvature singularity and zero energy density at finite 
past for the n> 1 models, and with finite Hubble functions and finite negative energy density at 
infinite past for the n < 1 models. In the course of evolution, matters are created and the 
anisotropies of the universe are smoothed out. At the final stage, cosmologies are driven to 
infinite expansion state, de Sitter space-time, or Friedman universe asymptotically. However, 
the de Sitter space-time is the only attractor state for the n <! models. The solutions that are 
free of cosmological singularity for any finite proper time are singled out. The extension to the 
higher-dimensional models is also discussed. 

I. INTRODUCTION 

The investigation of relativistic cosmological models 
usually has the energy momentum tensor of matter as that 
due to a perfect fluid. To consider more realistic models one 
must take into account the viscosity mechanisms, which 
have already attracted the attention of many investigators. 
Misner l suggested that strong dissipative due to the neutrino 
viscosity may considerably reduce the anisotropy of the 
blackbody radiation. Viscosity mechanism in the cosmology 
can explain the anomalously high entropy per baryon in the 
present universe.2,3 Bulk viscosity associated with the grand
unified-theory phase transition4 may lead to an inflationary 
scenario.5-7 

An exactly soluble isotropic cosmological model of the 
zero curvature Friedman model in the presence of bulk vis
cosity has been examined by Murphy.8 The solutions that he 
found exhibit an interesting feature that the big bang type 
singularity appears in infinite past. Exact solutions of the 
isotropic homogeneous cosmology for the open, closed and 
flat universe have been found by Santos et al.,9 when the bulk 
viscosity is the power function of energy density. However, 
in some cases, the big bang singularity occurs at finite past. It 
is thus shown that Murphy's conclusion that the introduc
tion of bulk viscosity can avoid the initial singularity at finite 
past is not, in general, valid. (The extensive collections of 
exact isotropic solutions are those found in Ref. 10.) 

Belinskii and Khalatnikovll analyzed the Bianchi type I 
cosmological models under the influence of viscosity. They 
then found the remarkable property that near the initial sin
gularity the gravitional field creates matters. Using a certain 
simplifying assumption, Banerjee and Santosl2

,13 obtained 
some exact solutions for the homogeneous anisotropic mod
el. Recently Banerjee et al. 14 obtained some Bianchi type I 
solutions for the case of stiff matter by using the assumption 
that shear viscosity is the power function of the energy den-

sity. However, the bulk viscosity coefficients adopted in 
their model are zero or constant. 

In this paper, without introducing the shear viscosity, 
we shall examine the Bianchi type I cosmological models 
with bulk viscosity ('TJ) that is a power function of energy 
density (E), i.e., 'TJ = aiEl", when the universe is filled with 
the stiff matter p = E. We are interested in the cosmological 
solutions that will eventually go to the states of positive Hub
ble functions. The exact solutions are obtained when 2n is an 
integer. Furthermore, through some analyses, we can know 
how evolutions of the models with arbitrary value of n will 
be. We prove that the isotropic de Sitter space-time is a stable 
attractor state as t -+ 00 if n <!. It is thus in accord with the 
"cosmic no hair" theorem 15-17 even though the strong ener
gy conditionl8 is violated. 19 (The weak energy condition 
question in the anisotropic viscous models has been dis
cussed by Barrow. 20 

We also find that, for the models of n < 1 there are solu
tions (in fact, all solutions in 0 < n < ! models) that can avoid 
the cosmological singularity at any finite proper time. Our 
show models that the anisotropies of the universe are 
smoothed out and matters are created by the gravitational 
field in the course of the evolution, in agreement with the 
results found by others.ll,14 

The models of n = 0 and 1 have been discussed in our 
previous paper.21 However, the method invented there can
not be used to solve the models with other n, and the analyses 
of the n = 0 model were incomplete. Barrow22 had also given 
further discussion of bulk viscous models in theories possess
ing quadratic curvature. 

It is worth mentioning that the n = 3/2 model can be 
used to describe the quantum production of infinitely thin 
Witten strings23 on super-horizon scales in the very early 
universe (see the arguments in the paper ofTurok24

), which 
has been analyzed by Barrow 10 recently. 

The outline of this paper is as follows. We first discuss 
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the axially symmetric Bianchi type I model in which there 
are ony two cosmic scale functions. In Sec. II we reduce the 
Einstein's field equation to a pair of coupled differential 
equations that become an integratable equation as we define 
two suitable variables in Sec. III. The exact solutions for the 
models with integer 2n are then found. The analyses about 
the initial and final states of the models with any n are given 
in Sec. IV. To discuss the generic Bianchi type I model with 
mUltiple cosmic scale functions we then in Sec. V present a 
simple method that can also be used to analyze the higher
dimensional models. Section VI is devoted to conclusions. 

II. EINSTEIN'S FIELD EQUATIONS AND SOME 
ANALYSES 

We first consider the axially symmetric Bianchi type I 
model with a metric in the form 

dr = g!''V dsl'dx'V 

= - dt 2 + X(t)2 dx2 + Y(t)2(d,1 + dz2), (2.1) 

where X and Yare functions of cosmic time t alone. The field 
equations to be solved are 

R!,'V = H€ - .o)/2)g!,'V + (€ + .o)u!'u'V' (2.2) 

where € is the energy density, and u!' is the four-velocity that 
satisfies 

u!'u!'= -1. (2.3 ) 

The total pressure .0 is defined by 

.0 = p - 1/u!';!, , (2.4) 

where p is the pressure coming from the perfect fluid and 1/ is 
the bulk viscosity. Choosing a comoving frame where 
u!' = tf1!,' the Einstein's field equations (2.2) lead to 

dH + HW = (€ _ .0)/2, (2.5) 
dt 

dh +hW= (€-.o)/2, (2.6) 
dt 

W 2 
- (2H 2 + h2

) = 2€, (2.7) 

where Hand h are the Hubble functions defined by 

H=dY y - l , (2.8a) 
dt 

h=dXX - I , (2.8b) 
dt 

and W is the total expansion function 

W=2H + h. (2.8c) 

We also have a relation 

€-.o=(2-Y)€+1/W, (2.9) 

where Y is defined by the equation of state 

p = (y-1)€, l.;;;y.;;;2. (2.10) 

In this paper we only consider the stiff matter, i.e., 
y = 2, which is the possible relevance of the equation of state 
p = € regarding the matter content of the early universe.25

,26 

Using the assumption that the bulk viscosity is a power func
tion of energy density, 

1/ = a€", n;>O. (2.11) 
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Equations (2.5) and (2.6) then become 

dH + HW = !!..[H(H + 2h) ]"W, 
dt 2 

dh + hW=!!..[H(H + 2h)]"W. 
dt 2 

(2.12) 

(2.13) 

The work that remains is to analyze the above coupled 
differential equations and find their exact solutions. We will 
express these solutions as the flows in the phase space H X h 
and thus find the dynamical evolutions of cosmology. We 
only consider the physical plane where the trajectories shall 
evolve to the positive Hubble functions in the latter stage. 
The regions where € < 0 that violate the weak energy condi
tion 18 are needed for the solutions of n < 1 models as dis
cussed in next section. We then find there that the evolutions 
of the cosmology are confined in the regions of H;>O and 
H + 2h;>O for the n;> 1 models, while these for the n < 1 
models are W;>O. 

Let us first determine the singular points, fixed points, 
and cosmic time in the phase space. 

A. Singular pOints 

Equation (2.7) tells us that the energy density becomes 
infinite only if H and/or h are infinite. From Eqs. (2.12) and 
(2.13) we also know that dH I dt and dh I dt can be infinite 
only if H and/or h are infinite. As the Riemann scalar curva
ture can be written as 

R = 2 dW + W 2 + 2H + h 2, 
dt 

we see that R can be infinitely large only if H and/or hare 
infinite. Therefore, the singularity of diverge Rand € could 
occur only if H and lor h is infinite. 

B. Fixed points 

The fixed points are the solutions of Eqs. (2.12) and 
(2.13) once we let dH Idt = dh Idt = O. They are 

(l)W=O~H=h=Oor2H= -h=f.O, (2.14a) 

(2)H=h=HD =[(3n/2)a]I!(I-2n), n=f.~, (2.14b) 

(3)H = h = 'V value if a = a c =2/{3, n =!. (2.14c) 

Using Eqs. (2.12) and (2.13) we can determinate the signs 
of dH Idt and dh Idt in the neighborhoods of the de Sitter 
space-time of H = h = HD and thus d~termine the stability 
of the de Sitter state. It is then found that the isotropic cosmo
logies with n < ~ display inflationary behavior but those with 
n > ~ shall exhibit the deflationary behavior as found in Ref. 
9. When n =!, then h = h = OandH = h = 00 istheattrac
tor state for a < a c and a> a c , respectively. The investigation 
appears to display the division into n >!, n = !, and n < ~, 
also discussed by Barrow. 19.10 

C. Cosmic time 

The solutions expressed as the trajectories on the phase 
plane do not explicitly depend on the cosmic time. However, 
through a simple analysis we can determine whether the 
proper time in a solution is finite or infinite. 

Equation (2.12) can lead to 
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IH dH I' -
[(aI2)[H(H+2h)]n-H]W= dt. (2.15) 

We then see that the left-hand side in the above equation will 
become infinite only if H is on a fixed point, and one can 
show that the cosmic time of a point on a trajectory corre
sponding to a solution will be infinite if the trajectory has 
already met a fixed point. On the contrary, the trajectory 
starting with diverge H will have finite proper time. 

III. EXACT SOLUTIONS 

We now begin to solve Eqs. (2.12) and (2.13). After 
dividing the former one by the latter one, we obtain 

dH a[H(H+2h)]"-2H 
-= 
dh a[H(H + 2h)]n - 2h 

(3.1) 

The above equation can lead to 

dL 3a[HL]n - 2L 

dh a[HL]n - 2h 
(3.2a) 

dB -2B 
dh = a[HL]n - 2h' 

(3.2b) 

where 

L=H + 2h, B=2(H - h). (3.3) 

Dividing Eq. (3.2a) by Eq. (3.2b) one gets 

dL =!:...[I_~31-nL2n-I(1 +~)"]. (3.4) 
a B 2 L 

Using a new variable 

A = LIB, (3.5) 

then Eq. (3.4) gives a simple form as 

dAI(A 2+A)n= - (aI2)3 1- nB 2n- 2dB (fof€;>O). 
(3.6) 

The variables are thus separated and the equation becomes 
integratable. Through the integration by part, the exact solu
tions can be found when 2n is an integer. 

Since we will describe our solutions in the phase plane 
H X h, we express Hand h in the variables rand e: 

H=rcos e, 
h=rsin e, 

in terms of which A and B become 

A= 1+2tane, 
2( 1 - tan e) 

B = 2r(cos e - sin e). 

(3.7a) 

(3.7b) 

(3.8) 

(3.9) 

Therefore, if Eq. (3.6) can be integrated exactly, the solu
tions that relate function rto the variable () will be found, and 
trajectories in phase plane can be plotted exactly, which in 
turn determine the evolutions of the cosmology. Various in
tegration constants chosen in integrating Eq. (3.6) will pro
duce the various trajectories which correspond to the solu
tions of the same model but with different initial states. The 
arrows in the trajectories, which tell us the directions of the 
evolution of the cosmology, are easily determined from Eqs. 
( 2.12) and (2.13). 

As argued below, we also need to consider the solutions 
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of negative energy density. A natural extension is the models 
with the viscosity function 1/ = a( - E) n • Through the same 
procedure we can find the following relations: 

dAI( _A2_A)" 

= - (aI2)31-nB2n-2 dB (for E<O; H,W>O), 
(3.1Oa) 

dAI( _A2+A)n 

= (aI2)3 1-"B 2n - 2dB (forE,H<O; W;>O). (3.1Ob) 

The variables are separated and the exact solutions can be 
found when 2n is an integer. 

As examples, we will give some explicit solutions: 

(l)n=O 

h-HD=C(H-HD)' (3.11 ) 

where C is an integration constant, and H D is defined in Eq. 
(2.14b). The solutions are thus all the straight lines that pass 
through the point of H = h = H D. This means that the ini
tial state of cosmology shall begin with H and/or 
h -1 ± 00. Therefore, initial singularity will arise. However, 
we must be careful now. The analyses in the above section 
show that the points on the line of W = 0 are the fixed points. 
Therefore some anisotropic solutions will begin on these 
points (in which E is negative) at infinite past; during the 
evolution the cosmologies are isotropized and driven to the 
de Sitter state asymptotically. Using the relation of Eq. 
(3.11) we can from Eq. (2.12) find the functionH(t) which 
then explicitly shows this fact. 

Note that the energy density of these solutions is nega
tive in the early stage; this will violate both the weak energy 
condition and the strong energy condition, and there is no 
singularity at any finite proper time. 

Although it is difficult for the negative energy density to 
appear classically, it could be found in the quantized matter 
field. Also, as Hu27 has discussed, the quantum dissipative 
process of the particle production could be formulated in 
terms of relativistic imperfect fluid. Accordingly, it seem 
that there will be, more or less, some quantum senses in these 
solutions. It is interesting to mention that the introducing of 
quantized matter field into the energy momentum tensor can 
sometimes lead to avoidance of the cosmological singularity, 
as found by Parker Fulling. 28 

(2) n = 1/2 

r = C [ ± (cos e _ sin () ] (a,.la) - 1 

X [~cos e + 2 sin e + 3~cos e ] -2a,.la (for E>O), 
(3.12a) 

where C is an integration constant and a c is the constant 
defined in Eq. (2.14c). The solution shows that H and/or h 
can go to infinity only if H = h, i.e., cos () = sin e. Therefore, 
this model is with finite Hubble functions at the states of zero 
energy density (H = 0 or H + 2h = 0). 

The experiences from the analyses of the n = 0 model 
tell us that, as the points on the lines of zero energy density 
are not the fixed point, it is now also needed to discuss the 
regions of E < o. (Note that we only discuss the expanding 
solutions, i.e., W;>O.) We then must analyze the extended 
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model in which the bulk viscosity is 1] = a( - E) 1/2. Equa
tion (3.10) can give the explicit solutions: 

c [a c • _1(2 + tan 0)] r= exp +-SlO 
(sin 0 - cos 0) - a 1 - tan 0 

(for E,O) (3.12b) 

where C is an integration constant. 
After plotting the flows in the phase plane (see Fig. 1, in 

which, for clarity we adopt the nonuniform scale), we then 
find that anisotropic cosmologies shall always begin with 
finite negative energy density at the states with 2H + h = 0 
in infinite past; the Riemann scalar curvature and Hubble 
functions are finite in the initial phase. During the evolution, 
the energy density is increasing subsequently and the anisot
ropies of the universe are smoothed out. At the final stage as 
t-+ 00, depending on the value of a (and not on the value of 
C), there are three classes of states that may be approached 
asymptotically: 

( 1) Both the energy density and Hubble functions go to 
infinity if a> a c • 

(2) Energy density is finite and space-time is attracted 
to a de Sitter universe (which is a function of the value of C) 

ifa=ac ' 

(3) Both the energy density and Hubble functions de
crease to approach zero and the model is driven to the iso
tropic Friedman universe if a < a c • 

The last two cases provide us with the solutions that are 
free cosmological singularity for all finite proper time. 

(3) n = 1 

r= [a(cosO-sinO)]-I[C-ln(l +2tanO)], (3.13) 

where C is an integration constant. After plotting the flows 
in the phase plane (see Fig. 2, where, for clarity, we adopt the 
nonuniform scale), we then find that the anisotropic cosmo
logies shall start from the vacuum states and end in another 
fixed point or infinite expansion state. It is then found that, 
except in the isotropic model (h = H) that has been investi
gated by Murphy, I the cosmologies shall always begin with 
zero energy density at the initial phase of singularity. During 
the evolution, the energy density is increasing subsequently 
and the anisotropies of the universe are smoothed out. At the 
final stage as t -+ 00, depending on the integration constant C 

h 

FIG. 1. The phase plane trajectories of the n = ! model. All solutions will 
begin with W= 0, £<0 at t- - (X). 
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h 

FIG. 2. The phase plane trajectories of the n = 1 model. The solutions that 
evolve into positive Hubble functions at later stage will begin with £ = 0 at 
finite past. 

(and not on the value of a), there are three classes of state 
that may be approached asymptoptically: 

( 1) Both the energy density and Hubble functions go to 
infinity if H> h, C> In 3 or h >H, In 3> C>O. 

(2) Energy density is finite and space-time is attracted 
to a de Sitter universe [which is determined by Eq. (2.14b)] 
ifC= In 3. 

(3) Both the energy density and Hubble functions de
crease to approach zero and model is driven to the isotropic 
Friedmann universe if H > h, In 3 > C> 0 or h > H, C> In 3. 

The solutions that start at fixed point on -the line of 
W = 0 are also described by Eq. (13) if one lets a -+ - a. 
However, the trajectories that begin with W = 0 do not go 
into positive Hubble functions states at the final stage. 

(4) n = 3/2 

r= 1 [4(2+tanO)] (3.14) 
a(cos 0 - sin 0)2 ~l + 2 tan 0 - c . 

This model can be used to describe the quantum production 
of infinitely thin Witten strings23 on super-horizon scales in 
the very early universe.24

•
10 

(5) n = 2 

r= 1 [3(2+tanO)(I-tanO) 
a(cosO-sinO)3 1 +2tanO 

+ ~ (1 + 2 tan 0) - c] 
(3.15) 

and so on. 
All the models of n;;;. 1, as will be proved in the next 

section (for any n), possess the same characteristics such as 
the isotropization of the cosmology, beginning with zero en
ergy density and with infinite Riemann scalar curvature, cre
ating the matters in the course of evolution, and having three 
classes of final state. 

IV. ANALYSES OF INITIAL AND FINAL STATES 

We give in this section the analyses of the initial and 
final states. The results can clarify the characteristics of the 
cosmological evolutions for the models of any values of n. 
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A. Initial states 

The key equation to analyze the initial and final states of our model is Eq. (3.6). It can lead to 

C fA (..42+..4)O"d..4 +C(2A+l)(A 2+A)0"+C (2A+1) +c (2A+l) +c (2A+1) + ... (4.1) 
1 2 3 (A 2 + A) I - 0" 4 (A 2 + A) n - I 5 (A 2 + A) n - 2 

= CoB 2n- I = Co [2r(cos () _ sin () ]2n- I, 

where C; are constant numbers which only depend on n, and 
u is chosen to satisfy 0 < u < 1. It is important to notice that 
C3 is nonzero only if n> I, C4 is nonzero only if n>2, ... , and 
so on. If the universe is in the initial state H + 2h-+0, then 
A -+ 0 and A 2 + A -+ 0, and we can easily prove that the first 
term (neglects the integration constant) and second term on 
the left-hand side ofEq. (4.1) shall approach zeros while the 
other terms become infinite. Therefore the value of r in Eq. 
(4.1) is finite for the states that have vanish energy density, if 
and only if 0 < n < 1. 

However, it is now necessary to discuss the solutions in 
the regions of £>:;;0, as the € = 0 state is not the fixed point on 
the phase plane. From Eq. (3.10) one can show that r is 
finite as W -+ o. Hence we have proved that the cosmologies of 
o < n < 1 shall begin with finite negative energy density and 
zero total expand function at infinite past. They will then go 
into the positive energy density state. Although the models of 
n> 1 shall begin with zero energy density and diverge values of 
Hand h, one can from Eq. (2.15) conclude that the models 
with n> 1 shall begin atfinite past. 

Furthermore, for the n> 1 models we can from Eqs. 
(2.5) and (2.6) prove that near the initial phase the curva
ture singularity is the Kasner type, although the energy den
sity is zero. This fact was first found in the letter of Belinskii 
and Khalatnikov,29 in which only the anisotropic n = 1 was 
analyzed. 

B. Final states 

To analyze the final states we consider three cases sepa
rately: 

Case 1: n> 1 

The key equation can lead to 

+ ... = Co[2r(cos()-sinB)fn- I
, (4.2) 

where C; are constant numbers that depend only on n, and u 
is chosen to satisfy 1 < u < 2. The value of C2 is nonzero only 
if n>2, C3 is nonzero only if n>3, ... , and so on. As universe 
approaches isotropic state, i.e., H -+ h, then A -+ 00 and B -+ 0, 
which in turn implies that the first term (neglects the inte
gration constant) on the left-hand side ofEq. (4.2) becomes 
zero. Therefore, depending on the chosen integration con
stant, r may be ± 00. This situation is like that in the model 
of n = 1. Therefore, depending on the initial state, the cos
mology may be driven to infinite expansion state, de Sitter 
space-time, or isotropic Friedmann universe at the final 
stage. 
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Case2:~<n<1 
The key equation can lead to 

C fA d..4 + C (2A + 1) 
I (..42+..4)0" 2(A2+A)n 

= Co[2r(cos B - sin B) ]2n-l, (4.3 ) 

where C; are constant numbers that depend only on n, and 
u= n + 1, thus 1 < u < 2. Using the arguments like that in 
Case 1. we can also show that the models with 1 > n > ! have 
three classes of final states. Hence we have proved that, de
pending on the initial state, the cosmologies for the models of 
n > ! may (Je driven to infinite expansion state, de Sitter space
time, or isotropic Friedmann universe at the final stage. The 
model of n = ! was discussed in Sec. III. 

Case 3: n <~ 
The key equation can lead to 

_ n [f d..4 + 2A+l ] 
2(n-l) L (..4 2 +..4)n+1 n(A 2+A)n 

31- n 
= - a B 2n - l • 

2(2n - 1) 
(4.4) 

As universe approaches isotropic state, i.e., H = h (it im
plies A -+ 00 and B -+ 0), it is easy to prove that the first term 
in the bracket becomes zero (neglects the integration con
stant) and 

(4.5) 

no matter what the value ofintegration constant that will be 
chosen. The state corresponding to Eq. (4.5) can be easily 
checked to be just the fixed point defined in Eq. (2.14b). 
Hence, we have proved that solutions of the models of n < ! 
shall always be attracted to an isotropic de Sitter state at final 
stage. 

For the n> 1 models there are the solutions that start 
with W = 0 at infinite past and then are attracted to the 
original point on the phase plane. However, they never go 
into the state of positive Hubble function. 

v. MODELS WITH MULTIPLE HUBBLE FUNCTIONS 

The methods described in the above sections can only be 
used to study the models with two Hubble functions. We will 
now give a simple algorithm that can be used to analyze the 
models with multiple Hubble functions. 

Let us consider the D + I-dimensional Binachi type I 
models. The Einstein's field equation Eq. (2.2) can lead to 

dB 
-' +H;W= (€-p)/2, i= 1,2, ... ,D, (5.1) 

dt 

(5.2) 
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where H; are the Hubble functions and Wis the total expan
sion function. With the relation Eq. (2.9), and letting r = 2 
in there, we can from Eq. (5.1) find 

dln(H; -~) dln(H; -Hk) 
--------=--= 

dt dt 
(5.3) 

This equation tells us that one can express all other D-2 
Hubble functions in terms of only two Hubble functions. 
One can see that this is a very general property and may be 
used to analyze many other anisotropical cosmological mod
els. As examples, we will now describe the procedure of how 
to determine the three Hubble functions in the four-dimen
sional model. 

Equation (5.3) can yield a relation 

H3 = (1 - C)H + Ch, (5.4) 

in which C is an integration constant, and for simplification, 
HI and H2 are denoted as Hand h. Using Eq. (5.4) we can 
from Eq. (5.2) obtain 

E = (1 - C)H 2 + 2Hh + Ch 2 = KL, (5.5) 

K= [(1 - C)H + ah], (5.6) 

L= [H + bh], (5.7) 

where the constants a and b are the functions of C. Substitut
ing the relation (5.5) into the viscosity function Eq. (2.11), 
then the Einstein's field equations (5.1) lead to 

dK = ~(1 - C + a)(KL)nw - KW, 
dt 2 

dL = ~(1 + b)(KL)"W - LW. 
dt 2 

Dividing Eq. (5.8) by Eq. (5.9), one gets 

dK a(I-C+a)(KL)"-2K 
=--~---~-~---

dL a(1 + b)(KL)" - 2L 

After defining the variables 

A=LIB, 

B= (1 + b)K - (1 - C + a )L, 

Eq. (5.10) gives a simpleform 

(5.8) 

(5.9) 

(5.10) 

(5.11a) 

(5.11b) 

dA _ a(1- C+a)B 2"-2dB. 
[A 2 + (A 1(1 - C + a»]" 2 

(5.12) 

The variables are now separated and the equation is integra
table. (One can prove that 1 - C + a is nonzero.) Using the 
methods described in the above sections we can therefore 
analyze any dimensional Bianchi type I cosmological mod
els with energy density dependent bulk viscosity. The results 
show the same characteristics as those in the models with 
two Hubble functions. 

VI. CONCLUSIONS 

We have analyzed in detail the anisotropic cosmological 
models with bulk viscosity ('1J) which is a power-law depen
dence upon energy density (E), i.e., '1J = alEln, when the uni
verse is filled with stiff matter p = E. We are interested in the 
cosmological solutions that will eventually go to the states of 
positive Hubble functions in the latter stage. Although the 
exact solutions could be obtained only when the 2n is an 
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integer, we are able to clarify the characteristics of evolution 
for the models of any n. 

Let us give a summary. (1) There have been two kinds 
of solutions in the n = 0 model, which start either with di
verge Hubble functions and infinite energy density at finite 
past or with finite Hubble functions and negative energy 
density at infinite past. However, both solutions are driven 
to a de Sitter space-time asymptotically. (2) All the solu
tions in the 0 < n <! models will start with finite Hubble 
functions and negative energy density at infinite past and 
then are driven to a de Sitter space-time asymptotically. (3) 
For the !<n < 1 models, the initial state is with finite Hubble 
functions and negative energy density at infinite past; how
ever, they can go to the infinite expansion state, de Sitter 
space-time, or Friedmann universe at final stage. (4) The 
n> 1 models will always begin with Kasner-type curvature 
singularity at final past in which the energy density is zero, 
however; and then they are driven to the above-mentioned 
three kinds of states asymptotically. All the solutions that 
begin with E < 0 and then are attracted to a de Sitter space
time or Friedmann universe are free of cosmological singu
larity for any finite proper time. 

Historically, MurphyS presented the exact solution of 
the n = 1 model, and showed that the bulk viscosity can 
eliminate the big band singularity at any finite proper time. 
Belinskii and Khalatnikov29 then analyzed the n = 1 Bian
chi I model; they found that the cosmology is with the vanish 
energy density in the initial phase in which the Kasner singu
larity will arise. Now, the investigation in this paper shows 
that all the n> 1 Bianchi I models will share the same charac
teristics of initial singularity, and that the n < 1 Bianchi 
models could give us some cosmological solutions that are 
free of singularity for all finite proper time. However, these 
singular-free solutions have negative energy density in the 
early epoch. 

The models discussed in this paper are only for the stiff 
matter. As the case of stiff matter is special because the shear 
and matter density behave in the same way in the absence of 
viscosity, and vacuum and nonvacuum perfect fluid solu
tions are formally similar, the same models, while with other 
matter fields are certainly interesting, remain to be studied. 

Finally, we want to mention that the prescription adopt
ed in this paper can also be used to analyze the Bianchi type I 
cosmological models with energy density dependent shear 
viscosity. 30 The details will be presented elsewhere. 
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Killing vectors of static spherically symmetric metrics 
Ashfaque H. Bokhari and Asghar Qadir 
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An errorin a previous theorem [J. Math. Phys. 28, 1019 (1987); 29, 525 (1988)] is corrected 
and the theorem is extended. 

It was pointed out by Professor Stephani 1 that there was 
an error in our earlier claim2 that the only spherically sym
metric static space-times with more than four KV's were the 
de Sitter, Minkowski, and anti-de Sitter spaces. In fact, the 
well-known Einstein universe, possessing seven KV's, is a 
clear counterexample. 3 Here we correct our previous 
theorem and include a spherically symmetric case of an unu
sual type in that the area subtended by a solid angle is inde
pendent of the radial coordinate. The most general spheri
cally symmetric static metric is4 

dsl = ev(r) dt 2 _ ~(r) dr _ R(r)2(dO 2 + sin2 0 dt/i). 
(1) 

There are two possibilities here; either R 2 is a constant func
tion or it is not. In the latter case, a redefinition of variables 
enables us to replace it by r. The former case will be dis
cussed later. 

The procedure adopted was to eliminate all possibilities 
in solving the Killing equations. However, thts elimination 
was not made explicit. The procedure requires that when a 
separation, or integration, constant occurs all possibilities be 
enumerated and tabulated (e.g., it being zero, positive, or 
negative, or possibly possessing some specific numeric value 
like unity). In doing so, the case of seven KV's was omitted. 
This includes the Einstein universe and its counterpart with 
a negative energy density, the anti-Einstein universe. The 
elimination procedure yields 25 separate cases of which 20 
are uninteresting as they only possess the minimal symmetry 
required, while five have additional symmetries. The metrics 
and Killing vectors of these five are explicitly known. 

In the case that R 2 is replaced by a positive constant 

again there are generically four KV's. However, there are 
three cases that have six KV's. They include the Bertotti
Robinson metric.3

•
5 One of these cases was not included in 

Petrov's classification, though a special subcase is.6 Details 
of these metrics are available elsewhere. 7 

We have, therefore, the following corrected version of 
the theorem: Spherically symmetric, static space-times have 
either 10 KV's (corresponding to de Sitter, Minkowski, and 
anti-de Sitter metrics), or seven KV's (corresponding to the 
Einstein and anti-Einstein metrics), or six KV's (incorpor
ating the Bertotti-Robinson and two other metrics), or four 
KV's (the minimal symmetry). 
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The result of a recent paper [Kuang and Liang. J. Math. Phys. 29. 2475 (1988)] is generalized 
to higher dimensions. i.e .• it is proved that any conformally spherically (resp. plane-) 
symmetric solution to vacuum Einstein equations in higher dimensions must be the generalized 
Schwarzschild (resp. generalized Taub-Kasner or flat) metric. 

I. INTRODUCTION 

A recent paper by Kuang and Liang l has generalized 
Birkhoff and Taub theorems to Ricci-flat metrics with con
formal symmetry. It has also developed a new method 
(based on conformal transformation) for proving these two 
old theorems. It is shown in this paper that this method is 
also powerful in proving the validity of these two theorems 
and their conformal generalization in higher dimensions. 

An (N + 2)-dimensional space-time is said to be spheri
cally (resp. plane-) symmetric ifits isometry group contains 
an N(N + l)/2-dimensional subgroup isomorphic to 
SO(N) (resp. the Euclidean group) with spacelike N
spheres (resp. N-planes) as its orbits. The orbits are then 
constant curvature spaces with Gaussian curvature 1 (resp. 
0). and hence admit orthogonal two-surfaces. Therefore. the 
general form of an (N + 2)-dimensional spherically 
(plane-) symmetric metric can be written as 

dS 2 = E(t.r) ( - dt 2 + dr) + G 2(t.r)dcr. (1) 

where E(t.r) and G(t.r) are arbitrary functions and 

dcr = d{li + (1 -, cos2 {II) d{li 

N-I 

+ ... + II (1-,cos2{1m)d{l;'. (2) 
m=1 

with, = 1 for the spherically symmetric case and , = 0 for 
the plane-symmetric case. A conformally spherically 
(plane-) symmetric metric can then be expressed as 

dS 2 = 0i dS 2 = 0 2 [H(t.r) ( - dt 2 + dr) + dcr] 

=02dS~. 

where 0 1 is an arbitrary function of t.r.{I\> .... {lN. O=OIG. 
andH(t.rl =E(t.r)/G2(t.r). Our essential task is to find out 
all such dS 2 with vanishing Ricci tensor. 

II. THE PROOF OF THE GENERALIZED THEOREM 

The nonvanishing Christoffel symbols and Ricci tensor 
components of dS ~ are 

rr =rr =rt =J.-(alnIHI) 
" tt rt 2 ar • 

r t =rt =rr =J.-(alnIHI) 
" tt rt 2 at • 

rj; (short for r~.:",) = , cot {lj (j d) • 

/-1 

r{; = -, sin {}j cos {}j II sin2 {} m (j < ;). 
m=j+1 

;-1 

R;; = ,(N - 1) II sin2 {1m 
m=1 

(m~lsin2 {1m is understood to be 1). 

The con~rmality between dS 2 and dS~ and the Ricci flat
ness of dS 2 require 

O-IR/lv + N(O-I);pv - 'IIg/l
V 

= O. (3) 

with 

(4) 

where g/lV are metric compopents of dS~. Expression (3) 
represents (n + 2)(N + 3)/2 equations restricting the un
known function 0: 

(5) 

(j= 1 ..... N - l.i>j). (6) 

a2o- 1 
r-' 1 -, --- - r rl 0 r - r rl 0 , = O. (7) 

atar ' . 

O-IR" +N(O-I);" - 'IIH=O. (8) 

O-IRII +N(O-I);II +'IIH=O. (9) 

;-1 

O-IR;; + N(O-I);;; - 'II II (1- 'cos2 {1m) = 0 
m-I 

(i = 1 ..... N). (10) 

The same argument of Ref. 1 shows that 

0- 1 =L(t.r) +S({lI ..... {lN). 

and the coordinates t.r.{lI ..... {lN can be so chosen that 

dL 
L=L(t). H=-. 

dt 

and hence dS 2 = 02[ (dL /dt)( - dt 2 + dr) + dcr]. 
ApplicationsofEq. (6). respectively. toj= 1 andj= 2 

result in 

as = eI2 ({}3 •...• {lN)(sin {l2 sin {II)' (i=3.4 ..... N) 
a{}; 

(with el2 an arbitrary function of {I/s except for j = 1.2). 
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hence 

S=h2({J3, ... ,{JN) (sin {J2sin {JI)'" 

(11 ) 

wheref'2=SeI2 d{Ji, and hi is an arbitrary function of {J/s 
except for j = 1. Application of ( 6) to j = 1, ; = 2 yields 

(12) 

with r I an arbitrary function of {Jj'S except for j = 1. It fol
lows from (11) and (12) that 

S = fl2(sin {J2 sin {JI)'" + Pli (sin {JI)~ + 0'2' (13) 

with Pli an arbitrary function of {Jj'S except for j = 1,;, and 
0'2 an arbitrary function of {Jj'S except forj = 2. Applications 
ofEq. (10), respectively, to; = 1 and; = 2, taking account 
of (13), yield 

r a 2Pli a 20'2 . _'1 '" r a0'2 _'1 ':JPI; + -- = --(sm VI) - ':J-----=-Cos VI' 
a{J i a{J i a{J I 

Since this holds for; = 3,4, ... ,N, the two sides must be a 
constant: 

a
2
0'2 (. _Q '" r a0'2 _Q A -- sm VI) - ':J-----=-Cos VI = , 

a{Ji a{JI 

For t = 0, (13) and (14) lead to 

A const. (14) 

a2s 
-=A. (15a) 
a{Ji 

For t=l, the general solution to (14) is 0'2= -B'2 
cos {JI - A sin {JI + Cl2, where Bl2 and Cl2 are arbitrary 
functions of {J/s except for j = 1,2. Substitution into (13) 
then yields 

a2s 
-- = CI2 - S. (15b) 
a{Ji 

Combining ( 15a) and (15b) one gets 

a2s 
--= -tS+aI2, a l2=t(CI2 -A) +A. (16) 
a{Ji 

It follows from (10) (with; = 1) that 

O-'t(N-l) +N
a2s 

-'1'=0. (17) 
a{Ji 

Substitution of (16) into (17) and added by (9) then gives 

SetH - Rtt ) = L [teN - 1)H + Rtt ] + N(L;tt + aI2H). 
(18) 

Except for the trivial case tH - Rtt = 0, where the Weyl 
A 

tensor of dS it vanishes and hence dS 2 is flat, (18) can be 
rewritten as 

S= {L [teN -1)H + Rt,] 

+N(L;tt +aI2H)}!(tH - Rtt), 

showing as la{J1 = o which, on acountofEq. (6) withj = 1, 
implies that S is a constant and hence can be absorbed into 
L(t) to give 0- 1 = L(t). The unknown function O(t) is 
now restricted only by Eqs. (8), (9), and ( 17) containing '1'. 
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Taking account of ( 4 ), Eq. (17) can be rewritten as 

Ld
2I; _ (N+ 1) (dL)2 _t(N_l)L 2dL =0.(19) 

dt dt dt 

or 

dF (N -1)(F+t) 
-=- o 

(20) 
dO 

whereF=L -2 dLldt = - dOldt.Equation (20) can be in
tegrated to yield 

F= - t + aOI - N, a const. (21) 

It is straightforward to check that (21) also satisfies Eqs. 
(8) and (9), and consequently is the general solution to the 
oQginal equations (5) - ( 10). Therefore, the resultant metric 
dS 2 can finally be expressed as follows. 

(A) t= 1. 

iS2= (I_aO I - N)-ld02 

- (1 - aOI-N)dr + 0 2 duZ, 

which can be cast into the standard form of the generalized 
Schwarzschild metric2,3 by setting T = rand R = 0: 

iS2 = - (1 - aR I-N)dT2 

+ (I-aRI-N)-ldR2+R 2duZ. 

(B) t= O. 

iS2 = - a-lON-I d02 + aOI - N dr + 0 2 duZ. 

There are two subcases to be distinguished as follows. 
(a) a<O. Setting 

Z= (-N2a) -NI(I+N>ON,T= (_N I -Na )I!(I+N>r, 

Xi = (-N2a)I!(I+N){Ji (i= 1,2, ... ,N), 

one obtains 

iS2 = Z(I-N)/N( _ dT 2 + dZ 2) 

+Z2IN(dXi + ... +dX;"). 

This will be referred to as the (N + 2)-dimensional Taub 
metric. 

(b) a> O. Setting 

T= (N 2a) -N/(I +N>ON, Z = (N I -Na )I!(1 +N>r, 

X; = (N2a) I! (I +N>{Jj (i = 1,2," ',N), 

one obtains 
A 

ds 2= T(I-N>IN( -dT2+dZ2) 

+ T2IN(dXi + ... + dX;"). 

This will be referred to as the (N + 1 )-dimensional Kasner 
metric. Therefore, we have the following theorem. 

Theorem: Any conformally spherically (plane-) sym
metric solution to the vacuum Einstein equations in 
(N + 2) (N)2) dimensions must be the generalized 
Schwarzschild (Taub-Kasner or flat) metric. 

This theorem can be viewed as the generalization of the 
Birkhoff and Taub theorems in two different senses: (1) it is 
a generalization from four dimensions to (N + 2) dimen
sions; (2) it is a generalization from spherical (plane) sym
metry to conformally spherical (plane) symmetry. Note 
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that the conformal method developed in Ref. 1 has many 
advantages even for the first sense of generalization. 
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A systematic and rigorous treatment of the massless scalar field in two dimensions is presented 
by carefully taking into account the maximal (Krein) state space associated to the Wightman 
functions. This allows a simple and rigorous answer to controversial statements appearing in 
the literature about the uniqueness of the translation-invariant state, the construction of 
translation-invariant operators (infrared operators), the scale and special conformal 
transformations of the fields, the construction of the dual field and the breaking of the Lorentz 
transformations, and, more generally, the status of symmetry breaking in the model. 

I. INTRODUCTION 

The massless scalar field in two dimensions is the sim
plest example of a nonpositive Wightman theory (positivity 
is violated by the two-point function) and also of a theory 
invariant under gauge transformations. Interest in the model 
would be rather modest if it did not exhibit some of the typi
cal structural problems of indefinite metric quantum field 
theories. The lack of sufficient appreciation of such delicate 
points is at the origin of the contradictory and often incor
rect conclusions drawn about this (relatively simple!) mod
el. We list some of the controversial points. 

(1) In most of the treatments (see, however, Ref. I, 
which follows Ref. 2, it is asserted that the theory has only 
one translation-invariant state (namely, the Wightman 
vacuum); this, however, is incompatible with the existence 
of translation-invariant "field" operators like f dx aof/J(x) 
and f dx ao'if;(x) (which do not leave the vacuum invariant) 
widely used in the literature. 3 

(2) It has been stated that the scale (and special confor
mal) transformations of the fields require the ad hoc intro
duction of translation-invariant "auxiliary annihilation and 
creation operators" a, a* (see Ref. 4); however, the status of 
these operators is rather unclear and, in fact, incompatible 
with the uniqueness of the translation-invariant state (this 
problem has become particularly interesting in relation to 
two-dimensional conformal models). 

(3) The construction of the dual field 'if; in terms of the 
field q; involves a very delicate procedure since 'if; is nonlocal 
with respect to q;; the lack of attention to this problem is at 
the origin of the (incorrect) statement that the Lorentz 
transformations are broken by the introduction of 'if; (see, 
e.g., Ref. 5). 

(4) More generally, the discussion of the spontaneous 
breaking of symmetries in this model is far from settled in the 
existing literature. 
The aim of the present paper is to present a systematic and 
rigorous treatment of the model, which will provide a simple 
answer to the above controversial points. 

As we will see, the origin of the controversial statements 
is that implicitly the various treatments make reference to 

different spaces of states associated to the Wightman func
tions. In Wightman theories satisfying positivity the space of 
states is obtained as the closure of the local states with re
spect to the Hilbert topology defined by the Wightman func
tions. In the case of indefinite metric theories, the construc
tion of the space of states associated to the Wightman 
functions is not automatic and, in general, not unique, and 
different representations of the field algebra may arise corre
sponding to different Hilbert closures of the local states, 
namely, to different infrared properties of the states (see 
Refs. 2 and 6). This problem is not overcome (nor solved) 
by the algebraic approach to indefinite metric theories (see 
Ref. 7, and references therein) since the GNS construction 
only provides a vector space without a Hilbert structure. [In 
general, the strategy of identifying a positive space of states 
by applying nonlocal gauge-invariant operators to the vacu
um does not uniquely identify a space of physical states, as is 
particularly clear in the quantum electrodynamics (QED) 
case.6•S ] 

A further motivation for the present paper is that a rig
orous treatment of such a model of indefinite metric quan
tum field theory may shed light on general mathematical 
structures arising in realistic theories in local gauges. In par
ticular, we believe that general features such as the essential 
uniqueness of the vacuum, the existence of infinitely deloca
lized (translational-invariant) operators and their role in 
symmetry breaking, the mechanism of symmetry realization 
in the physical space, and the identification of nonlocal phys
ical states through a subsidiary condition,9 which can be 
simply seen and controlled in this model, should also arise in 
realistic theories when formulated in local and covariant 
gauges. For the general structure of the Wightman theory as 
well as for some standard notation, we refer to Ref. 10. 

At first, one might think to obtain a state space associat
ed to the Wightman functions as a "closure" of the local 
states with respect to the Wightman topology 7' 7r uniquely 
defined by the following family of seminorms: 

Pg('i'l) = I <s:l> I , 
where land s: belong to the Borchers algebra of the test func-
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tions and (, ) is the inner produ~t defined by the W'ghtman. 
functions. In this topology, however, the inner product ( , ) 
is not jointly continuous and therefore it cannot be extended 
by continuity to all the states obtained through T 7r limits. 
One needs, therefore, a stronger topology than the Wight
man topology. The most natural requirement is to look for a 
topology induced by a Hilbert scalar product,2.11 and to con
sider the Hilbert closure 9J 0 (with 1»0 the vector space of 
the local states), where the indefinite inner product can be 
extended by joint continuity. 

The most interesting among the possible Hilbert struc
tures are those that associate to the Wightman functions a 
maximal spaceK (see Refs. 2 and 11), namely, such that one 
cannot find a Hilbert structure (majorizing the same Wight
man functions) whose space of states properly contains K. It 
can be shown2.11 that in a maximal12 Hilbert space one can 
always define the positive scalar product ( , ) in such a way 
that the metric operator 'TI defined by ( , ) = ( ,'TI), satisfies 
'TI2 = 1 (Krein space 13) • For a general discussion, see Refs. 2 
and 11. 

II. THE KREIN REALIZATION 

A. The Krein topology. The one-particle space 

To get a (maximal) Hilbert space realization of the 
massless scalar field, it is enough to define a seminorm P I on 
Y(R2), majorizing the inner product defined by the two
point function, 14 

<J,g) = I d 2X d 2y J(x)g(y) Y(x - y) , 

Y(x) = - (1I41T)log( - x2 + i€xo) . 

We want to choose PI in such a way that the corresponding 
closure Y is maximal. 

The solution of this problem is essentially unique;2,11 we 
decompose Y(R2) as 

Y = Yo + V, Yo={fEY, f(O) = O}, 

where A denotes the Fourier transform and Vis a one-dimen
sional space generated by a real symmetric function XEY 
with X(O) = 1 and (X,X) = O. 

Thus we can write an arbitrary jEY(R2) as 
f(p) =f(O)x(p) + fo(p), withloEYo' On Yo, the indefin
ite inner product ( , ) is positive. The Krein seminorm is 
then given on Y by2,II 

PI(f)2=PK (f)2 = (10,10) + 1 (f,xW + V(OW· 
(2.1) 

By writing the indefinite inner product in the form 

(f,g) = (Io,go) +f(O)(x,g) +g(O)(f,X) ' 

one easily verifies that 

1(f,g)I<PK(f)PK(g) . 

We denote by K(J) the completion yK of Y, in the Hil
bert topology defined by (2.1). The indefinite product is 
extended by continuity and, since/--f(O) is continuous in 
the topology (2.1 ), the Hilbert scalar product is given on K (I) 

by 

(f,g)K = (Io,go) + (f,x) (X,g) + f(O)g(O) . (2.2) 

1468 J. Math. Phys., Vol. 31, No.6, June 1990 

In the following we will often omit the index K. 
Lemma 2.1: The linear functional on K(J) defined by 

Fx(f) = (X,J) , 

has norm equal to 1, and therefore it defines a normalized 
element voof K(I), such that (VO,J)K = (X,J). 
Furthermore, VOEYOK and, 'rJjEY, 

(vo,J) =/(0) . (2.3) 

Proof: Obviously, we have 

l(x,J)l/lIfIlK<l, 'rJjEY, 

and therefore II voll < 1. We shall prove that the equality actu
ally holds. Let us define the sequence 

/!(p) = On (Po)X(p) , (2.4) 

where On (Po) = {}(npo) , {JECC 00, {}(p) = 1 for p> 1, 
{}(p) = 0 for P<O, O<{}< 1. From (2.2), we have 

1 (xJ~W = (1 + (f~,J~»)-1 
11f!lli 1 (x,J!) 12 

On the other hand, we obtain 

1T (f!,J!) = S(dplwl)j{}(nwl)x(p,wl)1 2 

1 (x,J!) 12 IfCdplwl ){}(nwl )x(p,wl )212 

<II ~ {}(n W1 )x(p,WI)21-
1 

Since this last term decreases as (log n) - I for n -- 00, we get 

l(x,J~W 1 
s~p IIf!lIi = , 

which in turn implies 

IIvoli K = 1 . 

Moreover, setting 

Vn = «X,J!) )-If~ , 

we have 

(Vn,VO)K = (vn,X) = 1 , 

n_ 00 n- 00 

Hence the Vn converge strongly to Vo in K (I) and converge to 
zeroinL(2)(dpI/WII,C+), C+={pER2

, wI! =Po}· In par
ticular, (vn ,Yo) --0 and therefore 'rJgEY, (vn,g) --g(O). 

Proposition 2.2: K(I) is a Krein space, in fact, a Pontrya
gin space with one negative dimension: 

K(J) = L 2( dpi C ) '" V; '" v. V; {A A C} WII ' + '" 0"" 0= VO, E . 

The metric operator 'TI(I) defined by (-, .) = (', 'TI(I). ) is given 
by 'TI(I) = 1 on L (2), 'TI(I)vo = X, 'TI(I)X = VO' 

Proof: Clearly, from (2.2) and (X,X) = 0, one has 
(X,Yo) = 0 and therefore K(I) = Y~E!l V. Moreover, 
'rJf,gEYo, 

(2.5) 

and 

(f,g) = 1T i ~:II Jg, 
c+ Il'I 

so that, if fn EY 0 and In converge in the II 11K norm, also 
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(fn ,vo) converge and thefn converge strongly in L 2(dpll 
IPII,C+). Since the Vn converge to zero in L 2, VfeYo, 
fn =f- (VoJ)(Vn,Vo)-IVn convergetojmL 2, i.e., the sub
space of Yo orthogonal to Vo is dense in L 2. Cauchy se
quencesfn of elements of Yo in the II 11K norm can therefore 
be identified with pairs (f.A) with feL 2(dpl/lPll,C+), 
A = limn (fn,vo)eC. Hence Y'g: = L 2(dpl/lPd,C+) ED Vo. 

From Eq. (2.5) it follows that ",(I) = 1 on L 2; further
more, (VoJ)K = (xJ) and (voJ) =1(0) = (xJ) [by 
Lemma 2.1 and Eq. (2.2)] imply ",(I)X = Vo and ",(I)vo = X' 
respectively. 

Proposition 2.3: The representation U(a,A) of the Poin
care group has a unique continuous extension from .51' to K (I) 
and 

U(a,A)vo = Vo . (2.6) 

Proof By using the above results we can write the Krein 
scalar product in t!!.e form, V J, geY, 

(f,g) = (f,g) + (/(0) - (J,X»(K(O) - (X,g» (2.7) 

and obtain 

IlUf II 2 = IIf112+ I(UJ,xW-I(J,xW 

<llfl12 + 1IfIlIlU-lx-xii (11Ufll + Ilfll), 
which implies 

IlUfll<llfll(1 + IIU-Ix -xii) . 
Thus the unique extension of U(a,A) by continuity yields a 
representation of the Poincare group that preserves the inner 
product C,). Equation (2.6) then follows from Eq. (2.3). 

From the explicit representation of K (I) given in Propo
sition 2.2 it follows that there are no other Poincare-invar
iant vectors in K (J). 

B. Fock-Krein space 

Given a set of Wightman functions 'iTn whose truncat
ed parts vanish for n > 2 ('iT I = 0), one can define the posi
tive and negative energy parts q; ± (f): 

q; + (f)q;( fl)" 'q;( fn )\{Io 

= q;(f.) .. 'q;(fn )q;(f)\{Io 

.............. - I (q;(jj)q;(f»oq;(fl)"'q;(fj)"'q;(fn)\{Io 
j 

(where the symbol - means the depletion of the variable) 
and q;_ (f) = q;( f) - q;+ (f)· Then, the set of vectors 

\{I(n) =(n!)-1/2m (J")"'m (f,)\{1 f" ... Jn T+ JI T+ n 0 

generate ~ 0' and the indefinite inner product 

(\{It,).Jn,\{Ii:).,gm) = Dn,m (nf)-II (f.,gi,)'·' (fn,gi) 
p 

(2,8) 

vanishes if n i= m [the sum in the above expression is over all 
permutations (il" 'in ) of the n indices]. Hence, given a Hil
bert seminorm PIon .Y majorizing the two-point function, 
the set of seminorms on ~ 0' 

Pn (\{It,).J) = (n!)-I ~ (fl'/;,)'" (fnJ:) )112, 
where ( , ) denotes the Hilbert product that defines PI' de-
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fines a majorant Hilbert topology with a Hilbert scalar pro
duct 

(\{I(n) \{I(m) ) = D (n') -I ~ (J" ) .•. (f, ) 
!. .... J", g •• ···.gm n,m· ~ J l,gi, n ,gin ' 

p 

(2,9) 

preserving the factorization property (2.8). 
We denote by K the completion of ~ 0 with respect to 

the topology introduced above. Clearly, K has the form of a 
direct sum of symmetric tensor products: 

K= I (®:K(1)=IK(n) , 
n n 

Then, from Eqs. (2,8) and (2,9) we have the following prop
osition, 

Proposition 2.4: The space K is a Krein space with the 
metric operator", given by 

",K (n) = ® :",(J)K (n) , 

satisfying 

",2 = I. 

The representation U(a,A) of the Poincare group extends 
from ~ 0 to the dense domain of finite particle states of K; on 
each subspace K(n) , the operators U(a,A) are bounded op
erators. It should be stressed, however, that the norm of 
U(a,A), restricted to K(J), is larger than I and therefore 
U(a,A) are unbounded operators in K. 

An important feature of the Krein space is given by the 
following proposition. 

Proposition 2.5: The space K contains an infinite-dimen
sional subspace Vo of vectors invariant under the Poincare 
transformations. However, the vacuum is still essentially 
unique (i.e., any strictly positive subspace of invariant vec
tors is one dimensionaI2

). 

Clearly, all the vectors 

<I>~O) = ® :vo 

are Poincare invariant and generate a Poincare-invariant 
space Vo. Since U(a,A)K(n) CK(n) , any invariant vector \{I 
must have an invariant component \{I n in each K(n) ; since Vo 

is the unique invariant vector in K (1), \{In = A \{I~O) and \{Ie Vo . 
The essential uniqueness ofthe vacuum follows from the 

fact that (<I>~O),<I>~O» = 0, Vn, as a consequence of 
(vo,vo) = (X,X) = 0 (vectors of zero '" norm). D 

It is important to stress that in order to majorize the 
Wightman functions and therefore dominate their infrared 
singularities, one needs to introduce infinitely delocalized 
and therefore infinitely extended states. In particular, K (I) 

and therefore K are not function spaces. It should be clear 
from the above discussion that this phenomenon is directly 
related to the infrared singularities of the Wightman func
tions (which are not measures in momentum space), and 
therfore it is expected to occur also in realistic four-dimen
sional models exhibiting infrared singularities of the confin
ing type. 2 One of the points of the above discussion is, in fact, 
that of isolating general structure properties independently 
of the exact solubility of the model. 

Finally, the representation of the fields on ~ 0 is given as 
in the standard easelS and the field q;(f) transforms co-
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variantly under U(a,A). The above representation of the 
field operators gives the following estimate, V'IIeK(m) : 

1I91(f)'IIIIK«m + 1)1/211Iflllll'llIlK' 

where 

IIlflll = IIf+IIK + IIf-IIK' 

[+(p) =[(p)k, [-(P) =[( -p)IC+. (2.10) 

This allows one to construct a class of analytic functions 
of the field, in particular, the exponential function 
exp[iA91(f)], for any complex A and fEY I II III. 

c. Extension of the field algebra. Infrared operators 

As we have seen in the previous section, the (minimal) 
Hilbert topology majorizing the infrared singularities of the 
Wightman functions leads to the existence of infinitely delo
calized states and it is reasonable to ask what is the counter
part at the level offield algebras. As we will see, in contrast to 
the standard (positive metric) case, the strong closure of the 
field algebra contains infinitely delocalized field operators 
that are translational invariant. This feature is related to the 
minimality of the Hilbert topology (Krein topology) and is 
not shared by other realizations (with 'fJ - 1 unbounded). 

These operators appeared in the literature with different 
motivation and in different contexts.3.4,l6-18 They appear as 
ad hoc ingredients not related to the infrared structures of 
the quantum field theory. Their mathematical status is un
clear since they map § 0 into vectors that exist only in the 
maximal, i.e., Krein, completion of § o' 2 The aim of the 
present treatment is to clarify their origin and to show that 
they are intrinsic features of the space of states associated to 
quantum field theories with nonpositive infrared singulari
ties. 

By the estimate before Eq. (2.10), the field operator 
91(f),JEY, has an extension, by strong continuity on the 
dense subspace U nK(n) , tofEylllll1 , where 111111 is defined 
in Eq. (2.10). Since the operator product is continuous with 
respect to the strong topology (recall that the field operators 
are bounded operators from K(n) to K( n ± 1) , and therefore 
we actually deal with the norm operator topology), we ob
tain a well defined extension .If ext of the field algebra .If. 

Clearly, for [vanishing in the neighborhood of the ori
gin the splittingf = f+ + f- is well defined and in analogy 
with Proposition 2.2, 

YIIIIII=L 2(dP C UC )${V+}${V-} 
o Ipi ,+ - 0 0' 

{V o± } = {AVo±, AEe} , 

and vo± are limits of the sequences vn± (p) = Vn ( ±P), with 
Vn defined as in Lemma 2.1. 

Proposition 2. 6: The algebra .If ext contains the following 
infinitely delocalized operators, briefly infrared operators: 

91(vo) = 91+ (vo) + 91_ (vo) , 

Q = hr[ip+ (vo ) -ip_ (vo)] , 

with 91 ± (vo) =91(vo± ). They are 'fJ symmetric (actually es
sentially 'fJ adjoint), invariant under Poincare transforma-
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tions, and satisfy the following commutation relations, 
VfeY: 

[Q,91(f)] = -2tr(r(0) , 

[91(vo),91(f)] = 0, [Q,91(vo)] = o. 
(2.11 ) 

(2.12) 

Proof The representation of the Poincare group on the 
test functions of Y is strongly continuous in the topology 
generated by III III, and vo± are Poincare invariant as in 
Proposition 2.3. The second of Eqs. (2.12) follows from the 
first by strong continuity. 

It is worthwhile to remark that the operators 91 ± (X) 

defined in Sec. II B do not belong to the strong closure .If ext 

of the field algebra, since, by Eqs. (2.12) and the strong 
continuity of the operator product, .If ext commutes with 
91(vo), whereas 

[91(vo),91 ± (X)] = s-lim([ 91(vn ),91 ± (X)])o = ± 1 . 

(Note that X ± do not belong to yllllll; only their sum 
does.) 

D. Physical states. Subsidiary conditions 

To identify the physical states, we will characterize the 
one-particle physical space K ,(1). 

Proposition 2. 7: The only nontrivial maximal subspace 
K ,(I) of K (I>, which is invariant under Poincare transforma
tions and non-negative, is 

K,(I) = y~ = L 2( ~ ,C+) $ {Vo}' 

Furthermore, the subspace K "(I)CK,(I) of "null" vectors 
coincides with the subspace generated by Vo, and therefore 
the one-particle physical Hilbert space Jf"'~~~s is L 2 (dp/ 
Ipl,C+). 

As usual (see, e.g., the free QED case), the subspace 
K' CK corresponding to states with physical interpretation 
is defined by taking symmetric tensor products of the corre
sponding one-particle subspaces. The physical Hilbert space 
Jf'" phys is then obtained by closing K' / K " with respect to the 
topology induced by the semidefinite inner product ( , ). 

Actually, in this case, K' / K" is already complete and 
therefore 

Jf'" = £ = " L 2( dpi ... dPn C X .. · XC) . 
phys K" -7' s IpI! IPn I ' + + 

As usual, it is convenient to characterize the physical 
vectors by an operator equation, or subsidiary condition, like 
the Gupta-Bleuler condition in QED. 

Theorem 2.8: A dense set of vectors of K' can be charac
terized as the solution of the following subsidiary condition: 

91-(vo)'II = O. (2.13) 

Proof Clearly, for any 'II of the form91( fl)" '91( fn )'110 , 

with JjEY~, we have 91_ (vo)'II = 0, as a consequence of 
[91- (vo) ,ip( Jj )] = O. Conversely, if 'IIE§ 0 and 
91_ (vo) 'II = 0, then (91_ (vo) 'II)(n) = 0, i.e., 
('IIn+ I ,91+ (vo)<I>n ) = 0, V<I>n EY(R2n ), so that by using 
Proposition 2.2 one has that 'II belongs to the closure of 
®~(Y~). 

Remark' For any JoEY 0' 91( Jo) is a quotientable field 
operator,27 but 91(X) is not; the infrared operators Q and 
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rp( vol are quotientable operators, and their images on K phys 

vanish. 
The estimate (2.10) easily passes to the strong closures 

y III III , and therefore 9 0 is a set of analytic vectors also for 
the infrared operators. As we will see in Sec. IV the operator 
Q can be interpreted as the generator of gauge transforma
tions, and therefore it has the meaning of a "charge." The 
result is that such a charge is unbroken in K, since Q and its 
exponentials are well defined on ~ 0' but it is bleached, 
namely, all the physical states have zero charge. 

III. THE DUAL FIELD. LEFT AND RIGHT MOVERS 

A. Gauss' law and charged field. The dual field 

Much of the usefulness of the massless scalar scalar field 
for the discussion of two-dimensional field theory models 
relies on the introduction of the so-called dual field tp.3.15. 16 1t 
is not necessary to recall the connection between the dual 
field and the fermion bosonization, the discussion of the 
chiral symmetry and its breaking, and the operator solution 
of the Schwinger modeI.5.19-25 However, apart from the 
common motivations, the introduction of tp in the literature 
appears with very different mathematical justifications and, 
actually, in our opinion, a careful analysis on how it could be 
introduced in terms of the massless scalar field rp seems to be 
lacking. As we will see, the arbitrariness involved in the de
finition oftpisat the root of the peculiar results appearing in 
the literature. 

The aim of this section is to provide a careful mathemat
ical analysis of this problem, and to show that complete con
trol on the corresponding field theory can be achieved only 
when the fields rp and tp are realized as operator-valued dis
tributions in a Hilbert space. 

The reason why this problem is more delicate than it 
appears is that it amounts to the construction of a field 
charged with respect to a charge that obeys a local Gauss 
law.6 •26-28 

In fact, the differential equation of tp in term of rp can be 
written as 

Jl'tp = €I'V JVrp=JvFl'v , (3.1 ) 

where Fl'v = €I'vrp = - Fvl" The conserved current 

JI' = Jl'tp 

then defines a charge 

QR = f dx.JJo, !R(X) =!(~), je9(lR) , 

which obeys a local Gauss law, and (jJ is not chargeless with 
respect to it. 

It is well known27.28 that a field carrying a charge that 
obeys a local Gauss law [Eq. (3.1)] cannot be local with 
respect to the antisymmetric tensor Fl'v which enters in the 
Gauss law. We are then facing one of the fundamental prob
lems of gauge quantum field theory, namely, the conflict 
between locality and the local Gauss law, and consequently 
the nontrivial construction of nonlocal charged fields start
ing from local fields.6.26 Here, we are given the local field rp 
and we want to construct the field tp, which cannot be local 
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with respect to rp. More precisely, we have to find an opera
tor-valued distribution tp that solves Eq. (2.1), namely, 

JofP = - J1rp, J1tp = - Jof{J. (3.2) 

The compatibility of these two equations requires 

(3.3) 

Clearly, on the test functions !EY 0' tp is simply recovered 
from rp, since tp(JJP ) = rp(€pv av fP) and the functions 
J I'!I' exhaust Yo' 

The nontrivial problem is to extend tp from Yo to Y. 
This will be done by first determining the Wightman func
tions of tp and then by reconstructing the field out of them. 
Finally, the realization of tp as an operator-valued distribu
tion on a Hilbert space will require an enlargement of the 
Hilbert space structure needed for the realization of rp. 

B. The Wightman functions of the dual field. Left and 
right movers 

To determine the Wightman functions oftp(!),jeY, 
we start by noticing that, VgeYo, tp(g) = rp(g), with 

gkuL = (€(Po)€(pt)g)kuc_ . (3.4) 

Furthermore, the two-point function of rp has support in C +, 

and, when restricted to Yo, can be multiplied by €(Po) €(p I)' 
Thus, on Yo, 

(rp(x)rp(y)}o = (tp(x)tp(Y»o 

= ?rR(x-y) + ?rdx-y) 

=?r(x -y), 

(rp(x)tp(y)}o = (tp(x)rp(y)}o 

= ?rR(x-y) - ?rdx-y) 

=W(x-y) , 

where ?r Rand ?r L are given by the Fourier (anti) trans
formation of the distributions 

7rR(p) = (lIp_)+8(p+), 

P± =Po ±PI, 

7rL (p) = (lIp+)+8(p_), 

(3.5) 

where (lip) + = (d Idp)(O(p)loglPl). 
To define the field tp( !),JEY, we have to characterize 

the extensions of the above distributions from Yo(R2) to 
Y(R2

), satisfying JI' W = €I'V J v?r [Eq. (3.1)]. 
To keep the symmetry between rp and tp as close as possi

ble we will choose (tptp ) = (rprp ) on Yandrequire (tp ) = o. 
The only arbitrariness that remains29 is an additive constant 
in W; by Proposition 2.6 and Lemma 2.1, this freedom cor
responds to the redefinition of (jJ by 
tp(!) -rp(!) + aj(O)rp(vo)' Without loss of generality, 
we may choose the extension of (rptp ) from Yo to Y, given 
by Eq. (3.5). 

The next problem is then how rp and tp can be represent
ed as operators on a suitable vector space. To this purpose, it 
is convenient to introduce an enlarged Borchers algebra 
g{} ext' whose elements are the pairs F = (J,f'), and equip it 
with the indefinite inner product - - -

(.f,g) = T!'(.f* X g) , 
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where W is the Wightman functional defined by the Wight
man f~nctions of rp and 'iP [e.g., for .f= (iI/i), 
q = (gl,gi ), we have 

(.f,q> = 'lr qxp(];gl) + 'lrip;p(];g; +lig,) 

+ 'lr ;p;p(ligi). 

If we denote by..#";'1 the Wightman ideal, on the vector 
space ~ ~xt = f!J) ext / ?;.t we can represent the fields rp and 'iP 
as well as the Poincare transformations. 

The explicit characterization of ~~xt can be made more 
easily by introducing the linear combinations 

rpR = ! (rp + 'iP), rpL = ! (rp -'iP) 

(right and left movers), which are independent fields in the 
sense that (rpR ,rpL >0 = 0, and therefore the corresponding 
Wightman functions factorize as products of those of rpR 
and those of rp L • 

The original vector space ~ 0 of the field rp can then be 
identified with the subspace of ~~xt obtained by applying to 
the vacuum polynomials the combination rpR + rpL' We 
also have that ~~XI is isomorphic to the vector space 
f!J) R.L / ff R.L' where f!J) R.L is the Borchers algebra corre
sponding to the two fields rp R , rp L , i.e., the algebra generated 
by elements of the form .f = (b, IL ), with inner product 
induced by the Wightman functions of rp Rand rp L' 

C. Extension of the Hilbert structure to represent left 
and right movers 

We can now come back to the problem raised in Sec. 3.1, 
namely, the construction of charged fields (here 'iP), or of 
charged states, starting from the Hilbert space realization of 
a chargeless field algebra .!iff [here the local algebra genera
ted by the local field rp ( f ) ] . 

The first question of principle is whether the field 'iP can 
be defined as an operator in the Hilbert space in which rp has 
been realized. [The field 'iP (as a quadratic form on ~o) 
could be obtained as a 1'11' limit of rp, but as previously re
marked (see, also, Ref. 11), this is not enough to define a 
field operator, not even on ~ 0'] The settling of this question 
is crucial for the solutions of two-dimensional models using 
rp and 'iP as building blocks; in particular, the nonexistence of 
the "degree offreedom" associated to 'iP in the (Krein) real
ization of rp is at the basis of a correct treatment of the vacu
um degeneracy in the Schwinger model and the related phys
ical features. 25 

Theorem 3.1: Let Kbe the Krein space realization of the 
massless scalar field rp (see Sec. II); then the field 'iP(f), 
fEY, cannot be defined as an operator-valued distribution 
onK. 

Proof: It is enough to show that the linear functional on 
K defined by 

F(f) = <'iP(x)rp(f»o, 

is not bounded on K. In fact, consider the sequence 

hn (p) = npf(np)hr, 

with fEY (R), real, symmetric, and such that S dp f(p) = 1. 
Now, VgEY(R2

), 
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(g,hn) = f dp, E(PI)f(PI)g(:: ,~I) 

n:'" :g(0) f dpl E(PI)f(Pl) = O. 

Moreover, (hn ,h" ) K < C, since, by the above equation, 

n-OQ n-oo 

= ! f dpdplllf(PIW < 00 , 

and therefore we have 

w-Iim hn = O. 
n- 00 

On the other hand, 

F(h,,) = f ~i E(Pl)npt/(npl)X(Pl,lPd) 

= f dPf(P)X( ~ ,~I) ":00 1. 0 

Thus in the Hilbert space realization of rp there is no 
room for the field 'iP; more precisely, the Krein space closure 
of ~ 0 does not contain ~~xt. The same argument applies to 
the left and right movers <P R , rp L' i.e., the decomposition of rp 
into left and right movers cannot be done in the Hilbert space 
realization of rp. One has to enlarge the space of states (or 
introduce "other degrees offreedom"), to allow the splitting 
into rpR and rpL' 

A possible and natural solution is to introduce the 
Wightman functions of the enlarged system (rp,'iP), i.e., the 
vacuum expectation values of the algebra ;;£ generated by rp 
and (j;, and a Hilbert topology that majorizes them. Since this 
algebra is also generated by rp Rand rp L and these two fields 
are independent, it is enough to majorize 'lr Rand 'lr L • 

For the Krein space realization of the right and left mov
ers, one proceeds as before separately for rp Rand rp L . For the 
one-particle space, one gets 

K ~~l = K 11
) fiB K i 1

) , 

K11) = L 2( ~ ,C+ R) fiB {VOR } fiB {XR} , 

Kill = L 2( dp ,C + L) fiB {VOL} fiB {XL}' 
Ipi 

(The old Krein space K (I) for rp is a proper subspace of K ~~m 
Similarly, one can introduce the charges 

QR.L = i1T[ rp t,dvo) - rp R:dvo)] , 

and define the physical space by a subsidiary condition 

QR"\}I=QL-\}I=O. 

IV. SYMMETRIES AND THEIR IMPLEMENTATION 

The massless scalar field in two dimensions is not only 
interesting as an example ofQFT with infrared singularities 
of the type of realistic gauge theories, but also because most 
of what is known about soluble QFT's in two dimensions 
(Thirring model, Schroer model, Schwinger model, etc.) re
lies strongly on the massless scalar field in two dimensions, 
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since the latter is used as a building block for the construc
tion of the solution of such models. 

The discussion of the symmetries of the massless scalar 
field is therefore interesting also in view of the implications 
for more general two-dimensional local QFf models, in par
ticular for the interplay between infrared singularities (i.e., 
long distance behavior of the fields) and the occurrence of 
symmetry breaking. 

Especially in view of the implications for models like the 
Schwinger, Schroer, (and Thirring) models, which are re
garded as prototypes of gauge QFf models, the status of 
symmetries like gauge symmetry and chiral symmetry be
come relevant for understanding nonperturbative mecha
nisms which likely have a counterpart in the four-dimen
sional case (see, e.g., Ref. 25). 

The treatment adopted here for the massless scalar field 
emphasizes the local structure versus positivity, and there
fore it is believed to shed light on the local (i.e., renormaliza
ble) and covariant formulations of gauge QFf's, and the 
various structural mechanisms they are expected to exhibit. 

In particular, it will be clear from the following sections 
that many of the structural properties of the symmetries and 
their local generators can be rigorously answered only by 
making reference to a Hilbert space topology that allows the 
realization of the fields as operators in a Hilbert space. 

Finally, we want to stress that this type of question is less 
academic than it might appear, as is indirectly shown by the 
conflicting statements or results on the subject appearing in 
the literature.5.19-24 For example, for the massless scalar 
field and its dual it has been argued that Lorentz invariance 
is broken (this question will be settled in Sec. IV A, and for 
the Schwinger model controversial statements have ap
peared on the vacuum degeneracy, the implementation of 
the large gauge transformations, the breaking of chiral sym
metry, etc. (the rigorous settling of these questions25 heavily 
relies on the contents of this section). 

Before entering in the discussion, we recall a few basic 
facts about continuous symmetries of a field algebra, their 
breaking and their implementation. A one-parameter group 
of automorphisms tr of a local field algebra :7 is generated 
by a local charge QR if 

~fJA(A) = lim i[QR,A], VAE:7, 
dA R- 00 

QR = J dX 1 dXolR (xI)ad(xO)jO(XI'XO) , 

with 

IR (x) =/(lxl/R), lEg, I(x) = {O, for Ixl> 1, 
1, for Ixl..; 1, 

adEg , J ad (x)dx = 1, lim ad (x) = o(x) . 
d-O 

Here and in most two-dimensional models, time smearing is 
actually not necessary. 

In a given representation of .fii', characterized by a trans
lationally invariant ground state '1'0' tr is said to be unbro
ken if there exists a one-parameter group of operators UA

, 

such that tr (A) = UA A ( UA 
) - I and 

(UA'I',UAq,) = ('I',q,) . 
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Otherwise, the symmetry is said to be broken. 
It should be stressed that, in general, even if a symmetry 

is unbroken, the Wightman functions need not be invariant, 
i.e., 

(fJA(A»o = (A )0' VAE.fii'. 

Actually, for unbroken symmetries, the invariance of the 
Wightman functions follows, in general, if UA leaves the 
vacuum invariant, and this may not be the case even if tr 
commutes with space-time translations if the vacuum is not 
the only translationally invariant state. 

This case does not occur in standard QFf's satisfying all 
the Wightman axioms (including positivity), but it is gener
ally realized when the infrared singularities are of the confin
ing type2 (as is believed to be the case for non-Abelian gauge 
QFf's), since in this case the vacuum is only essentially 
unique. In this case, it could very well be that UA exists, but it 
maps the ground state '1'0 in another translationally invar
iant state 'I'~, differing from '1'0 by a translationally invariant 
zero norm vector. 

As a matter of fact, given a one-parameter group of au
tomorphisms tr , AER, of a local algebra .fii', generated by a 
(local) charge QR and commuting with the space time 
translations ax, a necessary condition for its implementabi
lity in a realization of.fii' in a Hilbert space % with an essen
tially unique vacuum is the existence of an operator Q such 
that 

lim ([QR,A ])0= ([Q,A ])0' VAE.fii'. (4.1) 
R-oo 

In the standard case, the vacuum is unique so that 
Q'I' 0 = A '1'0 and the right-hand side ofEq. (4.1) must neces
sarily vanish, yielding the standard condition for implemen
tability in the differential form. When the Wightman func
tions exhibit infrared singularities that violate positivity the 
situation becomes richer; the vacuum is essentially unique 
and therefore there may be nontrivial operators Q mapping 
'1'0 into another translationally invariant vector, so that the 
right-hand side of Eq. (4.1) does not vanish. Natural candi
dates of such operators are infrared operators obtained as 
weak closures of .fii'. This is, in fact, the case of the Lorentz 
transformations, the gauge and chiral transformations dis
cussed below. If Eq. (4.1) holds in the stronger form 

lim [QR,A] = [Q,A], VAE.fii' , 
R-oo 

and Qjf" C jf''', then the symmetry tr is bleached in the 
physical space jf'phys = jf" / jf''', i.e., all the physical states 
are neutral with respect to 17-unitary operators UA which 
implement tr . This is the case for gauge and chiral transfor
mations (see Secs. IV B and IV C), whose generators Q and 
Q vanish on jf'PhYS (but not on JY'!). 

A. Lorentz symmetry and its implementation 

We consider the field algebra generated by cP and ?p (or 
by CPR and CPL)' Then, as can be easily seen, the Wightman 
function r = (cp?p )0 is not a Lorentz-invariant distribu
tion, 

r(A(x - y» = rex - y) - (l/21T)lOgA , (4.2) 
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where Ax = A(x+,x_) = (Ax+,A. -IX_), X± = Xo ± XI' 
As a consequence, one can easily show that there cannot 

be 17-unitary operators U(A) such that (i) tp and ifJ trans
form as scalar (pseudoscalar) fields, 

U(A)tp(x) U(A) -I = tp(Ax) , 

U(A)ifJ(x)U(A)-1 = ifJ(Ax) ; (4.3) 

(ii) the vacuum is invariant under the Lorentz group, 

U(A)'IIo = '110 . 

Now, what is given is the original massless scalar field tp, 
whose transformation property is fixed by the natural action 
of the Lorentz group on the Borchers algebra, 

f(x)-f(A-lx)=fA (x), 

aA(tp(f»=tp(fA) , 

and whose Wightman functions are Lorentz invariant: 

(aA (tp( f) )aA (tp(g»)o = (tp( fA )tp(gA »0 
= (tp(f)tp(g»o' 

However, the field ifJ constructed in terms of tp is not a local 
function of tp, and the identification of its transformation 
properties under the Lorentz group is much more delicate, 
since one has to extend the automorphism aA from the local 
algebra .sf to its nonlocal extension :Yt (generated by tp and 
ifJ) . 

As is typical of extensions of automorphisms from local 
algebras to their nonlocal extensions,30 a certain arbitrari
ness is involved,31 which can be reduced by requiring some 
continuity of the extension. We will use this criterion to fix 
the transformation properties ofifJ, nanely, by extending a A 

by T 71· continuity. 
More precisely, we will require 

In the following, we shall denote by :Yt ext the strong 
closure (analogous to that defined in Sec. 4.1) of the ex
tended algebra :Yt. 

Theorem 4.1: There exists a unique T 71· -continuous ex
tension of the Lorentz automorphism a A from .sf to :Yt ext' 
given by 

a A (ifJ( f» = ifJ( fA ) + 21Tj(0) log Atp(Vo) . (4.4) 

Proof Since the truncated Wightman functions vanish, 
it is enough to consider the T 71 . -continuity condition on the 
two-point function. To this purpose, we consider the se
quence X n defined by 

Xn(P) =H(l-eiP,n) + (l-e-iP,n)]X(p) , 

so that 

Xn(x) =X(x) -~x(x+n) -~(x-n), 

and let X n EY 0 be defined in terms of X n as in Eq. (3.4). 
Then, for any gEY (R2

), the T"lI· -continuous extension of 
a A from.sf to :Yt must satisfy 

1474 J. Math. Phys., Vol. 31, No.6, June 1990 

(aA(ifJ(x»)tp(g»o = lim (aA(tp(fn »)tp(g»o 
n-oo 

= lim «tp(XnA »tp(g»o 
n-oo 

= lim (tp(Xn )tp(gA-'»O 
n-oo 

= (ifJ(X)tp(gA-'»O' 

Then, by Eq. (4.2), we have 

(aA (ifJ (X»tp (g) )0 = (ifJ(X A )tp(g»o + 21T log Ag(O). 

A similar equation holds for (tp(g)aA (ifJ(X) »0' so that 

[aA(ifJ(x»-ifJ(XA)'.sf] =0, 

i.e., 

a A (ifJ(X» - ifJ(X A) = 21T log Atp(Vo) + I5Q + rifJ(vo)' 

Finally, the Lorentz invariance of the Wightman function 
(ifJ(x)ifJ(y»o gives 15 = r = O. Equation (3.4) extends from 
:Yt to :Yt ext as a T 7r -continuous automorphism by strong 
continuity. 

It is worthwhile to remark that the sequences X n and X n 

do not converge in the.Y topology, and therefore, even ififJ is 
an operator-valued tempered distribution, the sequence 
ifJ(XnA) =tp(XnA) need not converge to ifJ(XA); as a matter 
off act, 

Trl'"" lim ifJ(XnA) = tp(XA) log Atp(Vo)' 

The above transformation property of ifJ seems to have been 
missed by the treatments given in the literature,I6-18 which 
do not realize the relevance of the Hilbert space realization 
of the fields. As a matter off act, the existence of the infrared 
operator tp(vo) crucially relies on the Krein realization,32 
and its introduction is mathematically unclear otherwise. 3 

This also shows the importance of making reference to a 
Hilbert topology to discuss such structural questions as the 
breaking of the Lorentz symmetry. Finally, it is important to 
stress that the above transformation property (4.4) defines 
an automorphism of :Yt ext' not of:Yt (i.e., one has to add the 
infrared operators). 

As a consequence of the above theorem, we have that the 
Lorentz transformations are implemented by 17-unitary oper
ators U( A) in the Krein space Kext' and therefore unbroken. 

Theorem 4.2: The Lorentz automorphism defined on 
:Ytext by 

aA(tp(f» = tp(fA) , 

aA(ifJ(f» = ifJ(fA) + 21Tj(O)logAtp(Vo) , 

can be implemented, in the Krein space Ke , by 17-unitary 
operators U(A) leaving the vacuum invariant. The opera
tors U(A) are determined, as usual, by their action in the 
one-particle space, which is 

U(A)'IIf = 'IIfA , VjEY(R2), 

U(A)'IIx = 'IIXA + 21T log Avo . (4.5) 

Proof The invariance of the vacuum follows by a stan
dard argument from the invariance of the Wightman func
tions, 

(aA(:Yt»o= (:Yt)o' 
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This latter equation follows from the invariance of (qxp >0' 
(~>o. and Eq. (4.4). 

(aA (<p(f)qJ(g»)o = (<p(f)qJ(g) >0' 
The explicit expression of the operators U( A) that imple
ment a A is completely determined by their action in the one
particle space. which in turn is determined by the invariance 
of the two-point function (and the nondegeneracy of the 
inner product in K(J). 0 

Remark: In principle, one could consider also the situa
tion in which the fields <p and qJ are treated symmetrically, in 
contrast with the general philosophy discussed in Sec. II, 
where <p is the basic given field and qJ is a "derived charged 
field." One could then envisage the case in which <p(x) and 
qJ(x) transform as 

f3A(<P) =<PA + 8 log AqJ(vo) , 

f3 A qJ = qJA + 8 log A<p(vo) . 

For 8 = 8 = !, we have a symmetric transformation proper
ty of <p and qJ. this implies a symmetric transformation prop
erty of <p Rand rp L • For 8 = 0,8 = 1, we recover our formula 
( 4.4). 

It is worthwhile to note that all the above f3 A , for any 8. 
8, define automorphisms of the algebra i/ elt.t [it is crucial 
that one has performed the extension from i/ to i/ ext. by the 
addition of the infinitely delocalized or infrared operators 
<pC vo),qJ( vo), for which the Krein structure is essential]. All 
of them are implementable by 1]-unitary operators UlJ6 (A). 

However, only f3 A with 8 = 0 maps the (original) local 
field algebra into itself; this automorphism has therefore a 
distinguished position among the others. since it preserves 
the local structure. namely, the characterizing property of 
the whole approach discussed so far. 

It should be stressed that the field transformation (con
sidered in most of the literature5

•
19

) 

TA(rp(f»=rp(fA)' TA(qJ(f» qJ(fA)' (4.6) 

also defines an automorphism of i/o but it cannot be imple
mented by 1]-unitary operators that leave the vacuum invar
iant, and this has sometimes led to the conclusion that it not 
be implementable at all. 

Actually, in the Krein realization of the algebra i/, 
where infrared operators are available. TA is implemented 
by a unitary operator VeAl which maps the vacuum state 
into another translationally invariant state, 

V(A)lJIo = exp( - ilog AQ<p(vo»'I'o. 

Clearly, by putting U!, =exp( - ilog AQ<p(vo», one easily 
checks that 

VeAl = u!, U(A), (4.7) 

where U(A) is defined by Eq. (4.5). We again stress that the 
transformation law (4.6) is an extension of the Lorentz au
tomorphism from .s;/ to i/ ext which is not 1"7/' continuous. 

B. Gauge transformations 

As repeatedly mentioned in the previous sections, the 
massless field in two dimensions mimics several of the struc
ture properties of gauge field theory. Actually, one can de-
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fine gauge transformations as automorphisms of the field al
gebra .s;/ (or of i/), 

yt: <p(x) -+<p(x) + A, qJ(x) ...... qJ(x). AER. 

One easily identifies the gauge-invariant subalgebra 
.s;/ obs C.s;/ as that generated by <pC f) ,feY 0' and the gauge
invariant states of K (or of K"xt ). 

The above one-parameter group of automorphisms yt is 
generated on .s;/ by the local charge 

QR = f d 2X ao<p(x )fR (XI lad (xo)' (4.8) 

To discuss the breaking of such symmetry, it is crucial to 
make reference to a Hilbert space realization of the field 
algebra. (For simplicity, we will restrict our attention to.s;/ 
and to its Krein realization in K, see Sec. 2.B.) 

Theorem 4.3: The gauge transformation automorphism 
yt is implementable (i.e., not broken) in the Krein space K, 
by the 1]-unitary operators 

p~ = exp aQ, (4.9) 

where Q is the infrared operator defined by 

Q = hr(<p+(vo) - <p_(vo»' 
Actually. one also has. on ~ 0' 

Q = weak-lim QR' (4.10) 
R-oo 

Proof: The implementation by P< follows trivially from 
the commutation relations between Q and the field algebra 
d [see Eq. (4.10)], and the factthat ~ 0 = .s;/lJIo is a set of 
analytic vectors for Q (so that the exponential is well de
fined). 

The 1] unitarity ofr" follows from Qbeing 1] symmetric. 
Furthermore, for any geY, 

(aOrp(adR )<p(g)}o = - iTr f dqj(q)~~ ,I~I )ad( I~I) 

...... - hrg(O) = (Q<p(g) )0' 

The vanishing of the truncated Wightman functions implies 
that QR is convergent to Q as a bilinear form on ~ 0 X g; o. 
Moreover, one can easily check that 

(aof{J(adR)aO<p(adR»O 

=1T f dqlqllj(q)12Iad('~')r <00, 

so that, by using the explicit form of the Krein norm, 
II QR IJI 011 < C. By the factorization of the Krein product [Eq. 
(2.9)], this, in turn, implies 

IIQR IJIII <C~, VIJIE~o. 

and therefore QR is actually weakly convergent on ~ o. 0 
Remark: This result shows that the Krein realization, 

which is characterized by associating a maximal set of states 
to the given Wightman functions, also has the property of 
having a large set of symmetries unbroken. It is worthwhile 
to remark that the Wightman functions are not invariant 
under yt; nevertheless, the automorphism is implementable 
essentially by the mechanism discussed at the end of the in
troduction to this section, namely. the vacuum is essentially 
invariant but not strictly invariant under P< (it is mapped 
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into another translationally invariant vector of K). The sub
space Vo of translationally invariant vectors of K provides a 
triangular representation of the gauge group. By strong con
tinuity, one can extend the gauge transformation from the 
local algebra d to its (strong) closure d ext' in particular, to 
the infrared operators discussed in Sec. 2.3. Clearly, they are 
all neutral under P" , which follows from the fact that the 
infrared operators actually belong to the strong closure of 
the gauge-invariant algebra d obs • 

C. Chiral transformations 

From the experience with the two-dimensional fermion 
models (like the Schroer,Thirring, and Schwinger models) 
one learns that an important symmetry is the chiral transfor
mation, which corresponds to a shift of the dual Bose field ;p, 
occurring in the bosonization of the chiral current J~ 

= (lI{ii)ajL;P' 
Thus it is of some interest to investigate in our frame

work the status of the one-parameter group of the chiral 
transformations jI, A.ER, defined on it by 

jI: '1'(x) --'1'(x), ;p(x) --;p(x) + A.. 

They clearly define a one-parameter group of automor
phisms of it, which is generated by the local charge 

QR = J d2xao;p(x)fR(xl)ad(xo)' (4.11) 

The situation is very similar to the one discussed in the pre
vious section, and one has the following theorem. 

Theorem 4.4: The chiral transformation automorphism 
is implementable in the enlarged Krein space K ext (see Sec. 
4.3) by the 1J-unitary operators 

-,! . -r =expi..tQ, (4.12) 

where Q is the infrared operator defined by 

Q(;p + (vo) - ;p _ (vo»· 

Actually, one also has 

Q = weak-lim QR' (4.13) 
R- 00 

The proof follows the same lines as that of the previous 
theorem. 

The remarks of the previous sections also apply to the 
present case. In particular, the discussion of chiral symmetry 
breaking in the Schwinger model cannot be done in a con
vincing way without taking into account 19,24 the Krein-Hil
bert space in which the fields are realized as operators and 
the above results on the implementability of symmetries. 25 

D. Scale and special conformal transformations 

The scale transformations, or dilatations, represent an
other interesting case of a symmetry leading to a group of 
automorphisms of the local (extended) algebra of the mass
less scalar field that are implementable in a way compatible 
with Eq. (4.1). 

In two space-time dimensions, scale transformations 
can be written in terms of the light cone variables 
x± =XO±x1 as 

(x+,x_)--(sx+,sx_), s>O. 
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If we require that the fields '1' and;p transform as a scalar and 
pseudoscalar, respectively, i.e., if we define the automor
phism of it, 

as('1'(f» = '1'(1.), as(;p(f» = ;P(f.), (4.14) 

with I. (x) =j(S-IX ), then the corresponding two-point 
functions transform in the following way: 

Jr(s(x - y» = Jr(x - y) - (1I21T)log s, 

~(s(x - y» = ~(x - y). (4.15) 

Therefore, as for the case of the Lorentz symmetry, one can
not find a 1J-unitary operator U(S) implementing the auto
morphism (4.14) and leaving the vacuum invariant. 

However, according to Eq. (4.1), this does not necessar
ily imply symmetry breaking, since one can find a 1J-unitary 
operator U(s) mapping the vacuum into another transla
tion-invariant state (see Sec. 4.1). 

Alternatively, it may be possible to define an automor
phism of the extended algebra it ext [coinciding with (4.14) 
on the gauge-invariant subalgebra 1 which is implementable 
in the Krein space Ke by 1J-unitary operators leaving the 
vacuum invariant. Actually, we have the following theorem 
(the proof is similar to that of Theorem 4.3). 

Theorem 4.5: The automorphism defined on it ext by 

as('1'(f» = '1'(1.) + 1TftO)iog s'1'(vo)' 

as(;p(f» = ;P(f.) + 1Tf(O)logs;p(vo) ( 4.16) 

is implementable in the Krein space Ke by 1J-unitary opera
tors U(s) leaving the vacuum invariant. The operators U(s) 
are determined by their action in the one-particle space, 
which is 

U(s) '1'/ = '1'/, + 1Tf(O)log s vo, 

U(s) 'l'g = 'I' g, + 1Tf(O)log s vo, (4.17) 

where '1'/ = '1'(f)'I'o, 'l'g = ;P(g)'I'o,J,geY. 
Remark: As can be easily checked, the most general au

tomorphism of the extended field algebra satisfying our re
quirements is given by 

as.y('1'(f» = '1'(1.) + 1Tf(O)log s('1'(vo) + r;p(vo», 

as,y(;P( f» = ;p( f.) + 1Tf(O) log s(;p(vo) - r'1'(vo», 

where r is an arbitrary real parameter. Clearly, only for 
r = 0, i.e., definition (4.16), we get the 1'fF·-continuous ex
tension to it ext of the automorphism 

(4.18 ) 

defined on the original algebra d ext. 

Similarly to the case of the Lorentz symmetry (see Sec. 
4.1 ), the field transformation 

Ts('1'(f» = '1'(1.), Ts(;p(f» = ;P(f.) ( 4.19) 

defines an automorphism of it that can be implemented by a 
(1J-unitary) operator mapping the vacuum state into an
other translation-invariant state. In fact, by putting 

U:, = exp( - is(Q'1'(vo) + Q;p(vo»), 

one can easily check that the transformation (4.19) is imple
mented by 

V(s) = U:, U(s), 

where U(s) isdefinedbyEq. (4.17). 
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We now consider the case of the special conformal 
transformations,4,33 defined by 

xI' ..... x~ = (xl' - bl'x2 )/(l - 2bx + b 2x 2
), (4.20) 

where bl' is a real vector. 
We recall that in two-dimensional space-time the con

formal group is decomposed into a direct product of two 
groups acting on the light cone variables x ± as 

x+ ..... x'+ =x+/(l +b_x+); 

x_ ..... x'_ =x_/(l +b+x_), (4.21) 

where b ± = bo ± b l are the light cone components of the 
vector defined by (4.20). 

Therefore, it is convenient to consider the transforma
tion properties of the two-point functions 'lr Rand 'lr L sep
arately. 

For example, by choosing the function 

'lrR(x+ -y+) = - (l/41T)log(x+ -y+ +iE), 

we find 

'lr R (x'+ - y'+ ) 

= 'lrR(x+ -y+) + (1I41T){log(1 +b_(x+ +iE» 

+ 10g(1 + b_(y+ - iE»}. (4.22) 

Thus one can easily verify that the two-point function 'lr R is 
invariant under the following transformation of the positive 
and negative energy parts of the field operators: 

ab(ip I (x+» = ip I (x'+ ) 

+ pog(l + b_ (x+ ± iE»ip I (vo)' 
(4.23) 

[A transformation property of the form (4.23) has also ap
peared in the literature;4,33 but its justification in terms of 
Ty continuity is missing.] Obviously, the same argument 
applies also to the positive and negative energy parts of the 
field ip f. From (4.23) we see that the transformation acts 
differently on the positive and negative energy parts of the 
fields. The structure of the automorphism of the extended 
field algebra ~ ext defined by the transformation (4.23) be
comes clear by writing it in the form 

ab(ipR (x+» 

= ipR (x'+ ) + ![log b_ 

+ log(x+ + lIb_ + iE)]ip :- (vo) 

+ ![log b_ + log(x+ + l/b_ - iE) lip R (vo) 

= ipR(x'+ ) +!(logb_ +loglx+ + lIb_l)ipR(VO) 

+ 0( - (x+ + lIb_»QR' (4.24) 

From (4.24) we see that the automorphism ab involves both 
the infrared operators ip R (vo), QR [and ip L (vo), QL for the 
action on the fields ip L 1 defined in Sec. III C. 

It is not difficult to check tha~ the term proportional to 
QR (QL)' which dqes not commute with the field ip R (ip L ), 
is needed to compensate for the violation of the local com
mutativity coming from the fact that the transformation 
( 4.20) is able to change spacelike into timelike vectors.4 
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The geometrical properties of a flat tangent space-time local to the generalized manifold of the 
Einstein-SchrOdinger nonsymmetric theory, with an internal n-dimensional space with the 
SU(n) symmetry group, is developed here. As an application of the theory, a generalized 
Dirac equation, where the electromagnetic and the Yang-Mills fields are included in a more 
complex field equation, is then obtained. When the two-dimensional case is considered, the 
theory can be immediately interpreted through the algebra of quaternions, which, through the 
Hurwitz theorem, presupposes a generalization of the theory using the algebra of octonions. 

I. INTRODUCTION 

A geometrical treatment of a gauge theory built to de
scribe particles in the presence of gravitation, electromagne
tism, and Yang-Mills fields has been developed by some au
thors since Einstein's attempt to unify gravitation and 
electromagnetism in his (complex) nonsymmetric theory, 
the so-called Einstein-SchrOdinger l (ES) theory. The Bon
nor-Moffat-BoaI2 (BMB) theory was successful in obtain
ing a correct limit to the Einstein-Maxwell theory and the 
Borchsenius3 theory used the same principle to include the 
Yang-Mills field. Even though these theories have been cri
ticized4 and the "physical limit" has not been convincing, 
they are attractive from the point of view of a geometrical 
treatment of gravitation plus gauge theory. Also, these theo
ries permit the extension to an octonionic theory through a 
theorem of Hurwitz.s.6 However, given the present status of 
actual unified theories, the use of such a theory is not yet 
clear, but at a minimum, it constitutes an attempt in making 
useful some mathematical tools such as algebra and symme
try properties in a (geometrical) unified theory on the 
curved space-time. 

The main goal of the present work is to obtain the Dirac 
equation for a spin-l/2 particle placed locally to a curved 
space-time and in the presence of gravitation, electromagne
tism, and Yang-Mills fields, using the ES nonsymmetrical 
theory (see Ref. 7). To achieve this it is necessary to intro
duce an n-dimensional internal space to the (complex) 
space-time manifold of the ES theory (the notation used in 
this work is about the same as used in Refs. 6 and 7). Since 
we are interested in working with Yang-Mills fields, here we 
use the internal space of the n X n matrices, with SU (n) as 
the internal symmetry group, as in the Borchsenius theory. 3 

Every object in this internal space can be expanded in 
terms of n2 linearly independent matrices {'TOtT;, 

i = 1,2, ... ,(n2 
- l)}, where 'To=lnxn and 'T7 = 'T. The line 

element is defined on this extended manifold as 

d~ = (l/n)Tr(Gp" dxP dx"), 

where 

( 1.1) 

(l/n)Tr Gp" = gpv, ( 1.3) 

withgpv being the metric of the ES nonsymmetric theory. It 
is also imposed that 

Gtv = Gvp , (1.4) 

where the Hermitian conjugation operates on the internal 
matrix indices. There exists an inverse G pv such that 

GpaGPv = G"pGap = 8~1, (1.5) 

where the order off actors is important and where Eqs. (1.3) 
and (1.4) are used. The metric Gpv can be written as 

Gp" = qp..o'To + qp,,;'T;, i = 1,2, ... ,(n2 
- I), (1.6) 

where, following conditions (1.3) and (1.4), qp..o is the met
ric on the manifold of the ES or BMB theory, which includes 
the electromagnetism through the Maxwell tensor Fp ,,: 

qp..o = gpv = gil!' + ipF/~/; ( 1. 7) 

and qpv, should be of the Yang-Mills type 

( 1.8) 

where E is the elementary isotopic charge when n = 2. The 
constant p is defined such that in the limit p-+O, the field 
equations and geometrical properties of the Einstein-Max
well-Yang-Mills theory are obtained (see Refs. 2 and 3): Its 
value is given as p = - 2/Ve, Ipi = 3.8X 10-32 cm 
(c=G=l). 

The properties of covariant derivatives on the manifold 
for the ES nonsymmetri~al manifold state that the space
time connection is such that 

OPav = 0*1' va = OPav + iKPa,,' 
v 

( 1.9) 

To obtain the field equations through a minimal action prin
ciple, we also have to define the Schrodinger connection 

()Ppv = OPpv - (2Iip)lY;A", (1.10) 

where Av is the electromagnetic vector potential and can be 
written in terms of the vector torsion OPp •. as 

v 

(1.11) 

Taking an internal vector t/I' = t/I'(x), a = I, ... ,n, the 
Gp " = (G ;"b (x», a,b = I, ... ,n (1.2) internal covariant derivative is given by 

is a matrix in the internal space such that t/l'lIp = t/I',p + r I' a b VI, ( 1.12) 
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where r Il is the internal connection. Here r Il is taken to be of 
the Yang-Mills form: 

(1.13 ) 

The internal curvature is then obtained through the differ
ence 

t/f'lIllv - t/f'lIvll = Pllv a b til, (1.14 ) 

where PIlV is the internal curvature given by 

PIlV = rll.v - rv.1l - [rll,rv]' (1.15) 

An object K = (Kab ) with two internal matrix indices 
then transforms as 

K' = UKUt, (1.16) 

where, since the symmetry group is SU(n), the transforma
tion matrices U are unimodular matrices: U t 
= U T * = U-I, det U= 1. 

A total covariant derivative of a space-time vector 
V Il (x) can be obtained through the parallel transport of this 
vector on the extended space as 

VIlI':- (x) = VIl,a + !lllpaVP+ [ra,VIl]. (1.17) 

A "total curvature" is then obtained through the differ
ence 

I' ..t 
Villa p - Villa I' = R~ap V..t - VIlPap - 2V + l..t!l'r' 

+ + + + 
(1.18 ) 

where VIl(X) can be written in terms ofinternal components 
as 

VIl(X) = ifo(X)To + L1(X)Tj , i = 1,2,3. 

The total curvature RIl..tap gives the mixture of the space
time and internal curvatures: 

Ril ..tap = (rll ..ta,p + r ll vp rV..ta) - (rll ..tp,a + r ll va rv..tp ) 

= R Il..tap + lYf.Pap' (1.19) 

with 

P'va =!lP va To + 8,:r a' 

To obtain the field equations for the extended theory, we 
use the Palatini variational method. The action is 

d = f .!L' d 4x, 

where the Lagrangian .!L' is taken as 

.!L' = Tr{[?Il"Rllv + [lI(ip)2][?~vG~v}, 
where R llv = RPllvP by (1.19), and 

R llv = RP IlVP 

( 1.20) 

( 1.21) 

The field equations obtained on this extended manifold are 
then (the notation used in the following equation for the 
covariant derivative of [? IlV is the usual when it is given in 
terms of the SchrOdinger connection () p IlO' ) : 

1479 

[? ~ ~Ia 

[?~v =0 
.a , 
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( 1.22) 

( 1.23) 

*Rllv «(J) = 0, 

*R"v.,,«(J) + *R",.A(J) + *Rvu.,,«() = O. 
v v v 

(1.24 ) 

( 1.25) 

Equation (1.25) is a consequence of the factthat 

*R~v«(J) =i(!lll.v - !lV.Il) + r V'1l - rp,v + [rll,rv]' 
( 1.26) 

In Eqs. (1.24)-( 1.26) the argument (Jin Rllv «(J) means that 
the expression for the generalized Ricci tensor is written in 
terms of the SchrOdinger connection. Also, in (1.24) to 
(1.26) we have 

. *Rllv «(J) = Rl'v «(J) + 11'1" 

where 

( 1.27) 

Illv = [lI(ljJ)2]( GIlUG'r Gpv + !GIlVGUpG'r + G~v). 
(1.28 ) 

We now proceed to Sec. II, where the properties of a 
tangent space on this extended manifold will be presented. 

II. THE n-DIMENSIONAL COMPLEX TANGENT SPACE 

A local tangent space can be defined on this extended 
space-time manifold through a generalized correspondence 
principle.8 It is also supposed that this tangent space has 
attached to it the same n-dimensional internal space. 

Define n X n matrix vierbeins E: (x) such that 

G - EtaE b (21) 1'1' - v 1'1] ab . . 

Then, according to the correspondence principle9 general
ized to this case, the line element can be written in both 
spaces as 

dSl = (lin )Tr( GI'V dXIl dxV) 

(2.2) 

dxa = E; dxl' =, dxta = Eta dxl', 

where, aiming toward a physical interpretation, the metric 
on the tangent space is taken with the structure of the Min
kowski metric 1] ab . 

Since there exists an inverse G 1'1' such that ( 1.5) is true, 
we must have 

GI'V = E!I'E;1]ab. (2.3) 

From (2.3) we obtain the corresponding orthogonality rela
tions for the matrix vierbeins: 

EbEtll-EIlEtb=8b~ EtaEv = EtvE a =8v~ pc-cp co, aa aa aO· 

(2.4) 

The vierbeins can be developed through the internal basis, 
for example, by taking E; (x) as 

E; = k;o (X)To + k;j (X)Tj 

and 

Eta = k ~ (X)To + k :~(X)Tj' 

since TT = T j • 

(2.5) 

The transformation law for vectors on the tangent space 
is defined, as usual, through the Lorentzian rotation matri
ces Lab such that L T1]L = 1]. Therefore, a more general 
transformation law for the matrix tangent vectors E; (x) 
shall now be 
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E:(x) = L ab (x)(U(n)E! (x) Ut(n». (2.6) 

On this matrix tangent space we can now define the op
eration of covariant differentiation, for example, on the vec
tor E= (E~), 

E~v =E~,v +O~vE~ -AvcaE~+ [rv,E~]. (2.7) 

It is important to remember that the space-time connection 
O"pv may include an (internal) complex connection related 
to the electromagnetic potential vector Av through relations 
(1.9) and (1.10): Using the notation of Ref. 6, here it will be 
called Cv , which by (1.10) is given by 

Cv = (2Iip)A v = (ie/Ii)A v' 

Therefore, the expressions corresponding to the field equa-
l' v 

tion G I' v = 0 (and its inverse G + -Ia = 0), for the matrix 
+ -Ia 

vierbeins, are as follows: 

G ,." = 0 ++ Eta = (E~. ) t = 0, 
+ -In ~ In + In 

Aa ac = (Aa ac + o~Ca )1'0 + o~r a; (2.8) 

':- ~ _ t':- _ ': t_ 
G la - 0 ++ E ala - (E ala) - 0, 

E "- - E" + EPrt" At c E" - 0 ala - Q,a a pa - a a c - , 

rt"pa =O"ap1'o-lY;ra, because O·"pa =O"ap' 

Ata ab = (Aa ab - o:Ca )1'0 - o:r a' 

because Ca = - (ie/Ii)Aa = - C:. (2.9) 

From (2,8) and (2.9) we can obtain a new expression for Ay 
in terms of the matrix vierbeins 

and 

A a = E a E tIl + Ear" E tp y b "b,y "py b 

Ayab = - E;'yEt" + E;P"yEt" 

Ea Et" + Earp Et" 
- I'-i-Y b P "y b' 

(2.10) 

(2.11 ) 

The tangent space-time connection Ay can then be written in 
this theory as 

or 

A/b = Re{(lIn)Tr[E;Eg +E;ryEt"]} (2.12) 

A/b = Re{(1/n)Tr[ -E;y Et"+E;ryEt"p. 
(2.13) 

The expression that relates the curvatures in the curved 
and tangent spaces is now 

E;RP"vy - Svy acE~ = 0, (2.14) 

where ~vy is the total curvature (1.19) written with the 
"connections" P "V, and S"" is the total curvature on the 
tangent !fpace written with the "connections" A,,: 

1480 

Svy ac = (A",y - Ay,v - [Av,Ay] )ac 

= [S .. /c + o~ (Cv.y - Cy,v)] 1'0 + o~P vy' 
(2.15) 
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where Svy is the curvature written with the tangent connec
tion Ay and P vy is the internal curvature written for the 
internal connection r v' Also, the quanity (CV,y - Cy,v) cor
responds to the curvature of an internal (complex) space; 
here it is related to the electromagnetic tensor Fvy. 

III. THE GENERALIZATION OF THE FOCK-IVANENKO 
COEFFICIENTS 

We can obtain a new generalized set of Dirac equations 
when we extend the treatment from the curved space-time of 
general relativity to the generalized matrix manifold. The 
anticommutation relations for the Dirac constant r matri
ces10 are 

{ra,rb} = 21]ab 14' 

{~,yh} = 21]ab 1 4· 

(3.1 ) 

(3.2) 

Multiplying (3.1) by E*: andE! and using (2,1), we obtain 

Tr{r",rv} = 2 Tr(G",,)14 = 2ng",,14, (3.3) 

where the Tr is taken on the n-dimensional matrix internal 
space and 

E;ra = r", E;ara = r,,· (3.4) 

In (3.3), g"" is the metric of the ES nonsymmetric theory, by 
(1.3). 

Analogously, multiplying (3.2) by E~andEb and tak
ing the Tr over the internal n-dimensional matrices, we ob
tain 

Tr{jP,rv} = 2 Tr(G"")14 = 2ng""14' 

where 

E~~ = 7"', E~~ = jP, 

(3.5) 

(3.6) 

and (2.3) was used. Considering the non-Riemannian mani
fold of the ES theory, the total covariant derivative of the 
new r" is given by 

r,:-,v =r",,, -OP""rp + [a",r,,] + [r",r,,], (3.7) 

where a" is the internal connection corresponding to the 
space of the generalized r matricb (or, also, the Dirac wave
functions' space). Then taking (3.4) and (2.8), we have that 

rl'iv= (E~ ra)l" = (E~lv)ra =0, (3.8) 
+ + + 

since ra is a constant matrix. In the same way, we obtain 

r~lv= (Etra)i" = (E!ffv)ra =0. (3.9) 

Expanding (3.8) and (3.9) we arrive at 

r,:,v= r",v - OP""rp + C .. r" + [av,r,,] + [r .. ,r,,] =0 
(3.10) 

and 

r ~Iv = r",,, - OP "" r p - C"r" + [a",r,,] + [r ",r,,] = o. 
(3.11) 

Therefore, we can obtain an expression for a,,: 
a" = (1/4i)A~bO'ab' (3.12) 

where A" is given in (2.12) or (2.13). Equation (3.12) is 
similar to the corresponding equation in general relativity. 11 

We can then use a minimal action principle to obtain 
field equations for a spin,,! particle of mass m, where the 
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wavefunction is 1/J(x), placed in a non-Riemannian manifold 
ofthe ES theory and also under the influence of a (n-dimen
sional) Yang-Mills field. The action for this situation is 

A = f 2' d 4x, (3.13) 

where the Lagrangian is given by 

2' = ~ - w{fW'[ al' + 6,1' + CI' + r 1'] 1/J 
- ~ -

+1/J[al' +6,1' -CI' -rl']W'-,u1/J1/J}, (3.14) 

where,u is the mass term and the Tr is taken on the internal 
n-dimensional space. The function 1/J(x) is a complex object 
which locally transforms under the representation of the 
Lorentz group (U (L», but also transforms under the (inter
nal) SU (n) group. The field equations obtained are 

-+ 
l'[al' +6,1' +CI' +rl']1/J-,u1/J=O (3.15) 

and 

(3.16) 

where again, '¢I(x) = 1/Jt(x)ro. [It is important to note that 
the Dirac equations derived here are formally similar to 
those obtained by Borchsenius3 when they are rewritten in 
terms of r-Dirac matrices. However, the similarity ends at 
this point since Borchsenius did not define a more general 
U!" which includes the new "internal" SU(2) degrees of 
freedom of the theory. In fact, that would be achieved in an 
expression similar to (5.10) of Ref. 3 with an additional 
symmetry property such as (1.4) given in this work.] Also, 
we can find an expression for the "charge conjugate" wave
function tIf, which is 

(3.17) 

where 1/Jc = C:;Vand C is the charge conjugation matrix. 

IV. INCLUSION OF INTERNAL MASS TERMS 

We are now going to analyze the case of an extended 
mass term, where we suppose there is nonzero mass on the 
internal space, i.e., we will suppose that for each internal axis 
we have a different mass term. 

The n2 -dimensional vierbein E ~ (x) can be written as in 
(2.5): 

E~(x) =k~(x)1'"o+k~l(x)1'"I' i= 1, ... ,n2-1. 
(4.1 ) 

Suppose that the mass term,u is a matrixlike term: 

,u = ,uoTo + ,u;1'";. (4.2) 

We also are going to assume here that 

k~ = k~R + ik~/' (4.3) 

,uo = ,uOR + i,uo/' (4.4) 

and k~; and,ul are pure imaginary numbers. These hypoth
eses are consistent with the form of the metric defined in 
(1.6) and (1.7) and the definition of the matrix vierbeins in 
(2.5). 

Define 

k ~I = pA.n~, ,uOI = pA.mo, 

k~; = i(pA.)2n~;, ,ul = i(pA.)2miJ 
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(4.5) 

(4.6) 

where now p is being considered a parameter and A. is a con
stant with the value of the lip, as in Ref 7: 

A. -e/2/i = 2.58 X lQ32 cm - t, 

where the maximal value for IPI was taken, IPI = 1- 21i/el 
= 3.8 X 10-32 cm, in the normalization used in Ref. 3. 

Placing the above quantities into the Dirac equation 
(2.29), we can expand it as 

1'"0 [ k ~R r"V I' 1/J - ,uOR 1/J] + zpA. 1'"0 [ 'Tfa0r"V I' rp - morp ] 

+ i(pA. )21'"; [ 'Tfa1r"V 1'1/J - m/1/J] = 0, (4.7) 

where VI' = al' + 6,1' + CI' + r w In the limit of the param
eter p -+ 0, we should obtain the standard Dirac equation in 
the presence of gravitation, electromagnetism, and Yang
Mills fields. Consequently, we can obtain n2 + 1 other sets of 
Dirac equations when we take n~ = n~1 = k ~R - h ~ and 
mo = m; = ,uOR for each i and where h ~ and ,uOR are taken as 
the vierbeins and mass term in the general relativity theory. 

Therefore, the above analysis results in some sort of 
"projections" of the Dirac equation on the internal space 
which are due to the definition of more general vierbeins 
through (2.1). The value of the parameter p will then deter
mine the amplitude of those projections through (4.5) and 
(4.6). 

V. CONCLUSION 

By taking the complex manifold of the ES nonsymmetri
cal theory and adding to it an n2-dimensional internal space, 
it is possible to develop a generalized theory that in the case 
chosen here, where we used the SU(n) symmetry group, 
permitted us to include the SU(n) Yang-Mills field. It is 
also possible to obtain the tangent space local to the extended 
manifold. Then the corresponding generalized Dirac theory, 
as well as the generalized Dirac field equation, were devel
oped. In the case of an extended mass term, where we assume 
there is nonzero mass on each internal axis, and defining the 
internal components of the vierbeins, as well as the internal 
components of the mass term, as being proportional to the 
parameter p, we obtained n2 other sets of Dirac equations 
which are some sort of projections of the standard Dirac 
equation on the internal space. In this theory the value of the 
parameter p determines the amplitUde of these projections 
through (4.5) and (4.6). In the limit of the parameter p -+ 0, 
the standard situation of the general relativity theory is ob
tained. If the Yang-Mills field is not present, this theory 
reduces to the "complex theory," which is presented in Ref. 
7 as fl'v =0 in (1.6) and (1.8) and bl' =0 in (3.15) and 
(3.17). Also, in this case, the components of the wavefunc
tion on the internal space generated through the the internal 
symmetry group (SU(n» are null. 

A question arises at this point: Where would a theory 
like this be consistent with the real world? We could just say 
that this should happen in regions of the space-time with 
high intensity fields (gravitation, electromagnetism, or 
Yang-Mills fields) and at distances of the order of the 
Planck length, where it would be reasonable to think of a 
nonzero p and the consequences of a more complex theory 
such as the one used in this work. 
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The present theory can be easily interpreted through a 
quatemionic theory in the case of n = 2. This will enable us 
to extend it to an octonionic theory, which would be conven
ient in this case since we are using a complex nonsymmetri
cal manifold. This is permitted by the theorem of Hurwitz. 
Thinking from this point of view, the gauge on the Dirac 
equation in a real manifold would just be one corresponding 
to the gravitational gauge. The electromagnetic gauge on the 
Dirac equation would be included when we consider the 
space-time manifold extended to a complex manifold. The 
Yang-Mills gauge would then be included when we extend 
the manifold to the matrix manifold, which is equivalent to 
the quatemionic manifold for the SU (2) symmetry group. 
The next step would then be to extend the quatemionic theo
ry to the octonionic one and determine to which gauge it 
corresponds. This is the goal we will propose in the third part 
of this work for the analysis of the Dirac equation in a non
Riemannian manifold. 
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In this paper, an exact solution ofthe Dirac equation in a static reducible Einstein space is 
presented. The asymptotic behavior of the spinor solution is analyzed. 

I. INTRODUCTION 

The study of the Dirac equation in external gravitation
al fields has been the object of detailed analysis, and recently 
some exact solutions have been obtained using different 
techniques and methods. 1-3 One of the most effective and 
powerful tools in solving systems of partial differential equa
tions and in particular the Dirac equation is the method of 
separation of variables,4-6 which allows us to reduce the 
problem to solving a system of ordinary differential equa
tions. Recently, the diagonal metrics for which the Dirac 
equation admits separation of variables have been classified5 

and some exact solutions in cosmological universes have 
been obtained using this classification. 7-9 

The study of the behavior of relativistic particles obey
ing the Dirac equation in curved spaces, in particular in ex
panding universes, is of considerable importance in astro
physics and cosmology. 10.11 Such investigations enable us to 
quantize the relativistic spin-~ electron field in curved back
grounds and study the effect of gravity in atomic spectra. 12 
The presence of the cosmological constant in Einstein equa
tions allows us to consider, as background fields, the so
called Einstein spaces (such spaces are symmetric spaces 
where the Ricci tensor is proportional to the metric tensor). 
Among such spaces with pseudo-Riemannian signature we 
find the reducible Einstein spaces, where the metric tensor 
can be diagonalized as a sum of two independent two-dimen
sional metrics. 13 This space, after the substitution t ' = it, be
comes a four-dimensional Euclidean Einstein manifold, 
which might be expected to be important in the Euclidean 
path integral formulation of gravity. 14,15 In the present pa
per, we solve the Dirac equation in this reducible space-time 
via the separation of variables. 

This paper is organized as follows: In Sec. II, the explicit 
form of the symmetric reducible Einstein space is computed. 
In Sec. III, we solve the Dirac equation in the metric ob
tained in Sec. II via the separation of variables. In Sec. IV, we 
present an analysis of the asymptotic behavior of the Dirac 
spinor. 

II. COMPUTATION OF THE METRIC 

Let us consider the interval 

d~ = dx2 + a2(x)dy2 + dz2 - b 2(z)dt 2 , (2.1) 

where the spatial variables are x, y, z and t is the time. 
It is easy to see from expression (2.1) that the metric 

tensor can be written as the sum of two two-dimensional 
metrics. To calculate the Ricci tensor, we consider the fol-

a) Postal address: Carmelitas 4282, Caracas IOIOA, Venezuela. 

lowing basis one-forms: 

(J 1 = dx, (J2 = a(x)dy, (J3 = dz, (Jo = b(z)dt, (2.2) 

so that 

1J"v = diag{ - 1, + 1, + 1, + 1} . (2.3 ) 

Taking the exterior differentials of (2.2) and using the 
first equation of structure 

d(J a + wp 1\ (JP = 0, (2.4) 

we obtain the following nonzero connection one-forms: 

w~ = - wi = - a'x/a(J2, w~ = W6 = b.Jb(J2, (2.5) 

where a comma indicates ordinary differentiation. We ob
tain the curvature two-forms from the second equation of 
structure 

flp = dwp + w~ l\uIp . (2.6) 

We obtain the components of the Riemann tensor, making 
the identification 

flp = !R p"v(J" 1\ (J v 

inEq. (2.6) 

(2.7) 

The nonvanishing components of flp and R p are found 
to be 

fl~ = -a'xJa(JII\(J2, 

fl~ = b.zz/b(Jo 1\ (J3, 

Roo = - R33 = b·zz/b , 

RII = R22 = - a·xx/a. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Einstein equations with the cosmological constant A read as 

R"v - ~"vR + Ag"v = 0 . (2.12) 

The solutions of (2.12) are the so-called Einstein spaces, 
which are chracterized by the property that the Ricci tensor 
is proportional to the metric tensor, that is, 

R"v = Xg"v' (2.13) 

Substituting (2.13) into (2.12), we determine that A = X 
and 

R." = O. (2.14) 

Relation (2.14) defines a symmetric space. Substituting 
(2.1) into (2.9), we obtain 

b.zz + Ab = 0 , (2.15 ) 

a. xx + Aa = 0 . (2.16) 

The solution of Eqs. (2.15) and (2.16) is 

a=cos..[J:x, (2.17) 

b=cos..[J:z, (2.18) 
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where we have imposed the condition a(O) == h(O) = 1. 
Then the interval (2.1), solution of (2.12), takes the form 

dr = dx2 + cos2({X x)dy + dr - cos2({Xz)dr. 
(2.19) 

The metric (2.19) can be rewritten in a more familiar form if 
we make the change of variables 

x' = {Xx + 1T12, y' = {Xy, (2.20) 

and 

r= (1/{X)sin.jTz. (2.21) 

Then, in the new coordinates x', y', r, t, the interval (2.19) 
reads 

dr = _1_ (dX'2 + sin2(x')dy'2) + dr 
.jT l-Ar 

- (1 -Ar)dt 2 . (2.22) 

Notice that if we make the substitution iT' = t in expression 
(2.22), we obtain an S2XS2 metric product of two two
spheres, each with radius A -1/2 and area 41TA -I. It can be 
regarded as a limiting case of the Schwarzschild-de Sitter 
solution representing a gravitational instanton. 16

•17 

In order to carry out the separation of variables in a 
more simple way, it is convenient to redefine the coordinates 
t and z as follows: 

.jTz-1T12 =z', .jTt= t'. (2.23) 

Then the interval (2.19) takes the form 

dr = (v.jT)[dX,2 + [sin2 X']dy'2 + dZ,2 

- [sin2 z']dt,2] (2.24) 

and the radial variable r [ (2.21 )] reads as 

r= (1/.jT)cosz'. (2.25) 

III. SEPARATION OF VARIABLES IN THE DIRAC 
EQUATION 

In this section, we shall solve the Dirac equation in the 
metric (2.24) via the separation of variables. 

The equation describing a relativistic electron in curved 
space-time is given bylO 

[Y"(aa - ra) + m)t/I= 0, 

where r a are the spin connections 

r a = -lKapr~llsPv 

with 
Spv = !(Y'rv _ rVyP) . 

(3.1 ) 

(3.2) 

(3.3 ) 

The yP are generalized Dirac matrices and are related to the 
flat space-time gammas as follows: 

rl = yl.jT, Y = (.jT /e)r, 

r = r.jT, Y'= (.jTld)'f, 

with e = sin x', d = sin z', and 

ya,..-P +,..-Pya = 2'TJaP, 'TJap = diag( - 1,1,1,1) . 

(3.4) 

(3.5) 

Substituting the metric (2.19) into the equation for the 
spin connections (3.2) and using the Dirac matrices (.3.4), 
we obtain 
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ro = !d.z'fr, r l = 0, r2 = !e.xylr, r3 = O. (3.6) 

Substituting results (3.6) into (3.1), we obtain 

«'fld)ao + yl a l + (rle )a2 + r a3 + m)<I> = 0, (3.7) 

where we have made the identification 

'11 = (e d)-1/2<1>. (3.8) 

Since the metric associated to the interval (2.24) is a func
tion of x' and z' only, we can set 

<I> = <I>(x,t) 'exp i(kyy' - E't') . (3.9) 

The remaining variables in (3.7) can be separated by writing 
Eq. (3.7) as a sum of two first-order differential operators, 
commuting between them as follows: 

K I = -i(ra3-i'fEld+m)'fr, (3.10) 

K2 = - i(yl al + irky/e) '1'1 , 
with 

KI<I> = - K2<1> = k<l>, [KI ,K2] = 0, 

(j) = i'fr<l>, 

where k is a constant of separation. 

(3.11) 

( 3.12) 

Adopting the conventions of Jauch and Rohrlich 18 for 
the Dirac matrices, Eq. (3.11) becomes 

[a2 al - ikyleul + ik ]<1>1 = 0, (3.13) 

[ - a2 al + iky/eul + ik ]<1>2 = 0, (3.14) 

where 

(j) = (:~) . 
From Eqs. (3.13) and (3.14), it is clear that <1>1 and <1>2 are 
related as follows: 

<1>2 =f(X3)~<I>1 . (3.15) 
Equation (3.10) takes a more symmetric form if we put iyl, r instead of 'I, r respectively: This is possible after the 
transformation 

1'-S-I1'S, <I>-S-I<I>, 

where the matrix S is given by 

S=!(1 + rr) (1 + i'fyl) . 

(3.16) 

(3.17) 

Using expressions (3.13), (3.14), and (3.17) and the Dirac 
matrices in the representation,18 we find that the spinor (j) 
has the following structure: 

( 

(a-iP>u 
- (a - iP>t . , , 
<I> = i(a + iP)S exp I(ky' - E t ) , 

- i(a + ip)t 

(3.18 ) 

where the functions a, p, t, S satisfy two systems of coupled 
differential equations given by 

/33 - iE /3 = - (m + ik)a , . d 

a 3 + iE a = - (m - ik)/3, 
. d 

t'l + ky/et - ks = 0, 

s'l-kyles +kt=O. 

Victor M. Villalba 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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Here, it is enough to consider the solution to the above sys
tem of equations (3.19)-(3.22) when ky and k are positive 
because the other three cases can be obtained by interchang
ing the roles of sand ,. The ansatz 

s= sinky'(xl)cos(x'/2)/(x') , ,= sinky'(x')sin(x'/2)g(x') 

lead to 

[ (q + 1) ~ + (! + ky )] 1= kg, 

[ (q - 1) ~ + (! + ky )]g = kl, 

where 

q=cosx' . 

Eliminatingl from (3.24) and (3.25), we obtain 

{ (1-t/) d2 +(-1-2q(l+ky ).!!.-
dt/ dq 

(3.23 ) 

(3.24) 

(3.25) 

- [(! +kyr -k
2
])}g=0. (3.26) 

The solution of (3.26), taking into account regularity at 
q = 0, is given in terms of the Jacobi polynomials P ~a,p) 
(Refs. 19-21): 

g = cP ~ky' + 1I2.ky' - 112) (q) , (3.27) 

where c is a constant of normalization and n is given by 

n = k - ky - ~. (3.28) 

Substituting (3.27) into (3.25) and using the recurrence re
lation for the Jacobi polynomials19 we obtain the expression 
for f. Therefore, the functions S and , are 

S = c sinky' (x')cos(x' 12)P~ky' + I12ky' - 112) (cos x') , 

(3.29) ,= C sinky'(x')sin(x'/2)p~kr 1/2.ky' + 1/2) (cos x') . 

The block structure of the spinor Ci>, given by (3.18), allows 
us to consider the following condition of normalization for 
the contribution of the variables y' and z' of the solution to 
the Dirac equation: 

(3.30) 

Substituting (3.29) into (3.30) and considering the rela
tion l9 

2a + P + 1 (n + a)!(n +,8)! 

n!(2n + a +,8 + 1 )!(n + a + ,8)}! 

(3.31) 

we determine that the constant c is given by 

c = [(k - ky - PI(k -ky + PI] 112/(k - 1)1 2k" (21T) 112 • 

(3.32) 

The second system of coupled equations (3.19) and (3.20) 
can be solved in a way similar to that used to obtain (3.29). 
Then let us consider the following expressions for a and,8: 
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a = siniE'(z')cos(z'/2)I(z') , 

,8= siniE'(z')sin(z'/2)J(z') , 
(3.33) 

where the functions I and J satisfy the system of equations 

with 

(q + 1) dI + (iE' + pI = (m - ik)J, 
dq 

(q - 1) dJ + (iE' + !)J = - (m + ik)I, 
dq 

q=cosz' . 

(3.34) 

(3.35 ) 

The solution of system (3.34) and (3.35) can be expressed in 
terms of the hypergeometric functions F( a,b, r,z) as follows: 

1= [(m - ik)I(iE' + p ]sF(a,b,iE' + ~,w) 
+ nw- (iE' + 1I2)F(a - iE' 

- ~,b - iE' - M - iE',w), 

J = sF(a,b,iE' + !,w) + [(m + ik)/q - iE')] 

(3.36) 

Xnw(1I2-iE')F(a - iE' + ~,b - iE' + ~,~ - iE',w) , 

where 

a = iE I + ~ + N m2 + k 2, b = iE I + ! _ i~ m2 + k 2 , 

(3.37) 

and w is given by 

w = (q + 1)/2 = cos2 (zI12) . (3.38) 

Then, substituting (3.36) into (3.33), we obtain the solution 
of the system (3.19) and (3.20). It should be noted that the 
functions I and J do not reduce to Jacobi polynomials by 
virtue of the specific values of the arguments a and ,8 in 
(3.37). 

Finally, we can write the solution of (3.7) by substitut
ing into (3.18) the explicit expressions of" sand a,,8 given 
by (3.29) and (3.33), respectively. By virtue of the matrix 
transformation (3.12) relating <I> and Ci> and relation (3.8), 
we obtain 

'" = (sin x' sin z') -1/2 i(a + i~)' exp iCky' - E't '). 
( 

i(a + i,8)s ) 

- (a - i,8)S 

(a - i,8), 
(3.39) 

IV. ANALYSIS OF THE SOLUTION 

In order to analyze the behavior of the spinor solution 'I' 
in the background field obtained in Sec. II, it is convenient to 
express the metric in the form (2.22), where the presence of 

a singularity at the value rh = 1/ IJ: is evident. It is the pur
pose of the present section to carry out the asymptotic study 
of the radial functions a and ,8 at the singularity rh , where 
the coordinate r is defined by Eq. (2.21). 

In order to find the asymptotic form of the spinor 
'1'[ (3.39)], we must express the argument w in terms of the 
radial variable r. Then we have 

w = (1 + .,jTr)/2 . (4.1 ) 
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Notice that solutions (3.36) are given in terms ofhypergeo
metric functions defined over a domain that lies inside the 
unit circle and w goes to 1 when r--+rh • Then, taking into 
account the value of the limit of the function F(a,b,y,z) as 
z- 1-, we have 

limz _ 1 F(a,b,y,z) 

=r(y)r(y-a-b)/r(y-a)r(y-b). (4.2) 

From (2.35), it is clear that the following relation takes 
place: 

Finally, it should be mentioned that, from expressions ( 4. 5), 
(4.6), and (3.39), it is clear that each component of the 
spinor solution IIJ to the Dirac equation (3.1) behaves, at 
singularity r = r h ,as a superposition of an incoming and an 
outgoing wave. 
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The quantization rules for gauge theories in the Lagrangian formalism are formulated on the 
basis of the requirement of an extended BRST symmetry. The independence of the S matrix to 
the choice of a gauge is proved. The Ward identities are derived, and the existence theorem for 
the solutions of the generating equations within the given formalism is proved. Rank 1 gauge 
theories are considered as an example. 

I. INTRODUCTION 

The modem quantization method for gauge theories in 
the Lagrangian formalism 1,2 is based on the idea of a special 
type of global supersymmetry, the so-called BRST symme
try.3.4 BRST symmetry implies invariance of the resultant 
action of a gauge theory under global nilpotent transforma
tions of dynamical variables and results from gauge invar
iance of the initial action of the classical theory. 

The requirement of BRST symmetry in gauge theories 
can be appreciably strengthened by the requirement that the 
resultant action be invariant not only under BRST transfor
mations but also under the so-called anti-BRST transforma
tions introduced in Refs. 5 and 6. According to the conven
tional terminology, BRST and anti-BRST symmetries 
together are referred to as "the extended BRST symmetry." 
A fairly large number of papers is devoted to the various 
aspects connected with the extended BRST symmetry in 
gauge theories.7

-
16 The general formalism of the Hamilto

nian BFV (Batalin, Fradkin, Vilkovisky) approach with ex
tended BRST symmetry is developed in Ref. 17. But a con
sistent formulation of quantization of general gauge theories 
in the Langrangian formalism based on the extended BRST 
symmetry principle has not yet been found. In the present 
paper we suggest (Sec. II) the version of covariant quantiza
tion of general gauge theories in the framework of extended 
BRST symmetry, prove gauge invariance of the S matrix, 
derive Ward identities, prove the existence theorem for solu
tions of the generating equations (Sec. III), and consider 
gauge theories of rank 1 (Sec. IV). 

We have used the condensed notationsl8; if not other
wise specified, the derivatives with respect to fields are un
derstood as right and those with respect to sources as left. 
Left derivatives with respect to fields are labeled by the sub
script" I," for example, 8[/ &fJ denote the left derivative with 
respect to field. 

II. EXTENDED BRST QUANTIZATION IN LAGRANGIAN 
FORMALISM 

Let us consider the theory of fields A;, i = 1,2, .. ,n, 
E(A ;) = E; for which the initial classical action .Y (A) is 

invariant under the gauge transformations 8A ; 
= R ~(A)sa: 

.Y,; (A)R ~ (A) = 0, 

(1) 

where the sa are arbitrary functions, and the R ~ (A) are 
generators of gauge transformations. We propose that the set 
R ~ (A) be linearly independent and complete. One can sayl9 
that as a consequence of the condition of completeness the 
algebra of generators has the following general form: 

R~.j(A)R~(A) - (-l)c.,£pR~,j(A)R~(A) 

= - R ~(A)F~p(A) - .Y,j(A)M!p(A), (2) 

where M!p satisfies the conditions 

M!p = - (- I)C,EJM~p = - (_l)CaEIIM%,.. 

In the literature, the gauge theories whose generators satisfy 
Eqs. (2) are called general gauge theories. As has already 
been mentioned, covariant quantization of such theories in 
the framework of a standard BRST symmetry has been pro
posed in Refs. 1 and 2. 

Our main aim here is the construction of a consistent 
formulation of Lagrangian quantization of the general gauge 
theories ( 1 ) and (2) based on the extended BRST symmetry 
principle. To do this, we shall first define the total configura
tion space t/JA of the theory in question: 

t/JA = (A ;,Ba,c aa ), a = 1,2, E(t/JA) = EA' (3) 

We introduce additional fields ~, 

E(B a) = Ea , gh(B a) = 0, 

and the Sp (2) doublet of the ghost fields cza , 
E(c aa ) = Ea + 1, gh(c aa

) = _ ( - l)a. 

We also introduce the sets of "antifields" t/J~a and ~ A: 

t/J~a = (A:,B!"C!ab)' ~A = <AoBa,Caa ), 

E(t/J~a) = EA + 1, gh(t/J~a) = ( - 1)a - gh(t/JA), 

E(~A) = EA, gh(~A) = - gh(t/JA). 

(4) 
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The antifields ~~a and ¢ A can be treated as sources ofBRST, 
anti-BRST, and mixed transformations. 

The basic object of the extended BRST quantization in 
the Lagrangian formalism is the boson functional 
S = S( ~,~: ,¢). We require that S be a solution to the gener
ating equation 

~(s,s)a + vas = iliaaS, 

with the boundary condition 

S ItP:=~=o = YeA). 

(5) 

(6) 

In writing (5) we have introduced an "extended anti
bracket" 

(7) 

whose properties are analyzed in Appendix A. In (5), Ii is 
the Planck constant, and the notation 

va=Eab",,* ~ Eab - _ Eba, - 'f'Ab -, -
8~A 

aa==( -1}£"~~ 
8~A 8~~a 

(8) 

is used. Equation (5) arises in the Y ang-Mills theory if to 
the Yang-Mills action we add terms with the sources ~~! to 
the BRST transformation, those with the sources ~~ 2 to the 
anti-BRST transformation, and those with the sources ¢ A to 
the commutator of BRST and the anti-BRST transforma
tions (the right-hand side in the equation for S will be equal 
to zero). An equation for S, of the form (5), also follows 
from the Hamiltonian formulation!7; as in the case ofa non
extended, standard BRST symmetry, the Hamiltonian for
malism implies the master equation for the effective action. 20 

It can be readily estabished that the algebra of operators (8) 
has the form 

v{av b} = 0, a{avb} = 0, a{avb} + v{aab} = 0, (9) 

where, for the quantities carrying the index of the group 
Sp(2), we have used the notation 

F{aG b} ==FaG b + FbG a. 

It should be immediately noted that Eqs. (4) are compatible. 
The simplest way to establish this fact is to rewrite Eqs. (5) 
in an equivalent form of linear differential equations: 

Xa exp{(illi)S} = 0, Xa = aa + (illi) va. (10) 

From (9) itfollows thatthe operators X a in ( 10) possess the 
properties 

X{aXb} = O. (11) 

By virtue of~s. (11), we immediately establish compatibil
ity of Eqs. (10) and therefore (5). 

The action S is still degenerate. To lift the degeneracy, 
we should introduce a gauge. We denote the action modified 
using a gauge by Sext = Sext (~,~: ,¢). The gauge should be 
introduced so as, first, to lift the degeneracy in ~ and, second, 
to retain Eq. (5), which provides invariant properties of the 
theory, for Sext. To meet these conditions, the gauge is intro
ducedas 
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exp{Ulli)Sext} = Uexp{(illi)S}, 

where 

(12) 

U = exp { {jF -1- + iii E ~ {j2F ~} {j~A {j~ A 2 ab {j~~a {j~A {j~B {j~~b . ( 13 ) 

A direct verification shows that the operator U commutes 
with the operators Xa in Eq. (10): 

A __ A 

Uaa = aau. (14) 

Consequently, 

Xa exp{ (illi)Sext} = 0 (15) 

and Sext satisfies Eq. (5). 
We define the generating functional of the Green's func

tions Z(Y) as 

Z(Y) = f d~ exp{ ~ [Seff(~) + YA~A]}, (16) 

where 

Seff(~) =Sext(~'~:'¢) ItP:=~=o' (17) 

It can be represented in the form 

Z(Y) = f d~ d~: d¢ d1T" dA exp { ~ [S(~,~:,¢) 

+""* ~a + (;;; _ {jF )A A 'f'Aa 'f'A {j~A 

-.le ~a {j2 F rrBb + Y ""A]}. (18) 
2 ab {j~B (j~A A 'f' 

Here the Y A are the usual sources to the fields 
~A [E(YA ) = EA, gh(YA) = - gh(~A)], and F= F(~) 
is the boson gauge functional. We have introduced the sets of 
auxiliary fields ~a and A A, 

E(~a) =EA + 1, gh(~a) = -gh(~~a)' 

E(A A) = EA, gh(A A) = - gh(¢A); 

and S( ~,~: ,¢) satisfies Eqs. (5) and (6). 
An important property of the integrand in Eq. (18) for 

Y A = 0 is its invariance under the following global transfor
mations [which is, in turn, a consequence of the validity of 
Eq. (5) for Sext ] : 

{j~A = ~afla' {j~~a = fla :; , 

{j¢A = Eabfla~~b' {j~a = (jA A = 0, 

(19) 

wherefla is a Sp(2) doublet ofthe constant anticommuting 
Grassmann parameters. The transformations (19) realize 
the extended BRST transformation in the space of the vari
ables ~, ~:, ¢, 1T", and A. 

The symmetry of the vacuum functional Z(O) under the 
transformations ( 19) permits establishing the independence 
of the S matrix on the choice of a gauge within the proposed 
extended BRST quantization scheme (5) and ( 18). Indeed, 
suppose Z F == Z (0). We shall change the gauge F --F + M. 
In the functional integral for ZF + AF we make the change of 
variables (13), choosing, for the parameters fla' 

_ i (j(aF) b 
fla - --,;Eab ~~. (20) 

Batalin, Lavrov, and Tyutin 1488 



                                                                                                                                    

After simple algebraic transformations we find that 

ZF+ b.F = ZF' (21) 

and therefore the S matrix is gauge invariant. 
Finally, we proceed to the derivation of the Ward identi

ties, which are the consequence of the fact that the boson 
functional S(¢J,¢J:,¢) satisfies Eqs. (5). Consider the ex
tended generating functional of the Green's functions: 

Z(Y,¢J:,¢) = f d¢J exp{! [Sext (¢J,¢J:,¢) + YA¢JA] }. 

(22) 

Note that from definition (22), with allowance made for 
Eqs. (16) and (17), it follows that 

Z(Y,¢J:,¢) I 41: =~=O = Z(Y), (23) 

where Z(Y) is described by Eq. (18). Next, we mUltiply 
Eq. (15) from the left by exp{U/Ii)YA ¢JA} and integrate it 
over ¢JA: 

f d¢J exp{! YA¢JA }aa exp {~ Sext (¢J,¢J:,¢)} = o. 
(24) 

Integrating in Eq. (24) by parts and assuming the integrated 
expression vanishes, we can rewrite equality (24), with 
allowance made for definition (22), as 

( Y A ~ - eab¢J~b -L) Z(Y,¢J:,¢) = 0, (25) 
~¢J~a ~¢JA 

which are the Ward identities written for the generating 
functional of the Green's functions. Introducing in a stan
dard manner the generating functional of the vertex func
tions, 

r(¢J,¢J:,¢) = (Ii/i) In Z(Y,¢J:,¢) - YA¢JA, 

A Ii ~ In Z(Y,¢J:,¢) 
¢J =j ~YA ' 

(26) 

we obtain 

(27) 

The identities (27) for r were derived earlier in Ref. 17 in 
the framework of the BFV Hamiltonian formulation with 
extended BRST symmetry. In Yang-Mills-type theories 
(see also Sec. IV) identities of the form (27) were obtained 
in Ref. 11. 

III. THE EXISTENCE THEOREM FOR GENERATING 
EQUATIONS 

The question of existence of solutions of Eqs. (5) satis
fying the boundary condition (6) is essential in the construc
tion of extended BRST quantization within the Lagrangian 
formalism. Here we restrict ourselves to the proof of exis
tence of solutions to the equations 

! (S,S) a + vas = 0, (28) 

with the boundary condition (6). Note that, for local S, 
aas_~(o), and, using the dimensional regularization 
[~(O) = 0], Eqs. (5) become (28). 
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The solution ofEqs. (28) will be sought in the form of a 
power series of the fields B" and C'"' . In this connection it 
turns out to be convenient to ascribe a so-called "new ghost 
number," ngh, to all the quantities. For the variables 
¢JA, ¢J~a' and ¢ A the new ghost number will be defined by the 
rule 

ngh(A i) = 0, ngh(C aa) = 1, ngh(Ba) = 2, 

ngh(¢J~a) = - 1 - ngh(¢JA), ngh(¢A) = - 2 -ngh(~). 
(29) 

The solution ofEqs. (28) will be sought in the class of boson 
functionalsS = S(¢J, ¢J:, ¢) with ngh(S) = Oin the form of 
the expansion 

S=Y(A) + L Sn' ngh(Sn) =0, Sn_cn-mBm. 
n=1 

(30) 

Let us consider the first approximation SI' The most 
general form of the functional SI meeting the above-men
tioned requirements is 

Sj = A :A:;b (A)C ab + C!abApab(A)BP 

+AiA~(A)Ba +!A:A Ji,A~a)Ub)(A)Ba. (31) 

Here A (ia) A aab Ai and A (ia)Ub) are some unknown matri-
ab' P' a' a 

ces depending on the fields A i, where 

(32) 

Next, we require that the functional Y (A) + S) satisfy Eqs. 
(28) to first order. This leads to the following equations for 
A ia Aaab Ai andA(ia)Ub). 

ab' (3' a' a . 

YJ(A)A~a)Ub)( - 1)£' + A:tA!,d + eabA~ = O. 

(33) 

(34) 
From Eqs. (33) it follows that A:;b can be identified with the 
generators of the gauge transformations 

A:;b(A) =R~(A)~:. 

Next, we set 

A~a)(jb)=o. 

Then Eq. (34) implies 

A~ab = A~eab. 

(35) 

(36) 

(37) 

Considering Eq. (31), we come to the conclusion that rede
fining the field B" , one can assume without loss of generality 
that 

A~ = -~. (38) 

Turning again to Eq. (34) we obtain 

A~ (A) = R ~ (A). (39) 

This result for the first approximation corresponds to impos
ing, in addition to condition (6), the boundary conditions 

~2S I = R i (A)~a 
.11..0 * .I1cab a b' 
un ia U C=B=O 

~2S I 
~Ai ~Ba C=B=O 

=R ~(A), 
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t5
2
S I - abf:a - - E Up, 

t5C:ab t5BP c= B = 0 

IPS I 
t5A: t5B a C=B=O = O. 

(40) 

Thus as the first approximation we finally choose the func
tional 

SI =A:R ~ (A)c aa +A;R ~ (A)B a - EabC:abBa. 
(41) 

Suppose now that we have constructed the functional [S] n' 

where 
n 

[S]n =Y(A) + L Sk' (42) 
k=1 

which satisfies (28) to within nth order: 

!([S ]n,[S]n)~ + VaSk = 0, k = 1,2, ... ,n. (43) 

In Eq. (43) and hereafter ( , )~ denotes the kth order in 
powers of the fields aa and caa of the extended antibracket 
( , )a. For the (n + l)th approximation Sn + 1 ofthe solu
tion of Eq. (28), we have, taking Eq. (41) into account, 

Wasn+ 1 = F:+ I' (44) 

The operators W" in Eqs. (44) have the form 

w a= W~ + va, 

Wa =Y ._t5_ A~R; __ t5_ 
o " DA ~ + .b a DC. 

la aab 

(45) 

and possess the following important properties 

W~WQ=Q (%) 

The functionals F: + 1 in Eqs. (44) are constructed from S k' 

k,n, by the rule 

F:+I = -!([S]n,[S]n):+I' (47) 

From Eqs. (46) it follows that for Eqs. (44) to be compati
ble it is necessary that the relations 

(48) 

hold. We shall show that relations (48) do hold. To this end 
we consider the identities (A4) and rewrite them as 

H(S,S){a + v{aS,S)b} - (v{aS,S)b}=O. (49) 

The properties (9) and (A 7) of the operators V" enable Eq. 
( 49) to be identically written as 

(S,!(S,S){a + v{aS)b} + v{a[!<S,S)b} + Vb}S] =0. 
(50) 

We now consider the identities (50) in the (n + l)th ap
proximation. We take into account that by virtue of Eqs. 
(43) and the lowest approximation for the expression 
!(S,S,)a + V"S is (n + 1)th order, which is equal to 
WaSn + 1 - F: + I' Then in the (n + l)th approximation 
the identities (50) become 
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W~a( Wb1Sn+ 1 - F~l+ I) + v{a( Wb1Sn+ 1 - F~l+ I) = O. 
(51) 

By virtue ofEqs. (45) and (46), from Eq. (51) the relations 
(48), which provide compatibility ofEqs. (44), follow. 

Further proof of the existence theorem rests on the fol-
lowing lemma. 

Lemma: Any regular solution of the equations 

WaX=O. (52) 

w{ax b1 = 0, (53) 

vanishing for Y,; = t;6~a = ¢ A = 0, has the form 

X = !Eab WaWby, (54) 

xa = WaZ, (55) 

with some functionals Yand Z, respectively. Moreover, if X 
and.xu are Sp(2) covariant, then Yand Z can be chosen as 
Sp (2) scalars. The proof of the lemma is given in Ref. 17. It 
is based on the existence of the operators r a, E(ra) = 1, 
"conjugate" to the operators W" and such that 

warb + rb W a = Di,N, r{arbl = 0, (56) 

where N is a scalar operator under the group Sp (2). In Ap
pendix B we prove the existence of the operators r a and 
show that the operator N possesses the properties 

waN=Nwa, raN=Nra' (57) 

and, with the solutions dealt with in the lemma, N is positive 
definite. 

We now return to the solution of Eqs. (44). Since 
ngh(F:+d = 1 and n>l, it follows that F:+I =0 for 
Y,; = t;6~a = ¢ A = 0, and therefore, by virtue of the lemma, 
the solution of ( 48) is representable in the form 

(58) 

Choosing Sn + 1 = Xn + 1 , we find that Eqs. (28) are already 
satisfied to within (n + 1 )th-order terms. Then by induc
tion we conclude the proof of the existence of solutions of 
Eqs. (28). Note that for the Sn+ 1 we could take the func
tional 

(59) 

and, as before, Eqs. (28) would be satisfied to within terms 
of order (n + 1). On the basis of the lemma it is not difficult 
to show that, boundary conditions (6) and (40) being given, 
the arbitrariness (59) in the choice of the (n + 1 )th approx
imation is unique. 

IV. GAUGE THEORIES WITH A CLOSED ALGEBRA 

To illustrate the formalism of the extended BRST 
quantization developed here, we consider irreducible gauge 
theories of rank 1 with a closed algebra. Such theories are 
characterized by the fact that in the algebra of generators, 
Eqs. (2), M ~p = 0, and the solution of any equation of the 
form R ~xa = 0 is X" = O. The majority of the theories dis
cussed in the literature belong to the indicated class (Yang
Mills, gravity, supergravity theories with auxiliary fields, 
etc.). From the viewpoint of extended BRST quantization, 
typical of all these theories is that the solution of Eqs. (28) 
exists as a linear functional in the antifields t;6~a and ¢ A : 
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S = YeA) + ~~aXAa + ¢A yA. (60) 

Here XAa and yA are functionals of the fields ~A : 

E(X Aa ) =E(~~a), ngh(X Aa ) = -ngh(~~a), 
E(yA) =E(¢A)' ngh(yA) = -ngh(¢A)' (61) 

Substituting Eqs. (66) into Eqs. (28), we obtain the system 
of equations for finding XAa and yA transformable to the 
form 

(62) 

(63) 

(64) 

(65) 

Let 

x Aa = (x~a,x~a,x~ob), yA = (Y; ,y~,y~a). (66) 

Equations (62) are of the form 

Y,ix;a = 0 (67) 

and x;a may, therefore, be thought of as the generator of 
gauge transformations [see Eqs. (1)]. Taking into account 
thatngh(X~a) = 1 andngh(C aa

) = 1, wechooseX;ain the 
form 

(68) 

With allowance made for Eqs. (68), we find, from the solu
tion of Eqs. (63), that 

x~a = - !F~(:JB(:Jcya - -b.< - l)EII(2F~(:J,jR~ 

+ F~crFp,,)CPbCfJaCYCEcb' (69) 

Xpab = _ EabB a -!( - l)EIIFpyCybCfJa. (70) 

SubstitutingEqs. (68)-(70) into Eqs. (64), weare led to the 
following expression for the functionals: 

yi =RiBa+l(_I)EaRi .Rjc(:JbcaaE (71) 
1 a 2 a,j (:J ab' 

y~ = 0, y~a = _ 2X~a. (72) 

A direct verification shows us that Eqs. (65) with the func
tionals (68)-(72) hold identically. In the solution of the 
system of equations (62)-(65) we have intensely used the 
Jacobi identity 

( - l)EpEP(Fpy,iR ~ + FPuF~p) + cycle(p,y,p) =0. 
(73) 

The relations (68)-(72) specify the transformations of 
extended BRST symmetry for theories with closed algebra. 
In a particular case, where all the gauge parameters sa are 
boson functions, i.e., Ea = 0, the extended BRST symmetry 
transformations are also obtained in Ref. 16. 

We shall show that in the class of gauges F( ~) depend
ing only on the initial fields Ai, 

F(~) = F(A), (74) 

the generating functional (18) is reduced to the standard 
Faddeev-Popov result. 21 Indeed, by virtueofEqs. (60) and 
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(74), the integration over the variables ¢ A , ~~a' It A, and -nAa 

is trivial and yields 

Z(Y) =fd~exp{~ [YeA) -J..EObx;a ~~F .X~b 
Ii 2 ~AJ ~A I 

+ ~F. yi +Y "'A]}. (75) 
~A' 1 AV' 

Taking into account Eqs. (68) and (71), we come to 

~F yi --E Xia ~2F X1b 
~A i 1 2 ab 1 ~Ai ~A i 1 

= ~F RiB a + J.. ( _ 1) Ea (~F R i R 1 
~A I a 2 ~A I a,l (:J 

+ ~2F Ri R i (_l)E/(Ej+Ea»C(:JbcaaE . 
~Aj~Ai a (:J ab 

If we introduce the function 

= ~F Ri 
Xa ~A i a 

(76) 

(77) 

and identify C a1 =C a and C a2=C a
, then, taking account of 

Eq. (76), the functional integral (75) can finally be written 
as 

Z(Y) = f d~ exp{ ~ [YeA) 

+ CaXa,iR1C(:J + Xapa + YA~A]}. (78) 

This is the standard Faddeev-Popov result for gauge theo
ries with a closed algebra when the gauge is introduced by 
means of the function X a 

It is noteworthy that if in any theory we go over to qua
dratic approximation, the algebra of the gauge transforma
tions becomes Abelian and the action Self acquires the form 
of the action of a theory with closed algebra. Then the con
sideration presented in this section shows that the method of 
gauge fixing proposed in Sec. II will actually lift the degener
acy of the classical gauge-invariant action. 

Concluding, we note that we have not considered the 
important questions of the description of the general solu
tion ofEq. (5) and the establishment of equivalence between 
the formalism with extended BRST symmetry and the stan
dard Lagrangian BRST formalism. These questions are ap
parently closely connected with each other. 

APPENDIX A: THE PROPERTIES OF THE EXTENDED 
ANTIBRACKET 

From definition (7), 

E( (F,G)a) = E(F) + E( G) + 1, 

gh«F,G)Q) = - ( - 1)0 + gh(F) + gh(G), a = 1,2, 

and 

(F,G)a = _ (G,F)a( _ l)(E(F) + l)(E(G> + I), (Al) 

(A2) 

In particular, for any fermion functional F, E(F) = 1. Eqs. 
(AI) imply (F,F)a =0. By means of simple but cumber-
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some calculations, one can establish the Jacobi identity for 
the extended antibracket: 

«F,G){a,H)b}( - 1)(.-(F) + I)(£(H) + I) + cycle(F,G,H) 50. 
(A3) 

For any boson functional S, E(S) = 0, from Eqs. (A3) it 
follows that 

«S,S) {a,S)b}50. (A4) 

The action of the operators JIO , Eqs. (S), upon the extended 
antibracket is given by the relations 

ya(F,G)b = (yaF,G)b _ ( _ I )£(F) (F, yaG)b 

_~b( 8F 8~ _ 8G 8! 
8~A 8~A 8~A ~A 

X ( - 1)£(F)(e(G) + I)) . (AS) 

Therefore 

y{a(F,G)b} = (y{aF,G)b} 

- ( - l)£(F)(F,y{aG)b}. (A6) 

For any boson functional S, Eq. (A6) implies 

!y{a(S,S,)b} = (y{aS,S)b}. (A7) 

APPENDIX B: CONSTRUCTION OF OPERATORS r. 
In this appendix we prove the existence of the operators 

r a "conjugate" to W" in the sense ofEqs. (56) and establish 
the validity of relations (57). The crucial point of our consi
deration is the possibility of reducing the operators W" to 
the "standard" form, i.e., to that of the operators Gi 818Pjt 
where both the set of Gi and the set of Pi are functionally 
independent. 

Reduction of the operators W" to the standard form is 
realized in several steps. First, from the initial variables Ai 
we go over, using a nonsingular change, to the variables A 'i : 

(BI) 

Here the initial classical action does not depend on the gauge 
fields sa explicitly: 

YeA) = Y(A(A'» = Y'(A') = Y'(qJ). (B2) 

Given this, the gauge invariance condition (1) becomes 

Y,i (A)R ~ (A) = Y:iNJR~ = Y:iR ;!(A') = 0, 
(B3) 

where 

R ;!(A') = NJ(A(A '»R~(A(A '», Ni(A) = 8A 'i(~) 
J 8AJ 

(B4) 

With allowance made for Eq. (B2), the identity (B3) can 
now be rewritten as 

Y:iR ~i(A') = Y:m R ~m(A') = O. (BS) 

From Eq. (BS) we conclude that R ~m(A') can be only tri
vial generators for the action Y'(qJ): 

1492 

R ~n(A') = Y:mA~m(A '), A~m = _ ( _ l)c.,enA:;,n. 
(B6) 
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The generators R ;! (A ') are representable in the form 

R ,i = (y, A m",R- p) (B7) 
a ,n a a' 

where R ~ is the nondegenerate matrix. 
In addition to the changes· (B I ), we also make the fol

lowing antifield transformations: 

A:' =A}:M1, A; =AJM{, 

c·' = c· (R -I)p B·' =B. (R -I)p (BS) aab flab a' aa fla a' 

-, - --IP -, - --IP 
Ba=Bp(R )a' Caa=Cfla(R la, 

where we have introduced the notation 

M~ 8A
i
(A') MiNi -8i 

J 8A ,J' J k - k' 
(B9) 

As a result of the changes (B I) and (BS), the operators 
W" ..... w'a, 

w"'=Y _8_+ 1 .... , +A*' Y Am"(R -1Y,!)_8_ 
m 8A *, va ab mb" P a 8C*' 

ab aab 

+ ~b (A *, -!-+ A *, !. + B *, !. 
mb 8A' ab 8A ' ab 8B' 

m a a 

+C*' -4-+ (_1)eaBa~) 
abc 8C' 8cab ' 

aa 

(BIO) 

In the operators w,a [(BlO)], we make the change 

A."=A*'+A·'Y Amn(R-1)p A*"=A·' aa aa rna n fJ a' ma rna' 

A" =A' +A' Y Amn(R -I)P -EbcC·' (Bll) a a m n {3 a abc' 

A-" =A-' c*" = c·' m m' abc abc' 

w"a=y _8_+~bA*"-!-+A*,,_8_ 
m 8A *" mb 8A" ab 8C *" 

ma m aab 

+~bC." -4-+A,,_8_ 
abc 8C' a 8B*' 

ac aa 

+~B*' !. +~b( _1)eaBa~. (BI2) 
ab 8B' 8Cab 

a 

The operators w"a are already of the "standard" form. We 
shall now construct ( . "'rators r; such that 

(Bl3) 

The solution ofEqs. (Bl3) does exist. For example, for 
the operators r; one can choose 

r"=A*,,_8 __ E A" _8_+ C *" _8_ 
a ma 8Y ab m ~A." aab ~A*" 

m vnmb vnab 

-C' 8 +B*' 8 -B' 8 -E --- ---E --ab ac 8C*" aa 8A" ab a 8B*' . 
~ a • 

(BI4) 

Then for operators N H in Eqs. (B 13) we deduce 
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N"=Y _8_+ A *"_8_+ A,, _8_ 
m 8Y rna 8A *" m 8A *" m ma m 

+ c*" __ 8_ + A *" _8_ 
aab 8C*" aa 8A *" 

aab aa 

+c' -J-+B*,_8_ 
aa 8C' aa 8B*' 

aa aa 

+A" ~ +B' ~ . (B15) a 8A " a 8B , 
a a 

Through a direct verification we make sure that the equali
ties 

(B16) 

hold. In Eqs. (B13)-(Bl6) we now make transformations 
inverse to (BI), (B8), and (Bll) to obtain 

warb + rb W a =8bN, r{arb} =0, 

(BI7) 

where the operators W" are given by the expression (45), 
and the operators r a and N have the form 

r - A * Q i 8 A- Q ip I 8 C * La 8 a - ia j -- - Eab i I J --+ aab 1--
8,Y'J 8A;;' 8A: 

- 8 - a 8 
- EabCac --- - CCUIL 1 -=-

8C:bc 8A, 

B * La 8 B 8 (BI8) + aa 1 8,- - Eab a ~B * ' 
:.41 U ab 

N -,Y QI 8 .J.* 8 :i. 8 (BI9) 
- ,I J 8,Y. + 'I' Aa ~.J.* + 'I' A 8:i. . 

" U'I'Aa 'I'A 

In Eqs. (BI8) and (BI9) we have used the notation 
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Qi-M1 Nm La- (R- -1)aNP J= m j' 1 - P i' 

P i ~i R'La 
j =UJ - a J' (B20) 

A direct verification shows that the matrices Q 5, L f, and P 5 
possess the properties 

(B21) 

L jQ{ = 0, L fP j = O. 

In the derivation of (B2l) we have used the relation 

Rp =NjR~. (B22) 
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Nontrivial elements of homotopy groups for unitary, orthogonal, and symplectic groups are 
given explicitly. In particular, (a) representatives of generators of nontrivial homotopy groups 
of stable special unitary, orthogonal, and symplectic groups are constructed using Clifford 
algebras; (b) the values for "winding numbers" for stable SU, SO, and Sp are calculated for 
generators of homotopy groups; and (c) representatives of generators of homotopy groups 
TIn _ 2 (O(n - 1), TI2n _ 2 (U(n - 1», TI4n _ 2 (Sp(n - 1» are given. 

I. INTRODUCTION 

Homotopy groups of compact connected simple Lie 
groups and their coset spaces are beginning to be used in 
various aspects of high-energy physics. I

,2 If D denotes the 
dimension of space (or space-time) and M the target mani
fold of a configuration, the following are examples associat
ed with TID_I (M). 

(i) A vortex solution in aD = 2 static, Euclidean, Abe
lian, Yang-Mills-Higgs system associated with TI1(U( 1 ». 

(ii) A magnetic monopole solution in aD = 3 static, 
Euclidean, Yang-Mills-Higgs system associated with 
TI2(S2). 

(iii) An instanton solution in aD = 4 Euclidean, Yang
Mills system associated with TI3 (SU(2». [Note that a 
Yang-Mills or Yang-Mills-Higgs system cannot have a fi
nite energy or an action solution for D> 4 (Ref. 2).] 

(iv) A soliton in current algebra associated with 
TID _ 1 (G). An example associated with TID(M) is: 

(v) a global gauge anomaly3 that is caused by a nontri
vial element of TID (H) where H is the Yang-Mills gauge 
group.3-11 An example associated with TID+ 1 (M) is: 

(vi) the Wess-Zumino effective Lagrangian of current 
algebra associated with TIs(SU (3» (Ref. 3). 

The techniques of algebraic topology permit most calcu
lations to be done without knowing explicit functional forms 
representing nontrivial elements of homotopy groups. Such 
functional forms are well known only for the cases of a vor
tex, a magnetic monopole, and an instanton. I

,2 [These two 
cases are related to Hopffiberings, S 1 = U( 1) ~S3 ~S2 and 
S3 = SU(2) ~S7 ~S4 (Ref. 1).] Some functional forms in 
higher dimensions are scattered in the mathematical litera
ture. In this paper, we treat them in a uniform way without 
the need of detailed knowledge of algebraic topology and 
provide explicit formulas representing nontrivial elements of 
homotopy groups. By providing these explicit forms, physi
cists may gain more insight into global chiral Yang-Mills 
gauge anomalies and solitons in higher dimensions. 

In Sec. II, generators of stable homotopy groups of clas
sical simple Lie groups are constructed in terms of Clifford 
algebras. We first give a generator ofTI2n + 1 (SU), where SU 
is the stable special unitary group [i.e., TIk (SU) 
= TIk(SU(m» for m>(k + 1)/2]. This is important be-

cause it is used to fix the normalization of the anomaly of 
example 5. The normalization of the anomaly is always re
ferred to Bott and Seeleyl2 who give no explicit functional 
form. Next, we give formulas for representation of genera
tors of TI4n _ 1 (SO) and TI4n _ 1 (Sp), where SO and Sp de
note stable groups. [Note that TIk (SO) = TIk(SO(m» for 
m>k + 2, and TIk (Sp) = TIk(Sp(m» for m> (k - 1 )/4.] 
Using these representations, we proceed to calculate their 
"winding numbers" for fundamental representations. 

In Sec. III, we give formulas representing generators 
of the first nonstable homotopy groups of the classical 
Lie groups, i.e., the groups TI n _ 2 (O(n - 1», 
TI2n _ 2 (U(n - 1», or TI4n _ 2(Sp(n - 1». For unitary and 
symplectic groups, this completely describes the homotopy 
generators, but for orthogonal groups, our generator is only 
one of the generators in dimensions n = 8m + 1, 8m + 2, 
8m + 3, and 8m + 5. 

II. GENERATORS OF STABLE GROUPS AND WINDING 
NUMBERS 

In various situations, we need to calculate the following 
"winding number" integral: 

i r~n+ d/), (2.1) 
S2,,+ I 

where the (2n + 1) -form r~n + 1 (/) is given by 

(i/21T)n+ l[n!/(2n + 1)l] Tr(/-I dj)2n+ I. (2.2) 

The function/represents a nontrivial element in TI2n + 1 (G). 
If G is a classical group and/represents a homotopy element 
in the stable range, the value of this integral is independent of 
the rank of G. The integral is homotopy invariant and defines 
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a homomorphism I12n + I (G) --+ R (real numbers). Thus we 
see that: 

(i) IfI12n + I (G) is finite the integral vanishes.5
•
s [More 

generally, the torsion subgroup of I12n + I (G) does not con
tribute to the integral.] Thus for stable SO and Sp groups, 
the integral is non vanishing only for n odd. 

(ii) The smallest absolute value of the integral is at
tained by the generator of an infinite cyclic summand of 
I12n + I (G). 

The value of the integral (2.1) must be an integer. We 
will prove this later using the Bott periodicity theorem. 

The representation dependence of the integral (2.1) is 
given by 

r Y~n+I(f(p»=Q~+t<p) r Y~n+I(J(O», 
Js2n+ I Js2n+ I 

where Q ~ + I ( p) is the Dynkin index 13 of a representationp. 
This fact follows from Appendix B and the identity13 

Tr F n+ I( p) = Qn+ I (p)Tr Fn+ 1(0) 

where 0 denotes the fundamental representation, Xu de
notes the invariant polynomial made of traces of a curvature 
2 form F(O), and a2m (p) denotes a numerical coefficient 
depending only onp. Using the fact that for l<m <n + I, 

X 2m (D) = dn~m _ I (D), 

since the sphere had nontrivial de Rham cohomology 
H k (s2n + 2) only for k = 0 and k = 2n + 2, and that 

dX2m (0) =0, 

we derive the desired result. Since the Dynkin index 
Qn + I ( p) is an integer, if it is nonzero, the smallest absolute 
value of the integral (2.1) is attained by the fundamental 
representation. 

In summary, iff S2n + 1--+ G in the fundamental repre
sentation yields the value one for the integral (2.1), f is a 
representative of a generator of an infinite cyclic summand 
of I12n + I (G). 

As examples of this integral (2.1), we cite: 
(i) Dirac's magnetic monopole,J = eim.p, n = 0 and the 

integral is the monopole charge; 1 
(ii) Jis a chiral soliton field and the integral above is the 

baryon number of this soliton; I 
(iii) the value of the Wess-Zumino functional is given 

by Eq. (2.1) for a rotated soliton in dimension (D + 1); 14 
(iv) the global chiral Yang-Mills anomaly. 3-1 1 
To calculate the global anomaly of G with respect to a 

representation w, we choose a group G' with representation 
{;j satisfying the condition G C G " 11 D ( G ') = 0 and the rep
resentation (;j reduces to w plus singlets of G. For a connected 
simple classical Lie group G, one may choose G' as fol
lows:5- 8 

(i) for G = sue p), take G' = SU; 
(ii) for G = Sp(q), take G' = Sp if D=2(mod 4) and 

G' = SU if D=O (mod 4); 
(iii) forG = SO(r), takeG' = SOifD=2 (mod 4) and 

G' = SU if D=O (mod 4). 
For global anomalies of exceptional groups, see Ref. 5. 
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A. Clifford algebra construction 

The method of constructing maps representing genera
tors of the stable homotopy of the classical groups is to first 
construct a map S n - I --+ Spin (n) using a real or complex 
Clifford algebra and then take a representation Spin (n) --+ G, 
where G is a classical group. Consequently, we review the 
results we need on Clifford algebras and Spin (n). For a more 
complete account see Ref. 15. 

Let IF be one of the fields R (real numbers), C (complex 
numbers), or H (quaternions). 

A Clifford algebra CI ± (n) of a positive ( + ) or nega
tive ( - ) definite quadratic form is a unital algebra that is 
generated multiplicatively by elements {Y/} satisfying the 
identities 

Yi±Y/ +Y/Yi± = ±28ijl, i,j= l, ... ,n. (2.3) 

Note that ± (y/ ) 2 = 1. In general we will write Y/ = Yj in 
a situation independent of sign. 

If x = (X I,X2"",xn )ERn, we write 
n 

X = X(x) = L xjYjECI± (n), 
j=1 

so that CI± (n) consists of products X 1X 2 " 'X" where 
Xk = ~ Xk,jYj' 

The Lie group Spin(n) is defined by 

Spin(n) = {X1X2" 'X2m IXk = jtl Xk,jYj-

and jtl xL = I, for l<k<2m}. 

Note that Spin(n) is a multiplicative subgroup ofCL (n). 
Now let IF(n) denote the matrix algebra ofnXn matri

ces over F. We recall that 

CL (8m) ~CI+(8m) ~R(24m), 

CL(8m + 4b,~Cl+(8m + 4) ~lEI(24m+ I), 
(2.4) 

and 

(2.5) 

This concludes our review and introduction of notation for 
Clifford algebras. For details see Ref. 15. 

From now on we will restrict our attention to the univer
sal Clifford algebras CI ± (2n + 2) and Clc (2n + 2). We use 
Cl(2n + 2) to collectively denote any of these algebras and 
regard them as matrix algebras as given above, except that 
we represent the quaternionic algebras H(n) CC(2n) via a 
representation lEI --+ C( 2). 

For a numerical coefficient c, define 

Y2n+3 =cYIY2"'Y2n+2' 

which satisfies 

(Y )2_c2(_I)(n+1)(2n+1)'1 2n+3 - , 

YjY2n+3 +Y2n+3Yj=0, for 1 <.i<2n +2. 

(2.6) 

(2.7) 

For a complex Clifford algebra, or for a real Clifford algebra 
where n is odd, we can diagonalize Y 2n + 3' 

Defineamapg:S2n+ I--+CI(2n + 2) ClF(r+ I)(F = R 
or C) byl6 
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2n + 2 

g(X) = Y2n+2 L YjXj , (2.8) 
j= I 

for x = (x l "",X2n + 2 )ES 2n + I. 

In formula (2.8) anyone of the Yj can be substituted for 
Y 2n + 2' or can be multiplied from the right. The final results 
are independent of these rearrangements. 

Note that g: s2n+ I-+CL(2n + 2) has its image in 
Spin(n + 1) and 

2n+2 
g(x) = L Xj YjY2n+2 (2.9) 

j= I 

is an inverse for g(x), so that g: s2n+ I-+GL(2n+ I,F) 
CF(2n+ I). 

Also note that if Yj-I = Yj, the relation (2.8) implies 
that 

= Ixj ( Y2n+2Yj )'= g(x)'. 

An element of GL(2',lF) for IF = R or C is in a unitary or 
orthogonal group if and only if its inverse is its conjugate 
transpose. Since we will see later that we can choose our 
generators Yj in a unitary or orthogonal group, we may 
choose g(x) to be unitary or orthogonal. 

From Eq. (2.7), we have 

g(X-)Y2n+3 = Y2n+3g(X), (2.10) 

so that g(x) and Y2n+3 preserve each other's eigenspaces. 
The eigenspaces V + of + cin + I (the so-called chiral sub
space) and V_ of - cin + I have dimension 2n because 
Tr Y2n + 3 = 0, andg(x) is block diagonal withrespectto V+ 
and V _. Define 

giV+: s2n+I-+GL(r,lF), (2.11) 

bygJV+(x) =g(x)JV+. ThengiV+(x):V+-+V+ and 

Trv+Y2n+3=2ncin+ l . (2.12) 

We show giV+: S2n+ I-+SL(2n,F). From Eqs. (2.3) 
and (2.8) it follows that 

g(x) + g(X)-1 = ± 2x2n+212n+ I, 

and the eigenvalues of g(x) are 

± (x2n + 2 ± i~ 1 - x~n + 2 ). 

The eigenvalues of g\ V + are among those of g, so g\ V + has 

eigenvalues ± (x2n + 2 ± i~ 1 - x~n + 2 ). Also, 

which is real. Thus the eigenvalues of g\ V + (x) occur in con
jugate pairs, and det gJV + (x) = 1. 

We investigate the value for the integral (2.1) given by 
g\ V +. In order to evaluate the "winding number," we need 
to compute the form (2.2). We utilize the fact that 
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Tr«giV +)-ld(giV +»2n+ 1 = Tr(g-l dg)2n+ IJV+ 

= TrV+(g-1 dg)2n+ I. 

First note that 

Then 

(g-ldg)2n+I=(+I)n+l"y.y. '''y. dx. 
~ J. h hn+l J. 

Xdxj, .. 'dxhn + I Yhn+2 xhn+2' 

where all jk are all distinct, either because of the exterior 
multiplication of the forms dXj or because of the relations 
l:Xk dXk = 0 and l:xi = 1. Rearranging and collecting 
terms, we obtain 

(g-I dg)2n+ 1 

Xdxj "'dX2n + 2 YIY2"'Y2n+2 

= (=+= 1)"+ 1(2n + I)!" (-1)jX. dX
I 
dx

2
'" 

c £.- J 

Xdxj ·· 'dx2n + 2 Y2n + 3, 

where the circumflex indicates dXj is omitted. Finally, we 
have 

TrV+(g-1 dg)2n + 1 

= [( =+= 1)n+I(2n + 1)!/c] Trv+ Y2n+3 dV 

= (+i)n+ 1(2n + 1)!2n dV, (2.13 ) 

where d V is the volume of S 2n + I. Thus (2.1) has the value 

(
_1_' )n+ I n! f (+ i)n+ 1(2n + 1)!r dV 
21T (2n+1)!JS2n+1 

=(+1)n+l_n_!_f dV=(+1)n+l, (2.14) 
- 21T"+IJs 2n+1 -

because the volumeofS 2n + I is21T" + lin!. This result is inde
pendent of how we normalize Y2n + 3' since c cancels in the 
final expression. [If we choose V_instead of V +, then (2.1) 
has the value - ( ± 1) n + I]. Thus, assuming (2.1) has inte
gral values, g\ V + represents a homotopy generator. 

B. The special unitary group 

We construct a representative for the generator of 
Il2n + I (SU). A formula for a representative of a generator of 
II 2n + 1 (SU (n + 1) has been constructed by one of us 
(A.L.),t7 but the calculation of the integral, using this for
mula, turned out to be formidable. 

We first construct a suitable set of generators 
{YI""'Y2n + 2}for Clc (2n + 2) =Cl+(2n + 2) ® C, give the 
mapsgc andgc \ V +' and use the Bott periodicity theorem to 
show topologically that gc \ V + represents a homotopy gener
atorofSU. 

For n = 0, the Hermitian gamma matrices are Pauli ma
trices, i.e., 
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and 

r (O -IT _(0 
I - 1- 1 1) Y(\) = IT = (0 

0' 2 2 i 

ril) = - ilTIlT2 = lT3 = (~ _ ~) . 
Suppose we have defined the matrices rY) for k> 1 
j = 1,2, ... ,2k. We define 

and 

Y(k) = _ ikr(k) .. 'r(k) 
2k+ I - I 2k, 

which satisfies 

Y(k) y(k) + y(k)y(k) - ° 2k + I j j 2k + I - . 

Next we define 
(k+l) - (k) '-1 2k+ 1 rj - rj ® lT2, ] - , ... , , 

ri~!~) = li
k
) ® lTI' 

(2.15 ) 

(2.16) 

with 12 = (~ ~). It is easy to see that all these r matrices are 
Hermitian, unitary, satisfy the relations (2.3), generate a 
complex universal Clifford algebra, and that rY + I) is a 
2" + I X r + I matrix. In particular, 

r~:!~) = li") ® lT3' 

and therefore r~~!~) has eigenvalues ± 1 and its square is 
the identity. The + I eigenspace V + of r~:! P is the chiral 
subspace and is of dimension 2" . 

Now we observe that 
211 + 2 

g(O)(x) =gc(x) = L ri:!~)ry+I)Xj 
j=1 

so that 
211+ I 

gclV+ =gc(x)lV+ =x211 + 212" + L xirY)· 
j= I 

(2.17) 

In the case n = 1, we obtain a well-known generator of 
II 3(SU (2 », 

gc I V + (x) = ixllTl + ix2lT2 + iX3lT3 + x 4 12 

= ( X4 + ix~ X2 + ~XI) . 
- X2 + LX I X4 - IX3 

We show that our gc I V + is homotopic to the topologi
cal construction of a stable generator in the stable homotopy 
ofSU. 

We begin with an inductive description of generators of 
Il211 + I (SU). Let A.: U(n) ..... U(2n) be the embedding given 
in terms of matrices as 

A.(M) = (~ ~), 
and for (s,t)eI 2 = {(u,v)eR210..;;u..;;1,0..;;v..;;t}, let 
W(II) (s,t)eSU(2n) be the block matrix 

( 

a(s,t) III 
W(s,t) = W(II) (s,t) = __ 

- p(s,t) III 

p(s,t) III ) , 

a(s,t) III 
(2.18 ) 

where a(s,t) = cos 1TS + i sin 1TS cos 1Tt, and 13 (s,t) 
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=isin1Tssinm. Now from (2.17) if we abbreviate g(lI) 

=gc I V+: S21-I ..... SU(2"- I), then 

and 

211-1 
(II) _ 1 ~ . (II - I) 

g - x 211 2" - 1 + ~ IXj rj 
j=1 

211-1 
( (11»-1 1 ~ . (II-I) 
g =x211 2"-'- ~ LXjrj . 

j=1 

We show that the conjugate A.«g(II)(X»-I) 

XW(S,t)A.(g(II)(X» is the map g(II+I)=gclV+: 

s2n+ I ..... SU(2n). We calculate 

A.«g<") (x» -1)W(2"- ') (s,t)A.(g(n) (x» 

= cos 1TsI2n - 1 ® 12 + i sin 1TS cos 1Tt 12"_, ® lT3 

+ ix2n sin 1TS sin 1Tt 12n - 1 ® lTl 

2n-1 
+ L ixj sin 1TS sin 1TtrY - I) ® lT2 

j=1 

=Y211+212"-1 ® 12 + iY2n+ 112n-1 ® lT3 
2n - I 

. 1 + ~ . (II-I) + IY2n 2n-1 ®lTI ~ IYjrj ®lT2 
j=1 

= g(n+ 1)( YI'Y2""'Y2n+2)' 

where 

Yj = Xj sin 1TS sin 1Tt, for 1 <J..;;2n, 

Y2n + I = sin 1TS cos 1Tt, 

Y211 + 2 = cos 1TS. 

(2.19) 

It is worth observing that if XI,X2, ... ,X211 are spherical polar 
coordinates on S 2n - I, thenYI' Y2'"'' Y211 + 2 are spherical po
larcoordinatesonS 2n + I. If we start withg<!): SI ..... U(1) the 
identity map 

g(!)(cos 21Tt + isin 21Tt) = (cos 21Tt + isin 21Tt) 11' 

we can construct g(lI) by repeated conjugation with the ma
trices W. 

To see the relationship with the Bott periodicity, 
we recall that one can define a homomorphism B II: 
Ilm(U(n» ..... Ilm+ 2(SU(2n» as followsY-19 For 
Z= (O,O, ... ,O,I)eS m and f (Sm,z) ..... (U(n),l n), define 
): SmXI ..... SU(2n) by 

I(x,s,t) =A.(f(x»V(s,t)A.(f(X)-I)V(S,t)-I. (2.20) 

The map I has the property that 

l(smXaI 2UzXI 2) = 12n , 

and hence defines a map): (S II + 2,z') ..... (SU (2n), 12n)' The 
assignment 

Bn([f]) = [i], 

where the brackets denote homotopy class, is a homomor
phism. The Bott periodicity theorem states that if 
m..;;2n - 1, thenBn: lIm (U(n» ..... lIm + 2(SU(2n»is an iso
morphism. 

We show that g(lI) constructed iteratively is homotopic 
to the Bott construction of the generator in the stable homo-
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topy ofSU. First of all, the matrices V(s,t) as given in Ref. 17 
differ from W(s,t) by a minus sign on the coefficientsp(s,t). 
One easily corrects this by a homotopy [mUltiply thep(s,t) 
by e"iU for O<u< 1 to deform P(s,t) to - P(s,t)]. Secondly, 
the Bott construction involves a commutator, whereas the 
construction we gave involves a conjugate. Again this is a 
minor matter involving the difference between a reduced and 
a nonreduced suspension, which in our case does not effect 
homotopy. 

Thus we have a topological proof that the maps ge I V + 
represent generators in the stable homotopy ofSU. This en
ables us to see that in order to have the winding number of a 
generator of stable homotopy ± 1, we must have the nu
merical factor (i/21T)n + In!/(2 + I)! in the form (2.2), and 
the integral (2.1) is always an integer in the unitary case. 
That the integral is an integer for the other classical groups 
follows from their embeddings in the unitary group. 

C. The special orthogonal group 

In order to give generators for the homotopy group of 
SO and compute their "winding numbers," we can attempt 
to parallel the calculations in the case of SU. The additional 
complexity of universal real Clifford algebras (called real 
Clifford algebra hereafter) force us to also compare the re
sults for SU using the embeddings t: SU -- SO and K: 

SO--SU. 

n(mod 4) ll2n + 2 (SO/SU) ll2n+ I (SU) 
-1 Z2 Z 
0 Z Z 
1 0 Z 
2 Z Z 

we see that to (ge I V + ) represents a generator of ll2n + I (SO) 
for n=O,l (mod 4), i.e., in dimensions Sm + 1 and Sm + 3. 
In case n= -1 (mod 4), the map to(geIV+) represents 
twice a generator. 

3. A generator of H Sm _ 1 (SO) 

We construct a generating set for the real universal Clif
ford algebra CI± (Sm) ~R(24m). The generators rj will lie 
in O(24m ). 

Let 

let 

1't = P2 ®P2 ®P2 ®P2' 1'1- = P2 ®P2 ®P2 ®PI' 

1'2+ = 12 ®PI ®P2 ®P2' 1'2- = 12 ®PI ®P2 ®PI' 

1'3+ = P2 ® 12 ®PI ®P2' 1'3 = P2 ® 12 ®PI ®Pto 

1'/ = 12 ®P3 ®P2 ®P2' 1'4- = 12 ®P3 ®P2 ®PI' 

1'5+ = PI ®P2 ® 12 ®P2' 1'5- = PI ®P2 ® 12 ®PI' 

1'6+ = P3 ®P2 ® 12 ®P2' 1'6- = P3 ®P2 ® 12 ®PI' 
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(2.21) 

1. Clifford algebra cons/deratlons 

We recall from the constructions of Sec. II A that for 
G = SO we are interested in real Clifford algebras 
CI ± (2n + 2) satisfying the condition that the product of 
the generators r2n + 3 can be made diagonal. This restricts us 
further to the cases of the Clifford algebras CI ± (4n). Look
ing at the table (2.4) we see CI ± (Sm) has a realrepresenta
tion in R(24m ), while CI± (Sm + 4) has a real representa
tion in R(24m + 3 ). In the latter case, when we compute the 
form and integrate for the winding number, the effect ofthis 
doubling of the dimension of the representation space and 
will be to multiply the form and hence the winding number 
by two. As we will see, this is exactly what is forced by homo
topy theory. Hence in both dimensions Sm - 1 and Sm + 3 
maps constructed by real Clifford algebras represent genera
tors of the homotopy groups of SO. 

2. Generators of Hk(SO) with k=8m+' and 8",+3 
We first consider the embedding t: SU -- SO. In terms of 

matrices this can be described as follows. If with respect to a 
choice of coordinates, M = A + iBeSU (n), then 

t(M) = 12®A +P2®B. 

Now toge: s2n+ I __ SO(r+2) and to(gel V+): 

S2n+ I __ SO(r+ I). From Bott periodicity and the homo
topy exact sequences, 

ll2n+ I (SO) ll2n + I (SO/SU) 
one-to-one Z Z2 

onto Z2 0 
~ Z 0 

trivial 0 0 

1'/ =P2® 12 ®p3®p2' 1'7- =P2® 12 ®p3®PI' 

1'8+ = 12 ® 12 ® 12 ®PI' 1'8 = 12 ® 12 ® 12 ®P2' 

and set 

1'9± = 1'9 = - 1'11'2" '1'g = 12 ® 12 ® 12 ® P3' 

Then, 1'1, ... ,1"g,1"geO(24) satisfy the 
1"l1"/ + 1'/1'l = ± 20ij for i,j = 1, ... ,S 
1"91'/ + 1"/1"9 = 0 and ~ = 116, Now define 

relations 
while 

B/(I) =1'/, for 1q<9, 

B.±(m+I)=B+(m)®1'I±' for 1q<Sm+ 1, (2.22) 
J J 

B 8~ <;,+ I) = 1l;r) ® 1",±, for 2<r<9. 

Then 

B (m) - B(m)B(m)"'B(m) - l(m-l) ® 1 ®P 8m + I - 128m - 16 g 3' 

The BJm) for 1q<Sm satisfy the relation 
B im)B }m) + B }m)B im

) = ± 20kl and generate a real univer
sal Clifford algebra CI± (Sm). We also have B~:)+IBJm) 

+ B (m)B (m) - 0 and (B(m) )2 - 1 (m) 
j 8m + I - 8m + 1 - 16 • 

WenowdefinegR =gR(O):S8m-I __ O(24m ) by 
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From Sec. HA, detgR(x) = 1, so that gR:SSm-1 
..... SO (24m ). As in the complex case we are interested 
in the restriction of gR to the + 1 eigenspace V + of () ~:::)+ 1 • 

The argument of Sec. H A shows that gR I V +: sSm - I 

..... SO(24m - I
), where 

(gR 1V+)(x) 
7 

l (m-1) 1 + ~ l(m-l) ~ = XSm 16 ® s ~ XS(m - I) +, 16 ® 7', 
,=2 

Sm-7 
+ L Xj (} Jm - I) ® 701, (2.23) 

j= I 

where 7'l = Tj ®Pk' 

If K: SO ..... SU is the embedding given by consid
ering a real matrix as a complex one, then 
for 1(0 (gR IV + ): sSm - I ..... SU (24m - I), the form 
TrV+(gR)dgR)Sm-) is the same as Eq. (2.31). Thus 
KO(gR I V +) represents a generator ofnsm _) (SU). Since the 
sequence 0 = nSm (SU/SO) ..... n Sm _) (SO) ..... K*nSm _ 1 
X (SU) ..... IIsm _ I (SU/SO) = 0 is exact, gR I V + represents 
a generator of IIsm _) (SO). 

For the case n = 1, themapgR IV +: S7 ..... SO(8) has the 
form 

(gR 1V+)(x) 

Xg X7 X6 X5 X4 X3 X2 x) 

-X7 Xs X5- X6- X3 X4-X I X2 

- X6 - X5 Xs X7 X2 - X) - X4 X3 

-X5 X6-X7 Xs x) X2-X3-X4 

-X4 X3- X2-X) XS-X7 X6 X5 

-X3- X4 X)-X2 X7 Xs X5-X6 

-X2 x) X4 X3-X6-X5 XS-X7 

-X)-X2- X3 X4-X5 X6 X7 Xs 

and is homotopic to a cross section of the bundle p: 
SO (8) ..... S 7 [p chooses the first row of a matrix in SO (8) ], 
and will represent a stable generator when included in 
SO(n) for n;;;'9. 

4. Generators of llk(SO) with k=8m, 8m+1 

It is known from the work of Kervaire20 that the gener
ator of IIsm (SO) is represented by the composition 
{30'TJsm_) where 'TJSm-) is the class of an (8m - 3)-fold 
suspension of the Hopf map S3 ..... S2, while the generator 
of IIsm +) (SO) is represented by the composition 
{30'TJ Sm _ ) °'TJsm. Observe that we now have two representa
tions of the generator of IIsm + I (SO). Note that 'TJSm _) is 
the generator of IIsm (S Sm - ) and 'TJsm _ ) 0'TJsm is the gener
ator ofilsm + ) (sSm -). Since we have decribed a represen
tative sSm - ) ..... SO of a generator of a stable homotopy 
group, it will suffice to give a representative h (m) of'TJm 
Ellm (sm- I). An easy modification ofa formula by Steen
rod2) gives the formula for h (m) (see Appendix A). 

The generator for II) (SO) = 1:2 is represented by the 
map! Sl ..... SO(3) ..... SO, where 

(

COS 21Tt 

I( cos 21Tt,sin 21Tt) = - Si; 21Tt 

sin 21Tt 

cos 21Tt 

o 
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with O<;t<; 1. 
We summarize representatives of generators ofnk (SO) 

with k = 8m - 1, 8m, 8m + 1, 8m + 3 as follows: 
Sm 

gSm-1 (x) = L x)«(}Jm)(}~:::»IV+, 
)=1 

Sm 
gsm(x) = L hysm-l)(x)«(}Jm)(}~:::»IV+, 

j= I 

_ {j~) h ysm - I)(h (sm)(x»«() Jm)(} ~:::» IV +, 

gSm+)(x)- Sm+2 
L Xjt«r~!''''t.+2I)rtm+I)IV+), 
j= ) 

Sm+4 
g (x) - ~ x.t«r(4m+2)r~4m+2»IV ) Sm + 3 - ~ J Sm + 4 J + . (2.24) 

j= I 

5. Winding numbers for SO 

For the calculation of "winding numbers," we use the 
property that the inclusion map t is a homomorphism and 
commutes with the exterior differentiation. Thus, if 
atII4n + 3 (SU) and /3E1I 4n + 3 (SO) are generators, t. (a) 
= {3 (n even) or 2{3 (n odd) and 

(t*yo)(gcI V+) 

= ySO(tO ( gc IV+» 

= (+i)n+ 1(2n + I)! Trt(r1:tPIV+)dV 

= 2y u( gclV+) , 

and therefore 

yO(t*a) = (t*yo)(a) = 2y u(a) . 

Hence, we have 

Thus, "winding numbers" for our choice of generators of 
stable homotopy groups of orthogonal groups are given by 

r r..~ + 3 ({3) = { ± 2
1
, fifior n evdedn, (2.25) J s4n + 3 ±, or no. 

For n odd, we have already obtained this result, using 
Trv+(g;) dgR )sm-). For n even, we see that gR I V+ con
structed by the orthogonal Clifford algebra generators of 
Cl ± (8m + 4) also represents a generator of IIsm + 3 (SO). 

D. The symplectic group 

We give representations of homotopy generators and 
corresponding "winding numbers" for G = Sp. Again, we 
exploit our calculations for SU and do our constructions in 
parallel with those for SO. 

We first describe the group Sp(n) as the subgroup of 
SU (2n) consisting of matrices M such that 

(P2 ® In )M(P2 ® In) -) = M. 
[Our Sp(n) is a so-called unitary symplectic group.] 

From the classification of real Clifford algebras, it is· 
possible to represent the algebras Cl ± (8m + 4) by symplec
tic matrices in GL(24m + 2 ,C) so that the product of genera-
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tors of CI ± (8m + 4) is diagonal. If we follow the real 
representationofCI± (8m) inGL(24m ,R) by the inclusions 

GL(24m ,R) ':GL(24m ,C) ~GL(24m +, ,R) ':GL 

X (24m +' ,C) (i.e.,M ..... 12 ®M), it turns out that we have a 
symplectic representation in G L ( 24m + , ,C) for CI ± (8m). 
When we calculate the form (2.2) for this representation, 
the trace operation now has the effect of multiplying our 
original form by two. This multiplies the winding number by 
two. I 

n(mod 4) ll2n + 2 (Sp/SU) ..... ll2n+' (SU) 

-1 0 'I.. 

0 'I.. 'I.. 

~ 

1. Generators of Hk(Sp) with k=Bm-1 and Bm+5 

For a choice of basis the inclusion map t: 
SU(n) ..... Sp(n) may be given by 

t(M) = I, ®A + ip3 ®B, 

where M = A + iBeSU(n). 
Now toge: s2n+' ..... Sp(2n+') and to(geIV+): 

s2n+' ..... Sp(2n). From the Bott periodicity and the homo
topy exact sequences, 

ll2n+' (Sp) ll2n + , (Sp/SU) 

'I.. 0 
trivial 0 0 

1 '1..2 'I.. one-to-one 'I.. '1..2 
2 'I.. 'I.. 

we see that to (gc I V +) represents a generatorofll2n +' (Sp) 
for n= - 1,2 (mod 4), i.e., in dimensions 8m - 1 and 
8m + 5. In case n= 1 (mod 4), dimension 8m + 3, the map 
to(gl V+) represents twice a generator of llsm + 3 (Sp). 

2. A generator of nsm+3 (Sp) 

It is possible to construct a symplectic generating set for 
the real Clifford algebra CI ± (8m + 4 ) ~ H (2) ® R (16) m 
by recalling that H may be represented in C(2) by rep
resenting a quaternion x, + iX2 + jX3 + kx4 as 
x,1 2 + X2/J2 + x3ip, + x4ip3' Now define 

tP,+ (0) = P2 ®P2' tP,- (0) = P2 ®p" 

tP2+ (0) = ip, ®P2' 

tP3+ (0) = ip3 ® P2' 

tP2- (0) = ip, ®p" 

tP3- (0) = ip3 ®PI' 

tP/ (0) = 12 ®p" tP4- (0) = 12 ®P2' 

and for m>l, 

(2.26) 

tP/ (m) =P2 ®O/ (m) ®P2' 

tPs;" <;i = ip, ® 1 i;) ® P2' 

tPs;" <;~ = ip3 ® 1 i;) ® P2' 

tP}- (m) =P2 ® 0/ (m) ®p" 

tPs-",<;i = ip, ® q;) ®PI' 
(2.27) 

tPs-'" <;~ = ip3 ® 1 I;) ® PI' 

tPS;" (:;~ = 12 ® q;) ® PI' 

for 1~<8m + 1. 

Then 

tP~:)+5 =tP,±(m)···tPt-,,'<:;~ = 12 ® 1\;)®P3' 

which is diagonal. 
The tPim

) are evidently in U(24m + 2), and since 

(P2 ® 1i4m + i)tPkm)(P2 ® li4m + '»-1 = tPkm) , 

we have 

tPkm)eSp(22m + ') CSU(22m + 2). 

Note that 

tPc (m)tP/ (m) + tPl± (m)tPc (m) = ± 2okl , 

for 1 <k,/<8m +4 and the tPf(m) generate a universal 
Clifford algebra CI ± (8m + 4). Also note that 
,J,. ± (m),J,.(m) + ,J,.(m) ,J,. ± (m) - 0 d (,J,.(m) )2 - 1 
'I'k 'I'Sm+5 'I'Sm+5'1'k - an 'I'Sm+5 - 24m + 2 ' 
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onto '1..2 0, 

Now define gH = gH (D): SSm + 3 ..... Sp(24m + I ) by 
Sm+4 

gH(X I"",XSm +4) = I XJtPJm)tP~:)+4' 
j=1 

Then, if V + is the + 1 eigenspace of tP~:)+ 5' we have 

(gHIV+)(x) =xsm+412® Ii;) +xsm +3iP3® 1\;) 
+ x sm +2ipl ® Ii;) + XSm+ IP2® 1\;-') 

Sm 
® ls®P3 + I XjP2®OJm), 

}=I 

(2.28) 

which represents a generator of llsm + 3 (Sp). For the case 
m = 0 gH I V + is a well-known generator of 
SU(2) = Sp( 1). 

3. Generators of Hk(Sp) with k=Bm+ 4 and Bm+ 5 

As in the case of SO, the generator of llsm + 4 (Sp) is 
given by the composition {3°1Jsm + 3 where 1Jsm + 3 is the 
class of an (8m + 1) -fold suspension of the Hopf map 
S 3 ..... S 2; and the generator of llsm + 5 (Sp) is given by the 
composition {301Jsm + 3 °1JSm + 4' Again, we have two repre
sentations of the generator of II Sm + 5 (Sp). 

We summarize these formulas for a function gk repre
senting a generator {3kellk (Sp) for k = 8m - 1, 8m + 3, 
8m + 4, 8m + 5. Thus 

Sm 
gSm- dx) = I Xjt«r~!,m)rtm» IV+), 

}= I 

Sm+4 
gSm + 3 (x) = I Xj (tPJm)tP~:)+ 4) IV +, 

j=1 

Sm+4 
g (X)= ~ h(Sm+3)(X)(,J,.(m),J,.(m) )IV Sm+4 k} 'I'} 'I'Sm+4 +, 

}=, 

(2.29) 
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4. Winding numbers for Sp 

The inclusion map t is a homomorphism and commutes 
with exterior differentiation. Thus, if aell4n + 3 (SU) and 
Pell4n+3 (SP) are generators, then we have t. (a) =P (n 
odd) and 2,8 (n even) and t*ySP (gclV +) = 2ySv (gclV +). 
Thus, 

y"P(t.a) = t*y"P(a) = 2y"u(a) 

and 

We obtain 

i . .5P P - {± 1, 
(4n+ 3 ( ) - ± 2 

s4n + 3 , 

for n even, 

for n odd. 
(2.30) 

The second equation also follows from the explicit construc
tion of gu (x). The first equation shows that gu 1 V + con
structed by the symplectic Clifford algebra generators of 
CI± (8m) isalsoageneratorofllsm _ 1 (Sp). 

III. GENERATORS OF UNSTABLE HOMOTOPY GROUPS 

If d is the dimension of F as an R algebra, then d = 1, 2, 
or 4 according as IF is R, C, or lElI. The group On _ I 
= On _ I (IF) is the group of (n - 1) X (n - 1) matrices 

over IF which satisfy the relation At A = 1 = AAt, where the 
bar indicates conjugation in the appropriate field. Thus, 
On _ I is the group O(n - 1), U(n - 1), or Sp(n - 1), ac-

T'(y) = 

In the case of d = 1, we can define a characteristic map 
T': sn-2 -->SO(n - 1) by T'(y) = BT(y), where 

B=C~~2 ~ J. 
Since ll2(n _ I) (U(n - 1 »~l(n _ \)! in the unitary case 

the characteristic map has homotopy class of order (n - I)!. 
Since ll4n _ 2 (Sp( n - 1» ~l( n,2)(2n _ I)! where (n,2) is the 
greatest common divisor of nand 2, the characteristic map 
has order (n,2)(2n - 1)! The case of SO(n - 1) is more 
complicated since lln _ 2 (SO(n - 1) need not be cyclic. 
However the homotopy class of T' is of order 2 for n even 
(n;62,4,8) and has infinite order for n odd. 

In the cases where T' has infinite order, i.e., T': 
s2n - I -->SO(2n), the winding number fails to detect theho-
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cording to F = R, C, or H. We adopt the notation On _ I 
= 0" _ I (F) to treat the three cases simultaneously. 

The characteristic function T: gin - 2 --> On _ I of the 

principal fiber bundle On _ 1'::'0" :OniOn _ I = gin - I 

represents a generator of lldn _ 2 ( 0" _ I ), the first nonstable 
homotopy group. The general reference is to Steenrod.21 For 
sdn-2 

= {y = (x t ,x2, ... ,xn _ I ,r)eFn I nil IXj 12 + Irl2 = 1, 
J= t 

and r+ r=o}, 
Tis given by 

-2-
T(y) = (Bp,q - 2xp (1 + r) x q ). (3.1 ) 

One should compare these formulas to those of Steenrod2 
I in 

the cases of d = 1,2. In the case of d = 4, one should follow 
T(y) by the embedding in SU(2n - 2). 

Ford= 1 and 2, 

det T(y) = - (1 + r)-2(1 - r)2, 

and it is easy to change this matrix to the special orthogonal 
or special unitary matrix. In the case d = 2, we can define a 
characteristic map T': S 2n - 2 --> SU (n - 1) by eliminating 
the phase factor from T. It is given by T'(y) =AT(y)A, 
where 

A=(OI 0 ) 
;(1 + r)(1- r)-I 

or 

(3.2) 

motopy nontriviality of T'. One easily calculates that 
(T'-I dT')3 is identically O. Thus the form (2.2) is zero for 
n>2, and for n = lone easily computes Tr(T,-t dT') = O. 
Thus the winding number integral (2.1) has the value O. 

It is interesting to compute the effect of the covering 
projection p: Spin(n) -->SO(n) on the map g: 
sn - I --> Spin (n). The covering map is the restriction of the 
map defined by p( y)Z = YZY for Y,ZeCL (n). Note that 
for xeSn 

- I ,p(X) corresponds to a reflection with respect to 
x, i.e.,p(X)X = - Xandp(X) Y = Y foryorthogonal tox. 
By writing z = (0,0, ... ,1 )eSn 

- I, g can be written as 
g(x) = ZXeSpin(n). Therefore the representation of 
p(g(x» = p(Z)p(X) is given by a matrix 

(3.3 ) 
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Thus pog is just the characteristic map T: S" - I ..... SO (n) 
(Ref. 15). 
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APPENDIX A: A HOPF MAP 

We give a formula for a Hopf map and its suspensions to 
complete formulas (2.24) and (2.29). 

The Hopfmap h: S3 ..... S2 may be given by the formula 

h(XI,x2'X3,X4) 

= (- 2(XIX4 - x~3),2(XIX3 + X2X4), 

x~ + x~ - xi - xi). (Al) 

The suspension H(n + 2) : S" + 3 ..... sn + 2 , which generates the 
group 1Tn + 3 (S" + 2 ) ~Z2' may be given as follows. If 
x = (x I,,,,,Xn+4) and e = (x~+ I + ... + X~+4 )1/2, then 

h (n+2)(x) = (x1, ... ,xn, - 2(xn+ IXn+4 - x n+ 2x n+ 3 )Ie, 

2(xn+ IXn+3 + xn+2xn+4 )Ie, 

(X~+4 +X~+3 -X~+2 -X~+I)/c)' 

ife#O, 

APPENDIX B: THE WINDING NUMBER 

(A2) 

We outline a differential geometric proof that the value 
of the integral (2.1) must be an integer. 

Consider a principle fibre bundle (p,s2n + 2,1T,G) with 
the connection one-form (J) on P. We define the gauge poten
tial A ± = sl (J) where s ± are sections associated with the 
trivialization (H ± ,,p ± ) over the (slightly enlarged) hemi 

spheres of S 2n + 2 as the local coverings, and with 
s2n + I CH + nH _ a deformation retract. Define a local cur
vature two-form F ± = dA ± + [A ± ,A ± ]. We take the 
transformation function as f Then the forms A ± and F ± 

are related by A+ =I-IAJ + I-I d/and F+ =I-IF J. 
Note that there exists a 2n + one-form n~n + I such that 

(i/21T)n+ ITr(F)n+ I = dn~n+ I (A,F), 

since d Tr F' + I = O. We do not bother to write down the 
explicit form for n~n + I' which is well known. I However, we 
have the following relation on H+ nH_ -:::;s2n + 1: 

1502 

rfn + I (j) = n~n+ I (A+,F +) - n~n+ I (A_,F_) 

+da(A_,F_J). 
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Therefore we have 

r r?n+ I (I) 
JS2n+ I 

= r [n~n+dAf_,Ff_)-n~n+dA_,F_)] 
Js2n+ I 

= r n~n+dA+,F+) - r n~n+dA_,F_) JaH+ JaH_ 

= r dn~n+ I (A+,F+) - r dn~n+ dA_,F_) JH+ JH_ 

= (2~ y+ I[ L+ Tr(F+)n+ 1-1_ Tr(F_)n+ I] 
= _,_ Tr F n + 1= ch(F). 

( 
. )n+1 i i 

21T S2n+2 S2n+2 

Since the integral of the Chern form ch(F) is an integer, the 
value of (2.1) is an integer. 
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Addendum to "The equivariant inverse problem in gauge field theories 
and the uniqueness of the Yang-Mills equations" [J. Math. Phys. 30, 2382 
(1989)] 
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The main theorem of the previous paper is extended to the case where L = L(gy;Af;Ai,j)' 
References and notations are the same. 

Let T = T(gifiFij) = L(gifiO; - !Fij). Since Lhk is 
gauge invariant, by the replacement theorem I L hk = Thk. 
Then Thk is gauge invariant and T has the form required in 
Theorem 1. Hence, T = LI + L2 + K. Since (L - T)hk 
= 0, it follows that L = LI + L2 + S, where S 
= S(Af;Ai,j). Since Ea(L) is a gauge tensorial density, 
L~j,i,k + L~k;~j is a gauge tensorial density. Now, 
aLllaAi,j = - 2aL2/aFij. Then 

4L ij;hk + 4L ik;hj + 4L ij;hk + 4L ik;hj + Si,j,h,k + Si,k;h,j 
lap la p 2ap 2a f3 a pap 

is a gauge tensorial density. This is also true for the sum of 
the first two terms, and the sum of the following two terms 
is null. Thus S~j,i,k + S~k;~j is a tensorial density. As we 
proved in the original paper, it has the form aa#jhk and it 
is symmetric in k, j. Thus it is null and S~j,i,k 

- S~k;~j, from where it follows that 

g (S) =Si _ Si,j,~.4P . a a a [:J'~h,r 

We deduce easily that 

~(S)(O; -! F) = - ~(S)(O; - !F) 

(making Xi = - Xi). Then, by the replacement theorem, I 

~(L) =~(LI) (g;0; -! F; - ~ F). 

Since this equation is tensorial, it is valid for all coordinate 
systems. Then 

~(L2 + S) (g;O; -! F; - ~ F) =0, 

and so 

It follows easily that lafJ = 0, i.e., L2 = o. Thus Ea(S) is a 
tensorial density, and so the same is true for J?a(S)~k;~{ 
Then it is null, which means that Ea(S) is a polynomial of 
degree < 1 in Ai,j. Then 

~(S) =dafJ-/
jhkAJ.0f + CafJ#jhkA1A).A~ 

wher~ cafJr() is .skew symmetric in p, y, (J. If B~ 
= E'a(S), then B~ must satisfy 

niJ,h _ B j,i,h 
DafJ - - fJa, 

BiJ _ /1/ + a (BiJ,h) 
afJ- fJa axn afJ 

(see Ref. 2). We deduce 

daPr + dpar + darf3=O, cafJr6 + cfJar6=O. 

If 

SI =~ dafJ-/
jhk

AJ.0'tAr + ~ CafJ#jhkAfAJA).A~ 
we have Ea(S) = Ea(SI)' and SI is a scalar density. Then 

~(L)=~(LI +SI), 

and besides 

Eij(L) =Eij(LI + S\). 

Being that LI + SI is a scalar density, we are in the same 
situation as the one studied in the original paper. Now, the 
theorem follows for L = L(gy;Af;Ai,j)' 

lG. W. Homdeski, Utilitas Math. 19,215 (1981). 
21. M. Anderson and T. Duchamp, Am. J. Math. 102,781 (1980). 
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Adjoint algebras are constructed for the division algebras and their tensor products, and for 
the full tensor product, adjoint idempotents that project lepton and quark color vectors 
are also constructed. 

I. INTRODUCTION 

In previous publicationsl
-

5 I derived all the important 
features of the standard model starting from the tensor 
product of the three hypercomplex division algebras. Here 
I look more closely at some of the distinguishing properties 
of these algebras and apply them to the construction of 
SU ( 3) color projection operators. 

II. THEORY 

It is generally known that the complex algebra C is 
commutative and associative, the quaternions Q are asso
ciative but not commutative, and the octonions 0 are nei
ther. Each property lost, however, is balanced by a con
commitant rise in multiplicative potency. 

The three hypercomplex division algebras are, respec
tively, 2, 4, and 8 dimensional. The complete algebra of 
actions on a real n-dimensional vector space is R(n), the 
algebra of real n X n matrices. Hence, the action algebras of 
C, Q, and 0 are isomorphic to R (2), 4 dimensional, R ( 4), 
16 dimensional, and R ( 8 ), 64 dimensional. 

Let Kb KR, and KA be the algebras of left-, right-, and 
two-sided actions of the algebra K on itself, K = C, Q, or 
O. Isomorphisms for these nine adjoint algebras are listed 
below: 

The complex isomorphisms are easiest to explain. 
Since C is commutative, CL = CR = CA, and since it is asso
ciative these adjoint algebras can be no more complicated 
than C itself. Hence, all fall short of the action algebra 
R(2). We can complete it by augmenting the conventional 
basis for C, 1, and i, with actions I. and i., defined on x in 
C by 1.x = x* and i.x = ix* (note that i, I., and i. 
anticommute, x* the complex conjugate of x), but we have 
to go outside of C to do so. 

Because Q is associative, QL = QR = Q, and because Q 
is noncommutative, QA is more complicated than the 2 
one-sided adjoint algebras. A complete basis for QA con
sists of the actions 

(1) 

i,j= 1,2,3, and the qj are a conventional basis for the hy
percomplex part of Q. Hence, QA is 1 + 3 + 3 + 9 = 16 
dimensional and must be isomorphic to R (4). 

Let ea, a = 1, ... ,7, be the hypercomplex units of 0 [my 
multiplication table for the octonions is the conventional 
one (although not the most natural), with the e;. 

i = 1,2,3, generating a quaternionic subalgebra, and e4 

= ele7, e5 = e2e7, and e6 = e3e7 (see Ref. 6)]. One might 
suppose that the noncommutativity of 0 would make 0 A 

bigger than OL and OR' but the nonassociativity of 0 max
imizes the potency of one-sided multiplication. As a con
sequence, any left adjoint action of 0 on 0 can be ex
pressed as a right action, and vice versa. Define the actions 

(2) 

(3) 

Then, for example, we can express the following left ac
tions as right actions: 

e7x =tx(e41 + e52 + e63 - e7), 

e41x =tx( - e41 + e52 + e63 + e7) 

(4) 

(5) 

(note that e4el = e5e2 = e6e3 = e7, which sets the pattern). 
Hence, 0 L = OR = 0 A, all isomorphic to R( 8). In particu
lar, a complete basis for 0 L consists of the actions 

(6) 

which makes this algebra 1 + 7 + 21 + 35 = 64 dimen
sional, as expected. Actions of higher order than those in 
(6) can be shown to reduce to one of those forms. Note 
also that the embedding of parentheses in (2) and (3) 
ensures that these adjoint algebras are associative [or else 
the isomorphism to R(8) would be impossible]. 

Under commutation, certain subsets of CA, QA' and 
o A are isomorphic to the Lie algebras so (2), so ( 4 ), and 
so(8), respectively. 

The generator of so (2) = u ( 1) is the imaginary unit i. 
The generators of so ( 4) are the adjoint operations 

(7) 

The operations x-+q;X and x-+xqj generate separate and 
commuting copies of su(2) = so(3). So so(4) 
= su(2) Xsu(2). We can define Hermitian conjugates of 

these operations using the order reversing x-+xt operation 
on Q (and 0) which changes the signs of the qj (and 
ea ). For any operation on x in QA (or 0A), take x t , reverse 
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left and right adjoint operations, then take the dagger con
jugate of the result. So q;x-+ (xtqj)t = - q;X 
(anti-Hermitian, same for the right action), and 
q;Xqj-+(qjXtqj)t = q;Xqj (Hermitian).The same technique 
applied to the generators (6) of OL yields: eaX-+ (xtea)t 

- eaX (anti-Hermitian), eaoX-+(xteab)t = ebaX = 
eaoX (anti-Hermitian), and eabCX-+ (xteabc)t 

ecbaX = eabCX (Hermitian). The anti-Hermitian opera
tions x-+eaX,eaoX generate so(8). Different combinations of 
these close under commutation and generate other Lie al
gebras. In particular, so(7), spinor representation on 0, 

so(7), fundamental representation on 0, identity invari
ant, 

x-+ (ea - ebc)x: ea=e¢~ 

G2, Lie algebra of the automorphism group of 0, 

su(4) = so(6), 

x-+ (ea - ebc)x: ea=e¢co a,b,e=I=7; 

su (3), subalgebra of G2 leaving e7 invariant, 

x-+ (eab - ecd)x: eaeb=e~d' a,b,c,d=l=7. 

This last Lie algebra, su ( 3 ), generates the color group in 
my derivation of the Standard model. 

The tensor algebras P = C ® Q and H = C ® Q ® 0 de
rive their commutivity, associativity, and adjoint properties 
from their constituent algebras; P is isomorphic to the 
Pauli algebra, C(2). It is associative but noncomutative; H 
is not only noncommutative and nonassociative, it is also 
nonaltemative [a(ab )=l=a2b necessarily]. Adjoint algebra 
isomorphisms are listed below: 

PL =PR =C(2), PA=C(4), 

H L =HR =C(16), H A=C(32). 

I note in passing that Clifford (Dirac) algebras of the two 
presently most important space-times in theoretical physics 
[(1,3) and (1,9)] are constructible in the same way from 
the algebras P L and H L • I shall investigate this in more 
detail in a future publication. 

With respect to SU (3) H transforms as 1 e 3 e '3 e 1. I 
employ the idempotents p ± = !(1 ± ie7) to project from H 
these various multiplets. In particular I make the assign
ments 

For example, let x = xaea, a = 0,1, ... ,7, eo = 1. Then, 
since e7P± = =Fip±, 

p+xp+ = (xo _ ix7)p+, 

P +xp _ = [(Xl + ix4)el + (x2 + ixs)e2 

+ (x3 + ix6)e3]p _. (9) 
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If the xa are real the antisinglet and antitriplet are the 
conjugates of the singlet and triplet, but if complex, which 
in our case they are, the antimultiplets are new. I inter
preted this to imply family replication. 

Because the p± are independent of Q, left multiplica
tion of p± can be expressed as a right action. For example, 
for Xin H, 

Define 

1 ±ie41 1 ±ieS2 1 ±ie63 
P±I =--2-' P±2=--2-' P±3=--2-' (11 ) 

We can use these idempotents to completely decompose H 
with respect to SU (3). For example, we make the family 
assignments: 

lip + tP + 2P + 3 -+ leptons, 

lip - tP + 2P + 3 -+ red quarks, 

lip + tP - 2P + 3 -+ green quarks, 

lip + tP + 2P - 3 -+ blue quarks. 

The antifamily is obtained by changing the signs of all 
SUbscripts. These projections can be expressed differently, 
and of course the color assignments are arbitrary. With 
respect to 0 the leptons are linear in 1 and e7, red quarks 
in el and e4, green quarks in e2 and es, and blue quarks in 
e3 and e6' 

III. CONCLUSION 

I wish to emphasize that these adjoint algebras are 
secondary to the algebra H itself. The elements P±;. 
i = 1,2,3, decompose SU(3) multiplets to the vector level, 
but they are not elements of H. Using idempotents in H, 
namely the P ±, the best one can do is decompose H to the 
SU ( 3) multiplet level, and in my derivation of the Stan
dard model this was responsible for the exactness of that 
symmetry. 

IG. M. Dixon, "Derivation of the Standard Model" (to be published). 
2G. M. Dixon, J. Phys. G 12, 561 (1986). 
3G. M. Dixon, Phys. Lett. B 152, 343 (1985). 
4G. M. Dixon, Phys. Rev. D. 29, 1276 (1984). 
'G. M. Dixon, Phys. Rev. D. 28, 833 (1983). 
61. R. Porteous, Topological Geometry (Van Nostrand-Reinhold, Lon
don, 1969). 
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SU (n) xU ( 1) gauge fields on cpn are constructed in a gauge where the connection is 
expressed in so(n - 1). The (anti)self-duality relations satisfied by these fields are given, and 
the 2n-dimensional gauge field systems whose Bogomolnyi bounds are saturated by these are 
discussed. Other gauge field systems, not endowed with topological lower bounds, are also 
discussed. The analogy between all these gauge field systems on cpn and S 2n is highlighted. 

I. INTRODUCTION 

The study of gauge field systems in higher dimensions 
was stimulated by the discovery of topologically nontrivial 
solutions to the Yang-Mills-Higgs (YMG) system by 
't Hooft l and by Polyakov,2 and to the Yang-Mills (YM) 
system by Belavin et al.3 These are the celebrated monopole 
and instanton solutions in 3 and 4 dimensions, respectively. 
In a first study,4 instantons and monopoles were generalized 
to all even and odd dimensions, respectively, and subse
quently explicit spherical symmetric instanton solutions to 
the systems in 4p dimensions were discovered,5,6 as well as 
axially symmetric solutions.7 

Although the monopolel,2 system features the Higgs 
field, the study of the pure YM field system affords a more 
direct access to the topological properties of gauge field sys
tems. Accordingly, we shall choose to pursue the generaliza
tion of the pure YM system to higher dimensions, having in 
mind that ultimately the Higgs field must be reintroduced 
for physical applications.8- 1O Since this can be done system
atically8-IO by the use of coset-space dimensional reduc
tion, II we shall henceforth restrict our considerations only to 
the generalizations of the pure YM system to higher dimen
sions. These dimensions must of necessity be even, since our 
guiding principle will be the occurrence of topologically 
nontrivial field configurations and the latter are character
ized by their Chern-Pontryagin (C-P) charges, which for 
systems consisting of gauge fields only are defined on even 
dimensions. 

The generalization of the YM system to higher dimen
sions has developed along tw04,12.13 distinct lines. The first4 

involves the definition of gauge field systems in all even di
mensions 2(p + q), whose Lagrangian densities are positive 
definite, given by 

LOyM(p,q) 

= e tr[F(2p)2 + (i~)2(q-P)(2p!/2ql)F(2q)2], (1.1) 

F(2n) = F/\F/\'" /\F, n times. (1.1') 

Here, K is a dimensional constant and e is the determinant of 

0) On leave from IHEP, Academia Sinica, P. O. Box 918 ( 4 ). Beijing, Peo
ple's Republic of China. 

the Vielbein of the 2 (p + q) -dimensional manifold. The sys
tem (1.1) was chosen to that its Euler-Lagrange equations 
are solved by the duality equation 

F(2p)" ... " = (e/2q!)(i~)(q-P) 
,-1 ,..,2p 

X€" "'U " ... " F(2q)"'''·''2., (1.2) 
rl r2p 1 2q 

and the Bianchi identities. 
We call the systems ( 1.1) generalized YM (GYM) sys

tems because under dimensional reduction they yield residu
al systems that are dominated8 by the YMH system at low 
energies. [The corresponding reduction of (1.2) then yields 
the Bogomolnyi equations of the residual system in lower 
dimensions.] Note also that by virtue of ( 1.1'), only terms 
quadratic in altA" (any derivative of the connection A,,) 
appears in the action density (1.1). So, as in YM theory, 
there is no difficulty in defining a canonical momentum. 

A special feature of GYM systems is that when p + q, 
the dimensional constant K does not appear in (1.1) and 
LOYM (p,p) is then conformally invariant in 4p dimensions. 
With p-=/=q, LOYM (p,q) are not conformally invariant. 

Another, even more important feature of GYM systems 
is that the Lagrange density ( 1.1 ) is minimized absolutely by 
the self-duality Eq. (1.2), whose solutions are therefore sta
ble instantons of the system. Such solutions of course exist 
only for the appropriate gauge groups with the requisite top
ological properties with respect to the 2 (p + q) -dimensional 
manifold. For these field configurations, the action attains 
the Bogomo1nyi bound, which turns out to be the (p + q)th 
Chern-Pontryagin (C-P) charge. 

Both of these last two distinguishing features of the 
GYM system depend critically on the dimensionality ofthe 
manifold being 2 (p + q). This brings us to the second line of 
generalization, due to Sa~lioglul2 and Fujii13 of the YM sys
tem, which we refer to as the extended YM(EYM) systems 
following the nomenclature of Ref. 13. 

Here we depart slightly from the definition of the EYM 
systems given by the authors of Refs. 12 and 13, the reason 
for which will become clear in Sec. IV. The original defini
tion l2

,13 ofthe EYM system in 2N dimensions is 

(1.3 ) 
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where rl'v = - Hrl',rv] are the SO(2N) matrices given 
in terms of the r matrices in 2N dimensions. 

Our departure from (1.3) consists of the following: 
After computing the trace over the SO(2N) matrices, we 
formally state that the remaining polynomial in Fl'v be the 
EYM Lagrangian density on a manifold of arbitrary dimen
sionality. For example, for N = 3 we define 

L (3);:::;:.e tr Fl'vFvpFpl' (1.3') 

to be the EYM system in any dimensions, not necessarily 
equal to 2N. We note that for N odd, L(N) is not positive 
definite. 

Perhaps the most important feature of the EYM systems 
L (n) is that they are conformally invariant in 2n dimensions, 
for odd or even n. This differs from the GYM case, which for 
odd n (i.e., p or q odd) are not conformally invariant. For 
even n = 2p, and in particular p = q, the GYM system in 4p 
dimensions is included in the corresponding EYM system, 
and the two Lagrangians differ only through terms that fea
ture higher than the quadratic power of the "velocity" field 
al'Av. These important features were pointed out by 
SaC$lioglu, 12 who also observed that for odd n as well, certain 
duality relations were satisfied by some polynomials of the 
curvature field strength. The latter however are not Bogo
molnyi conditions like (1.2) and do not therefore confer 
stability on the corresponding solutions. Nevertheless we 
will find it useful to employ these, and similar duality rela
tions for even n, in Sec. IV below. 

While it is not our purpose in this paper to discuss the 
applications of the above defined systems, we would never
theless like to motivate our work with physically relevant 
criteria. Firstly, we note that in any such problem, e.g., relat
ing to quantum fluctuations, stability would be a desirable 
feature of any solution. This privileges the GYM systems as 
these are endowed with Bogomolnyi bounds. Secondly, since 
these systems pertain to higher dimensions mostly, they 
would usually be defined on an (extra-dimensional) com
pact manifold, e.g., in some compactification 14 scheme. 

It is against this background that the present work is 
carried out. Our primary task is to find solutions of the Bo
gomolnyi (self-duality) Eqs. (1.2) on compact manifolds. 
More specifically, the most interesting class of such mani
folds occurring in compactification schemes are the coset 
spaces, and in particular the symmetric spaces. In fact, it is 
already known from the work of Ref. 15 that (1.2) are satis
fied on the spheres S 2(p + q). In Ref. 15 we constructed spin 
connection gauge fields satisfying (1. 2 ) , on particular 
2(p + q)-dimensional (double self-dual) generalized gravi
tational backgrounds. The double self-duality of the (gener
alized) gravitational background was checked explicitly 
only from S2(p+q). In the present paper, we take a more 
direct approach to the same problem, with no reference to 
the gravitational dynamics. We construct the (symmetric) 
field on the corresponding (symmetric) space, using the for
malism of Schwarz, 16 Yang, 17 and Gu. 18 Having constructed 
the symmetric field, the Eqs. (1.2) can then be checked. In 
practice we restrict ourselves to space Cpp + q, as the next 
example after the symmetric space S 2(p + q) already consid
ered. 15 This is a sufficiently nontrivial example, so that it can 
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serve as a prototype for this investigation to be carried out 
for all the other symmetric spaces. Some of our results, in 
particular that pertaining to the GYM systems with p = 1 
and q = (n - 1) were obtained by Bais and Batenburg, 19 but 
not in the context of GYM dynamics. 

The rest of this paper is planned as follows. In Sec. II, we 
give our construction of gauge fields on cpn = SU (n + 1)1 
SU(n) XU( 1), with gauge group SU(n) XU( 1). Our con
struction, which is given in a gauge where the gauge connec
tion belongs to SU (n + 1), is equivalent to the usual, one20 

used in Ref. 19, as is clear from the fact that the expressions 
for the (gauge covariant) fieldstrengths agree in both formu
lations. We hope that our construction is interesting in its 
own right, since it can be very naturally extended to any 
symmetric space. In Sec. III we present our main result, 
which is the duality relations satisfied by the 2p-form curva
ture strengths on cpp + q • Having achieved this major task of 
classifying the self-duality equations solving the appropriate 
GYM system, we proceed in Sec. IV to the more general 
consideration of the Euler-Lagrange equation of the EYM 
systems on cpp + q. These solutions are not guaranteed to be 
stable, as they are not minimized absolutely by Bogomolnyi 
equations. Our conclusions of Sec. IV are based on the spe
cial examples where (p + q) = n = 2, 3, and 4 only. In both 
Secs. III and IV, we illustrate our procedures by employing 
the (already analyzed) cases of S 2(p + q), and highlight the 
analogy between symmetric gauge fields on S 2n and cpn for 
systems with GYM and EYM dynamics, respectively. 

II. GAUGE FIELDS ON CP" 

In this section we will construct the symmetric gauge 
connection and curvature field strength on cpn . We first 
write down the symmetry equations to be solved in subsec
tion II A, and then compute the effective forms of 
SU (n + 1) and SU (n) xU ( 1) acting on the coordinates of 
cpn in subsection II B. Finally, in subsection II C we give 
the values of A a and F ab

, and then in Sec. II D we show that 
F ab satisfies the Yang-Mills field equation. 

Before writing down the symmetry equations we record 
our notation. We denote the coordinates of the 2n-dimen
sional symmetric coset space CP" = SU(n + 1)1 

SU(n) XU(1) by X", a = a,a and with x a = x" and 
a = 1, ... ,n. These coordinates are defined in terms of 
(n + 1) complex numbers zi,i = 1, ... ,n + 1 as follows: 

(2.1) 

and it is clear that this is one of (n + 1) patches. 
Usingthedefinitionsgivenin Ref. 21 fordr = ~;/dziI2, 

we have the metric on CP" 

_ {gab = - xax
b 104 + 8ab 102,} 

gaP -
gab = gab = 0, 

a 

(2.2a) 

(2.2b) 

We note that the construction given in this paper is 
strictly a local one, and that we make no reference to the 
global definition of the fields. 
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A. Symmetry equation 

The SU (n + 1) symmetric gauge connection A Q (x) 
satisfies the symmetry equation 

A Q(uz) = u'bg(u)A b(Z)g-I(U) + ig(U)JQg-I(U), 

(2.3) 

where we take g(u) to be an element of SU(n + 1) in the 
fundamental representation, and u'b is the effective form of 
SU (n + 1) acting on the coordinates xQ of cpn . 

Following the formulations of Schwartz 16 and Yang l7 

and GU l8 for symmetric gauge fields, we specialize (2.3) to 
the symmetric case without the affine term 

A a(z) =A a(uzz) = (uz)'b (z)g(uz)A b(Z)g-1 (uz )' 
(2.4 ) 

Furthermore, at the fixed point z = Z, choosing u = 
heSU (n) xU (1) to be the stability subgroup for Z, i.e., 
hz = Z, (2.4) becomes the purely algebraic equation 

A a(z) = h 'bg(h)A b(Z)g-1 (h), (2.5) 

where again h is the effective form of heSU (n) xU ( 1 ). In 
our computations, we will choose this z to correspond to the 
fixed point with r = 0 in (2.2b). 

Equation (2.4) is the symmetry constraint, whose solu
tion is the symmetric gauge connection we are seeking. We 
first calculate A a(z) by solving the simpler algebraic equa
tion (2.5) and then wehaveA Q(z) from (2.4 ).It is this latter 
form of the connection that we need to calculate the field 
strength pab(z). 

B. Effective forms UAz) and Ii 
Expressing the coordinates x a via zQ = (xa,l) the ele

ments u in (2.3) act as 

(2.6) 

where (z,)n + 1 # I in general. The corresponding coordinate 
x'a = z'a /z'n + 1 suffers the following transformation: 

Aa Jx'a 

Ub = --, (2.7) 
Jxb 

induced by (2.6). This is the quantity we have to calculate, 
but only at the fixed point Z, as required in Eqs; (2.4) and 
(2.5). 

First we calculate h for heSU (n) xU ( I ), which we par
ametrize as 

h=wt, 

w = [w 1 ]eSu(n), 

t = exp(ilPA,(n' + 2n) ]eU(1). 

(2.8a) 

(2.8b) 

(2.8c) 

In (2.8c),A,(n'+2n) = [2n(n + 1)] -1/2 diag(1, ... ,I, - n) is 
thelastGell-ManngeneratorofSU(n + 1). From (2.6) and 
(2.7) it follows that w is given by (2.8b) directly, while t and 
h can be deduced to be 

t = exp(ilP~(n + 1 )/2n) 'I n , 

h=wt. 
(2.9a) 

(2.9b) 

To calculate the boost Uz defined by z = uzz is a little more 
complicated. Indeed, for n > 2 it is hard to give a general 

1508 J. Math. Phys., Vol. 31, No.6, June 1990 

parametrization, so we shall restrict to Uz (z) at the fixed 
pointzonly which is what is needed to compute A a(z) from 
A a(z) in Eq. (2.4). 

This boost Uz depends on the 2n parameters xa. Since 
hz = Z, UZ can be expressed with h factored out from the right 
as follows: 

Uz = vR, (2.lOa) 

with veSU(n)/SU(n - 1) and R the U( 1) element 

R ~ [1"_' -::'" :d (2.l0b) 

Using (2.10) in (2.6) and (2.7) and restricting to the point 
Z= zwefind 

A 0 a {v'b/cos w, b #n,} 
Uz(Z)b= a 2 

x!}. /r, b = n. 
(2.11 ) 

In (2.11 ), we have not specified the explicit parametrization 
of v'b (b # n) because when it is substituted in (2.4) the con
tribution of these terms is evaluated using the unitarity prop
erty of the matrix v. 

C. Connection and field strength 

Using (2.9) in (2.5) we find the symmetric gauge con
nection at the fixed point z to be 

Aa(z) =cI(n+l)a' Aii(z) =c*Ia(n+l)J 

where the elements of the matrix Iij are given by 

(2.12) 

(lij) kl = {jik{jjl' (2.13) 

Then, from (2.4) and (2.11 ) we compute the connection A a 

at an arbitrary point zO (in this patch with z" + 1#0) 

A Q(z) = (A a(z» +. 

From this we compute the curvature field strength 

Pab (z) = JaAb - JbAa - i[ AQ.Ab ], 

pab(z) = (c _ c* _ *12 ) 

(2.12') 

X { - !}.2Iba + (xaxb + {jab )xdxCldc 

+x
a
!}.2Ib(n+l) + (xaxb + {jab)xdld(n+ I) 

+ x
b
!}.2I(n + l)a + (XaXb + {jab )xdI(n + I)d 

+ ({jab - rxax
b 

)I(n + I)(n + I)}' 
pab(Z) = Piib(Z) = 0, (2.14a) 

which at the fixed point z takes the simple form 

POb(Z) = (c - c* - *1 2
){ - iba + {jbaI(n+ I)(n+ I)}' 

(2.14b) 

This form of pob(Z) will be used repeatedly in Secs. III and 
IV below, with the particular value of c = i which we shall 
fix in the next subsection, by requiring that (2.14) obeys the 
Yang'-Mills equation. 

Before proceeding however, we make the important re
mark that even though A O(z) given by (2.12) belongs to 
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SU (n + 1), the field strength belongs to SU ( n) X U (1 ) . 
This is manifest from (2.14b) for Fab(z), and from the sym
metry condition (2.4) it follows that Fab(z) also belongs to 
SU(n) xn(1). 

D. Yang-Mills equation 

So far we have fixed the symmetric gauge connection 
and field strength up to factors of c and (c - c* - *12), 
respectively. Now we fix this constant c by requiring that 
these satisfy the Yang-Mills equation 

o = DaFab=.(lI{g)Ja (Ji,rb) -i[Aa,Fab ], (2.15) 

where g = det gaP' It is straightforward to find that the left
hand side of (2.15) vanishes provided that 

(n + 1) (1 + ic)(c - c* - ilcl 2
) = 0, 

which has the pure-gauge (trivial)solution c = 2i, and the 
nontrivial one c = i. 

Henceforth, we shall use c = i, and will read Eqs. (2.12) 
and (2.14) accordingly. 

Anticipating what follows in Secs. III and IV, we re
mark that c = i is the choice that satisfies all the Yang-Mills
like equations. 

D F(2 )a, ..... a2• = 0 
a, q , 

with F( 2q) defined as in (1.1'). 

We end this section with a general remark. As we 
stressed in Sec. I, we propose the present example oH:::pn as a 
typical step in generalizing the formulation of gauge fields on 
S 2n to arbitrary symmetric coset spaces. We now see quite 
clearly, the analogy between our formulas (2.12) and (2.14) 
for A O(z) and Fab(z) on cpn, and the corresponding formu
las for the sape S 2n, namely, 22 

A m(Z) = !rm (2.16a) 

Fmm'(z) = - Hrm,rm'] =.rmm', m = 1, ... ,2n, (2.16b) 

where the connection A m and F mm' both belong to 
SO(2n) = SO+ (2n) ED SO_ (2n), with SO ± (2n) the chiral 
representation given by the r matrices. This is in direct anal
ogy with the present cpn case, where the symmetric gauge 
field strength belongs to SU (n) xU ( 1 ), but the analogy is 
absent for the gauge connection that belongs to SU (n + I). 
Indeed, (2.12) and (2.14b) can be cast in analogous form to 
(2.16a) and (2.16b) by rewriting them in terms of 
the SU(n + I) Gell-Mann matrices AI' with 
f..t = n, ... ,(n2 + 2n - I). 

AI"(z) =AI", 

FI"V(z) = [A I" ,A V]. 

(2.17a) 

(2.17b) 

This particular parametrization was employed by us pre
viously.23 

III. SELF-DUALITY OF GYM SYSTEMS 

All known finite-action topologically stable solu
tions3.5•

6 of the GYM systems on R4p are self-dual. (In the 
presence of interacting Higgs fields, this is not always the 
case.) The self-duality equations are typified by (1.2), and 
they serve to saturate the Bogonolnyi bound 
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X F(2p) 1""'1'
2p

F(2q) v, ... v,q (3.1) 

In (3.1) !i" GYM (p,q) is given by (1.1) and the right
hand side is proportional to the (p + q)th Chern-Pontrya
gin (C-P) integral, which takes on integer values provided 
that the field strength F( 2) satisfies the required boundary 
conditions. 

The self-duality Eqs. (1.2) on R.2(P + q) have nontrivial 
solutions only whenp = q (and the dimensional constant K 

does not feature in them). In general, for curved manifolds 
however, (1.2) can have nontrivial solutions in dimensions 
2(p + q) = 2n with any integer n. For example on S 2n these 
solutions were thoroughly discussed in Ref. 15 by way of 
illustrating the construction given there. Here we shall con
sider the case of GYM systems on cpn, and will present 
below, the self-duality relations that are relevant. 

Before proceeding with the CP" case, we briefly recall 
the case s2n. The field strength at the northpole of s2n is 
given by (2.16b) in terms of r matrices in 2 (p + q) dimen
sions. The form Eq. (1.2) takes in this case, follows from the 
well-known r matrix identities 

rm .... m,p _ 1 m .... m,~ .... n,.r rn,"·n,. (3.2) 
- (2q)!E 2n+ I , 

where jm .... m,p is the pfold totally antisymmetrized product 
oftheSO(2n) representation matrices rmm

' used in (2.16b), 
and r 2n + I is the corresponding chirality matrix. Then ( 1.2) 
splits up into the self- and anti-self-duality equations 

F ± (2p) = ± *(F ± (2q», (3.3a) 

* (F ± (2q» =.*F ± (2p)m .... m,p 

= ± 1 m .. "m'pn .. "n'.F (2) 
~ ± q ",,'·n,.' 

(3.3b) 

where now F ± (2r) are constructed from r factors of F"'rm' 

= ! (1 ± r 2n + I ) r mm', the field strengths with gauge group 
SO ± (2n). This feature of the SO (2n) field strength split
ting into self- and anti-self-dual SO ± (2n) field strengths 
will be reflected by its direct analog in what follows for cpn . 

The gauge field strength at the fixed point of the given 
patch of cpn is given by formula (2.14b), or alternatively by 
(2.17b).A straightforward but careful computation now 
leads to the following (anti) self-duality equations 

*(F(2q»su = ( - y-I[ (p - 1)!/(q - 1)!]F(2p)su , 
n • 

(3.4a) 

*(F(2q»u, = (- 1)P(p!iq!)F(2p)u" (3.4b) 

where (F(2r) )su. denotes that part of F(2r) belonging to 
SU(n) in SU(n + 1), etc. We note that in the special case 
p = I, this result was already obtained in Ref. 19. There 
however, this duality relation is not employed as an equation 
saturating a Bogomolnyi bound. 
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The similarity between the (anti)self-duality equations 
for the curvature 2p forms F( 2p), on S 2n and on cpn given 
by (3.3a) and (3.4a) and (3.4b), respectively, is obvious. In 
each case, the full field strength F( 2) and the curvature 2p 
form F(2p) belong to SO(2n) and SU(n) XU( 1), respec
tively. Then, the SO+ (2n) and the SU(n) components of 
the curvature 2p form F(2p) are self-dual, while the 
SO_(2n) and the U(1) components are (anti)self-dual. 
Again, in each case the gauge connections are expressed, c.r., 
(2.16a) and (2.17a), in a gauge where they take their values 
in SO(2n + 1) and SU(n + 1), respectively. 

There is however a certain difference between these 
cases. While the curvature 2p-forms on s2n, F ± (2p) are p 
fold (antisymmetrized) products of the SO ± (2n) field 
strengths F ± (2), the curvature 2p forms on cpn , F( 2p >Su" 
and F(2p)u, are both p fold products of the full 
SU(n) XU( 1) field strength F(2)su"xu,. This dissimilarity 
necessitates a brief discussion concerning the dynamics un
derlying these (topologically stable) field configurations. 

Since the (anti)self-duality Eqs. (3.3) and (3.4) satu
rate the Bogomolnyi bound (3.4), then the nontrivial solu
tions of (3.3) and (3.4) will correspond to the absolute mini
mum of the action, and hence will satisfy the Euler
Lagrange equations. The action integrals in question belong 
to the following GYM systems on S 2n and cpn , respectively: 

S6~~ (p,q) = { dx tr[F ± (2p)2 + 2p!F ± (2q )2], (3.Sa) 
JS2" 2q! 

S6~M(P,q) = { dxtr[F(2p)~u" 
JeIP" 
+ 2p! (q - 1) !2 F( 2 ) 2 ] 

2q! (p _ 1)!2 q sU" ' 

Si:NM (p,q) 

= dx tr F(2p)t, + J!.:.. ~ F(2q)u, . 1 [ 2' ,2 ] 
ell''' 2q! p! 

(3.6a) 

(3.6b) 

The non triviality of the solutions is guaranteed by the non
vanishing of the C-P integrals of (3.1). This can be achieved 
by requiring suitable boundary conditions, since these C-P 
integrals are surface integrals. 

Now in the caseS 2n, theC-P integralforthe SO ± (2n) 
fields, respectively, are 

I ± = { dx tr F ± (2p)*(F ± (2q» 
JS2(P+ q) 

= { dx F ± (2) 1\'" I\F ± (2) (n times), (3.7) Js2n 

whose integrand is recognized as a total divergence, namely 
the divergence ofthe Chern-Simons density. From an alter
native viewpoint, we can verify easily that the (anti) self
duality equations (3.3a) and (3.3b) together with the Bian
chi identities solve the Euler-Lagrange equations, which in 
general are quite complicated, so we do not elaborate on this 
aspect here. 

The situation in the case cpn is somewhat more in
volved. There the right-hand side of the inequality (3.1) 
takes the form 
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In = { dx tr F(2p)su" *(F(2q) )su", 
Jell''' 

1\ = { dx tr F(2p)u, *(F(2q»u" Jep .. 

(3.8a) 

(3.8b) 

and unlike (3.7), it is not immediately obvious here that the 
integrands in In and 1\ are both total divergences. It is how
ever easy to verify that this is so. It turns out that II is always 
of the form 

1\ ;::::tr A ~(n + 2) f dx F(2)u, I\F(2)u, 1\ ... I\F(2)u" 

n times, (3.9) 

which is manifestly a surface integral, and In consists of a 
sum of terms I ~i), i = 1," " n 

I~i) = fdX F(2)u, 1\" 'I\F(2)u, , --.... ----~ 
(n -;) times 

1\ tr F(2)su 1\" 'I\F(2)su , 
\" "/ -itimes 

(3.10) 

which can easily be verified to be surface integrals. Thus 
both In and II in (3.8) are the surface integrals giving the 
Bogomolnyi bounds of the GYM systems of (3.6) on cpn, 
saturated by the (anti)self-duality equations (3.4). 

The above argument depends on working in a suitable 
gauge where the SUn (and U I) field strengths are expressed 
directly in terms of SU (n) (and U I) valued connections. 
This is perfectly in order, since we have employed only gauge 
covariant equations, c.r. the Bogomolnyi bounds (3.1) and 
the (anti)self-duality Eqs (3.4), as well as the Euler-La
grange equations corresponding to (3.6). The latter equa
tions are not exhibited here explicitly since they are in gen
erallengthy and not instructive for our purposes. 

In summary, we state that the SU(n) XU( 1) gauge 
fields (2.14) and (2.17) are stable solutions of the systems 
given by the action integrals (3.6), since they are solutions of 
the (anti)self-duality Eqs. (3.4). 

Before closing this section, we make two important 
qualitative remarks concerning common features of the 
GYM field configurations on S 2n and cpn discussed above. 

Remark 1: The total (topological) C-P charge of both 
systems is zero. By the total charge, we mean the sum of both 
the instanton and anti-instanton charges characterizing the 
self- and anti-self-dual solutions. Thus we have the following 
C-P integrals in each case 

i2"dXtr(F(2p) + + F(2pL)*(F(2q) + +F(2qL) 

= 1+ + L = 0, (3.10') 

( dx tr( F(2p)su" + F(2p)u, ) * (F(2q)su" + F(2q)u, ) 
Jell''' 

=In+I\=O, (3.10") 

where in (3.10') we have used I ± as defined by (3.7), and in 
(3.10") In and 1\ as defined by (3.8a) and (3.8b). 

Remark 2: The gauge invariant stress tensors ~~n and 
9b~ of the systems (3.6a) and (3.6b), defined by 
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9I;i;n (p + q) 

= f dxtr{[ (F(2p)~vn )I'V - ~VF(2P)~Vn] 

+ 2p!(q - 1 )!2[ (F(2q)2 )I'V _ ..l'f'YF(2q)2 ]} 
2q!(p - 1)!2 SVn 2q SVn ' 

(3.11a) 

~~(p+q) 

= f dx tr{[ (F(2p)t , yv - ~VF(2P)tl] 

+ 2p! q!2 [( F(2q)2 )I'v _ ~VF(2q)2 ]} 
2q! q!2 v, 2q v,, 

(3.11b) 

vanish identically for the (anti) self-dual field configurations 
satisfying (3.4a) and (3.4b). In (3.11) we have used the 
notation (F(2r)2r v =F(2r)I'PI···p" - 'F(2r) VP,·· .p" - '. 

This property of the vanishing of the stress tensor for 
anti-self-dual field configuration is shared 15 with the gauge 
fields on S 2n. 

IV. EYM SYSTEMS ON cpn 

The (anti) self-duality of the solutions discussed above 
automatically guarantees their stability. Field configura
tions whose action is not bounded from below by a Bogomol
nyi inequality like (3.1) are not guaranteed to be stable, and 
in this sense are less interesting than the solutions presented 
in Sec. III. On the other hand many well-known field config
urations satisfying Euler-Lagrange equations are not 
(anti) self-dual, and it is therefore of some interest as a mat
ter of completeness, to study these solutions in the context of 
the dynamics giving rise to them. The question of the stabil
ity of these solutions goes beyond the scope of the present 
work, and we plan to report on it elsewhere. 

The simplest example of non-self-dual solutions, are the 
gauge fields on s2n and cpn, respectively, which satisfy the 
Yang-Mills equation. In all dimensions except four (with 
n = 2), there occur no self duality equations. 

It also turns out that the Euler-Lagrange equations of 
all the GYM systems ( 1.1) are satisfied on S 2n and cpn , and 
again, except in dimension d = 2n, these solutions are not 
endowed with (anti)self-duality equations saturating a Bo
gomolnyi bound. 

Giving up the requirement that a solution be (anti)self
dual naturally leads one to consider the dynamics of the 
EYM systems (1. 3 ). As explained in Sec. I, these systems 
are not endowed with Bogomolnyi equations, but neverthe
less products of the curvature field strength satisfy certain 
duality relations which together with the Bianchi identities 
imply the Euler-Lagrange equations. 

It can be deduced from (1.3) that the Euler-Lagrange 
equation corresponding to L (N) has the form 

DaYf'h = 0, (4.1) 

where Yf~) are given in terms of powers of F( 2), and can be 
readily computed in each case. Here (4.1) is referred to a d
dimensional space, not necessarily d = 2N. (This means 
that in the case of the spheres S d, we cannot infer that the 
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Euler-Lagrange equations for the system on Rd are also sat
isfied, 12.13 except when d = 2N, by exploiting the conformal 
invariance of L (N) in that case.) 

The tensor fields Y~) for N = 2 are simply the curva
ture two-forms, and then (4.1) is the Yang-Mills equation. 
We list Y<'h here, for N = 2,3 and 4. (Fujij13 has given also 
the case of N = 5, which we shall not consider here.) These 
are 

Yff) = F a{3, 
0Ta{3 _ [FaA F{3] 

oJ (3) - 'A' 
ya{3 = {Fa{3 Fy/jF } + Fy/jFa{3F 

(4) 'y/j y/j 

- 2{F Fy[aF(3)/j} - 2Fa)YF F/j[{3 y/j' y/j • 

(4.2a) 

(4.2b) 

(4.2c) 

Our result is the following: The Euler-Lagrange Eqs. 
(4.1) are satisfied for Yf~) (N = 2,3,4) given by (4.2a)
(4.2c) by the symmetric gauge fields on S2n and cpn. Note 
that n here is completely unrelated to N characterizing L (N) 

of (1.3). (In particular for n = N, the solutions on s2n can 
be related via a stereographic projection, to the solutions on 
R2n given in Ref. 13.) We expect that this result is true for 
EYM systems characterized with arbitrary N. 

It is straightforward to establish our results. In particu
lar, to show that the SU (n) xU ( 1) gauge field on cpn satis
fies (4.1) for each YfIJ.) of (4.2) can be verified straightfor
wardly by using our formulas derived in Sec. II. The 
corresponding demonstration for the SO + (2n) gauge fields 
on s2n can be performed analogously. -

Here our main aim is to highlight the parallel between 
the dynamics of EYM systems on the two symmetric spaces 
S 2n and cpn which we have found. To this end, it is interest
ing to find out just how far this parallel goes. 

The above result, namely that the Euler-Lagrange Eqs. 
( 4.1) are satisfied, can follow also from the Bianchi identi
ties if some duality relation like 

were satisfied. This approach was particularly emphasized 
in Ref. 12. 

Now the SO ± (2n) gauge field on S2n given by (2.16b) 
clearly satisfies the duality relations (4.3), by virtue of well
known (r matrix) spinor identities. In this case, i.e., the 
SO± (2n) gauge field on S2n, the Euler-Lagrange Eqs. 
( 4.1) of the EYM systems characterized with arbitrary N 
are satisfied. 

The corresponding statement for SUn xU 1 gauge fields 
on cpn turns out not to be quite as straightforward. This is 
the last question we study in this paper, and we consider it 
relevant in that it highlights how far the analogy between the 
two symmetric spaces S 2n and cpn goes, and where it stops. 

We consider each case (4.2a)-(4.2c) in turn. The first 
one, n = 2, is already known to satisfy ( 4.1 ) by construction, 
or alternatively because it satisfies the duality relations 
(3.4). The second one, n = 3, also satisfies (4.1). In this case 
the duality relation satisfied is qualified as follows: Since 
Yff) belongs only to SU (n), we define a dual field obtained 
from (4.3) by subtracting the U (1) part 
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* yatJ = (1I22n - I ) EafJr, ..... r,,, -, 

X (FY,r," 'Fr,,,_,r,,,_, )SUn • 

Then the duality relation that holds is 

(4.4 ) 

Y'tJ) = [ - (i)n-In/(n - 2)!]*yafJ . (4.5) 

It then follows from (4.5) and (4.4) that Eq. (4.1) with 
n = 3 is satisfied by the SU (n) X U ( 1) field on cpn for all n. 

Finally, we consider the Eq. (4.3) for Y'tf) of (4.2c). 
Again we would need a duality relation like (4.3), but we 
find that this does not occur. Thus the analogy between the 
symmetric gauge fields on S 2n and cpn breaks down at this 
point. The cause is, the privileged status of S 2n in the defini
tion of the EYM system. For example, if this definition was 
so modified that Y'tf) were replaced by Yff) 

Yff) = H [FafJ,Fro],Fr,s] + [ [Fro ,Fy[a] ,FfJ ]0], 
(4.6) 

then indeed the duality relation 

Yff) = - (i)n[2n(n + 1 )/(n - 2)!]*yafJ 

would follow, with *yafJ defined by (4.4). 
Replacing (4.2c) by (4.6) however changes the defini

tion of an EYM system, and enlarges the context in which 
dynamical systems can be defined rather arbitrarily, so we 
stop our study at this point. 

This completes our discussion of the parallel between 
the EYM dynamics of symmetric gauge fields on S 2n and 
cpn. 
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Coherent states are constructed in p = 2-parasupersymmetric quantum mechanics in 
connection with the two relative para-Bose and para-Fermi sets of trilinear structure relations. 
They are called parasupercoherent states. Parasupersymmetric operators [such as the 
Hamiltonian and (two) annihilation operators] are introduced and discussed. In particular, 
the parasuperspectrum is determined and compared with the recent results obtained by 
Rubakov and Spiridonov [Mod. Phys. Lett. A 3,1337 (1988)]. The superalgebra contents 
subtended by osp(2/2) and osp(3/2) are analyzed and exploited in order to get constants of 
motion in both contexts through parallel properties on the supersymmetric harmonic 
oscillator. 

I. INTRODUCTION 

During the last three decades, three very important 
fields in modern theoretical physics have appeared implying 
relatively elaborate mathematical developments where Lie 
group theory and associated graded Lie algebras 1 (or super
algebras) playa prominent part. In the 1950's, Green2 has 
introduced the so-called "parastatistics,,3 while Glauber4 

and Klauder4 have shown in the 1960's the main properties 
of the so-called "coherent states" as well as their interest.5 In 
the 1970's, the third field was introduced in particle physics 
for combining bosons and fermions in common (super) mul
tiplets; it has been called "supersymmetry.,,6 Finally, in the 
1980's, we notice that, among these three fields-parastatis
tics, coherent states, and supersymmetry-two of them have 
already been arbitrarily combined and superposed: 

( a) parastatistics and coherent states have led to the 
construction of para-Bose (or parabosonic) coherent states, 
as presented by Sharma et al.,7.8 for example: 

(b) supersymmetry and coherent states have been com
bined in order to study supercoherent states, as was shown in 
recent papers;9-11 

(c)parastatistics and supersymmetry have been super
posed, leading to a first introduction of parasupersymmetric 
quantum mechanics as initiated very recently by Rubakov 
and Spiridonov12 (see also Biswas and Sonii3

). 

In this study, as a prolongation of our recent works, 14.15 
we want to superpose the three above fields with a specific 
aim: the study of coherent states in the simplest (p = 2)
parasupersymmetric theory where we are dealing with para
bosonic and parafermionic degrees offreedom while, for ex
ample, Rubakov and Spiridonov have only considered 
symmetries between bosons and parafermions. In order to 
illustrate our developments, we will, for simplicity, consider 
only a pair of para fields but this can be easily generalized on 
the basis of Green's2 and Greenberg-Messiah's 16 contribu
tions, the only restriction being to consider parabosonic and 
parafermionic degrees of freedom ofthe same order. 16 

This article is constructed as follows. In Sec. II, we will 
fix our notations for combining parastatistics and supersym
metry. We will also give a basis 14 well adapted for the study 

of the parasupersymmetric Hamiltonian corresponding to 
bosons 12 and parafermions (Sec. II A) or to parabosons and 
parafermions (Sec. II B). The latter case will be subtended 
by the two relative para-Bose and para-Fermi sets of trilinear 
structure relations issued from Greenberg-Messiah's devel
opments. 16 These two contexts will be studied within the 
supersymmetric point of view through the standard proce
dure of supersymmetrization "Ii la Witten." 17 In Sec. III, we 
will study the implications of such a p = 2-parasupersymme
tric quantum mechanics dealing with Bose-like and Fermi
like harmonic oscillators. The energy spectrum will be ob
tained and discussed. Section IV will be devoted to the 
coherent states associated with this parasupersymmetric 
theory-we call them the parasupersymmetric coherent 
states or parasupercoherent states. In fact, we will construct 
two sets of parasupercoherent states (Secs. IV A and B) ac
cording to the two relative para-Bose and para-Fermi sets 
and we will discuss more particularly (Sec. IV C) those 
which correspond to the relative para-Fermi context in 
p = 2-parasupersymmetric quantum mechanics. An analy
sis of some expectation values and their interest in connec
tion with the uncertainty principle will also be presented. 
Finally, in Sec. V, we will emphasize the superalgebra con
tents of the preceding developments through the orthosym
plectic Lie structures osp(2/2) and osp(3/2) (respectively, 
in Sec. V A and B). We will give in this way the constants of 
motion of the corresponding contexts and discuss their cor
respondence (Sec. V C). 

As far as bosonic quantum harmonic oscillators (in one 
spatial dimension) are concerned in this article, we take as 
units their masses, their angular frequencies, and the Dirac 
constant fl. 

II. PARASTATISTICS AND SUPERSYMMETRY 

Let us first (Sec. II A) fix our notations according es
sentially to the Rubakov-Spiridonov work12 and give14 an 
ad hoc basis for the study of the parasupersymmetric Hamil
tonian when bosons and parafermions are included. Then, 
let us (Sec. II B) extend these considerations to parabosons 
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and parafermions by constructing the supersymmetric ver
sion of the parabosonic Hamiltonian. This second aim will 
be realized (Sec. II Bland II B 2) through the two relative 
para-Bose and para-Fermi sets of trilinear structure rela
tions issued from Greenberg-Messiah's developments 16 

when a pair of para fields are concerned. Initially, we want to 
point out that the resulting parasupersymmetric Hamilto
nian has the same form in each of these contexts. 

A. Bosons and parafermions 

Proposed by Rubakov and Spiridonov, 12 the second-or
der parasupersymmetric quantum mechanics of one bosonic 
and one parafermionic degrees of freedom can be summar
ized in an interesting way when the specific superpotentials 
refer to a one-dimensional harmonic oscillator in a homoge
neous magnetic field. By taking WI = W2 = - x, the corre
sponding parasupersymmetric Hamiltonian takes the form 

H=Hb +Hpf = (ata+U -Hbt,b], (2.1) 

where the bosonic (b) and parafermionic (pf) parts are de
fined as usual. Here the bosonic annihilation (a) and cre
ation (at) operators satisfy the bilinear currently expected 
commutation relations 18.19 

[a,at ] = 1, [a,a] = [at,at ] = 0, (2.2) 

while the parafermionic operator b and its Hermitian conju
gate b t are realized in terms of 3 X 3 matrices3

•
12 and verify 

trilinear relations summarized by 

b 3 =0, bbtb = 2b, b 2b t +b tb 2 =2b (2.3) 

and their Hermitian conjugates. An ad hoc realization is giv
en by 

b = !i(~ 
. 1 

J, ~ 1I b ',b J ~ ( 
(2.4) 

leading to the diagonal Hamiltonian (2.1) obtained from the 
conserved parasupercharges 

Q = - 2iab, Qt = 2ib tat, (2.5) 

which are such that l2 

and 

Q3 = 0, Q2Qt + QQtQ+ QtQ2 = QH, 

[H,Q] =0 

(Qt)3 = 0, (Qt)2Q + QtQQt + Q(Qt)2 = QtH, 

[H,Q t ] =0. 

(2.6) 

After Rubakov and Spiridonov, 12 we point out that this 
parasupersymmetric theory and the superalgebra (2.6) im
ply no restriction on the parasupersymmetric vacuum ener
gy: the spectrum is threefold degenerate except for the few 
lowest energy levels. In fact, there are in this harmonic con
text a unique nondegenerate vacuum state (hereafter called 
ItPo» with negative energy (Eo = - 1/2) corresponding to 
the eigenvalue + 1 of J3, a twofold degenerate state called 
ItPl) with the energy EI = 1/2 corresponding to the eigen-
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values 1 and ° of J3, as well as an infinite set of threefold 
degenerate states called ItPn) corresponding to the three 
eigenvalues ± 1, ° of J3• 

Due to the fact that the parafermionic number operator 
is given by 

(2.7) 

we notice that the purely bosonic states have the structure 
(0,0,*) T while the purely parafermionic ones are of the fol
lowing forms: (0,*,0) T or (*,0,0) T. Then, referring to the 
eigenvalues 0,I,2, ... ,n, ... of the bosonic particle number op
erator N = at a, we have constructed the following basis: 14 

ItPo) = (IO),O,O)T, 

ItPl) = (O,IO),O)T + (II),O,o)T, (2.8) 
ItPn) = an (O,ln - 1),0) T + Pn (In),O,O) T 

+ Yn (O,O,ln - 2» T, n>2, 

where an' P n' Y n are arbitrary complex numbers. Through 
the well-known information 19 

N In) = ataln) = nln), 

aln) = min - 1), 

atln) = rn+Tln + 1), 

we immediately get as previously interpreted 

H ItPn) = (n - 1/2) ItPn)' n>O. 

B. Parabosons and parafermions 

(2.9) 

(2.10) 

Let us now consider the parabosonic case instead of the 
bosonic one. Then the HamiltonianHb in Eq. (2.1) has to be 
replaced by 

Hpb = !(aat + ata) = !{a,at } (2.11) 

according to Sharma et al., 7 for example, with the more gen
eral commutation relation(s) 

[a,Hpb ] = a, [at,Hpb] = - at. (2.12) 

Let us just reca1l20 that Eq. (2.12) follows from Eq. (2.2) 
but the reverse is in general not true. Such a parabosonic 
Hamiltonian can now be supersymmetrized, so that we will 
be really led to the simplest parasupersymmetric p = 2 theo
ry dealing with para-Bose and para-Fermi operators having 
the same order as required 16 when we want to ensure the 
validity of the mixed trilinear relations (see hereafter). We 
are thus concerned with a pair of parafields characterized by 
well-defined structure relations which are distributed in two 
nonequivalent ways leading to the so-called relative para
Bose and relative para-Fermi sets after Greenberg and Mes
siah. 16 

t. Relative para-Bose supersymmetry 

After the Green2 and Greenberg-Messiah 16 studies, the 
nontrivial trilinear relations for the purely parabosonic case 
reduce in our context to 

[a,{at,a}] = 2a, [at,{a,a}] = - 40, (2.13a) 

while, for the purely parafermionic case, they reduce to 
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[b, [b t,b]] = 2b, (2.13b) 

a compatible relation with Eqs. (2.3). Moreover, there are 
mixed structure relations between a, b, and their Hermitian 
conjugates which take the forms 

[{at,a},b] =0, [[bt,b],a] =0, (2.13c) 

[{a,a},b] = [{at,at},b] = 0, (2.13d) 

and 

[{a,b },at ] = - [{at,b }a] = 2b, 

{{a,b t},b} = {{a,b },b t} = 2a, 

[{a,b },a] = [{at,b },at ] 

= {{a,b },b} = {{a,b t},b t} = O. 

(2.13e) 

Let us point out the physical meaning of four of the 
above relations: the first equation (2.13a) simply translates 
our Eq. (2.12); Eq. (2.13b) is its analogous but in the para
fermionic context; both Eqs. (2.13c) mean that the respec
tive Hamiltonians Hpb and Hpf commute with the other 
annihilation operator as expected. 

Within such a relative para-Bose set of trilinear structure 
relations, our supersymmetric theory is subtended by the 
parasupersymmetric Hamiltonian H pss given by 

Hpss = Hpb + H pf = !{at,a} - (1/2) [b t,b], (2.14) 

which has to be compared with the supersymmetric Hamil
tonian (2.1) considered by Rubakov and Spiridonov. 

It is remarkable that it can be obtained through the stan
dard procedure of supersymmetrization ala Witten '7 from 
the supercharges defined by 

Q,=Ha,b}, Qt=!{bt,at}, (2.15) 

i.e., 

Hpss = {QI,Qi}, 

when typically the mixed trilinear structure 
(2.13e) are explicitly used. Moreover, we have 

{QI,QI} = {QT ,QT} = 0, 

[Hpss,Qd = [Hpss, Q1J = 0, 

(2.16 ) 

relations 

(2.17) 

so that the supersymmetry is subtended by the same superal
gebra as in ordinary supersymmetric quantum mechanics 
and in contradistinction with the Rubakov-Spiridonov su
peralgebra '2 [see Eqs. (2.6)]. The specific content of the 
theory governed by the parasupersymmetric Hamiltonian 
(2.14) will be described in Sec. III. 

Let us finally notice that the above considerations are 
analogous to those that have led Biswas and Soni 13 to con
struct what they called "the algebraic structure of general
ized parastatistics" which is nothing else in our context than 
the relative para-Bose set obtained by Greenberg and Mes
siah. '6 

2. Re/ative para-Fermi supersymmetry 

After Greenberg and Messiah,'6 there is another set of 
trilinear structure relations that is called the relative para
Fermi set and which is not equivalent to the above one. It is 
characterized by the same structure relations (2.13a)
(2.13d) given above but by, instead ofEqs. (2.13e), the new 
mixed following ones: 
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{a, [at,b ]} = {at, [b,a]} = 2b, 

[bt,[b,a]] = [b,[bt,a]] = 2a, 

[b,[a,b]] = [bt,[a,b t ]] 

= {a, [b,a]} = {at, [b,at ]} = O. (2.18) 

The set (2.13a) - (2.13d) and (2.18) of trilinear structure 
relations will refer to the relative para-Fermi considerations. 
It has already been exploited by Palev21 in connection with 
orthosymplectic Lie superalgebras (see Sec. V). 

Inside such a relative para-Fermi theory, the supersym
metric Hamiltonian H pss == (2.14) can once again be ana
lyzed. Here, also, we propose a standard procedure of super
symmetrization a la Witten but from the supercharges 
defined by 

Q2 = Ha,b], Qi = Hb t,at ], 

such that 

and 

Hpss = {Q2' Qi} 

{Q2,Q2} = {Q!. Qi} = 0, 

[Hpss ,Q2] = [Hpss,Qi] = O. 

(2.19) 

(2.20) 

(2.21) 

Here again, the specific mixed trilinear structure relations 
(2.18) play the prominent role in order to get Eqs. (2.20)
(2.21). 

The parasupersymmetric Hamiltonian (2.14) is thus a 
common operator obtained in both relative paracontexts and 
its implications and properties will be interesting to obtain 
explicitly (see Sec. III). 

As a final comment in this section, let us draw attention 
to the fact that both superalgebras (2.16)-(2.17) and 
(2.20)-(2.21) imply the Rubakov-Spiridonov superalgebra 
(2.6) but that the reverse is, in general, not true. This is 
completely consistent with the fact that bosons are particu
lar parabosons. 

III. p= 2-PARASUPERSYMMETRIC QUANTUM 
MECHANICS 

In this section, let us develop the quantum mechanical 
study associated with the parasupersymmetric Hamilto
nians 

H~~k = Hpb + ~Hpf = !{a,at } + (~/2)[b t,b], (3.1) 

where ~ = ± 1 refers to specific choices that can be devel
oped in a complete parallel way. Let us notice that these two 
possibilities leave the physical content unchanged due to the 
typical property3 of Fermi-like oscillators under the trans
formation b--+ b t,b t --+b implyingJ3 --+ - J3 [see Eq. (2.4)]. 
According to recent contributions '2.'4 let us first choose 
~ = - 1 so that we are dealing with the parasupersymmetric 
Hamiltonian (2.14), which, in the realization (2.4), takes 
the diagonal form 

(3.2) 

By considering the relative para-Bose context (2.13), 
the supercharges (2.15) and the superalgebra (2.16)-
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(2.17), it is not difficult to convince ourselves that the fol
lowing properties are coming out. All the energy eigenvalues 
are semi positive definite, 

E= <"'I H~) 1",»0, VI"'), 

and E vanishes iff we have 

QII"') =OandQll"') =0. 

(3.3a) 

(3.3b) 

Thus, in our basis (2.8), I "'0) is a unique nondegenerate state 
with zero energy-the ground state in our p = 2 theory
and all the other states I'" n ) (n > 1 ) are degenerate and corre
spond to positive energies. 

The energy spectrum can be completely determined by 
remembering the parabosonic properties 7 associated with 
the Hamiltonian (2.11). Recalling that the para-Bose num
ber states In) are defined by 

Npb In) = (Hpb - ho) In) = nln), (3.4) 

with 

al21) = ..ffl12/- I), al21 + I) = ~2(l + ho) 121), 

a t l21) = ~2(l + ho) 121 + I), 
(3.5) 

where ho is the lowest (non-negative) eigenvalueofHpb ' We 
evidently deduce that 

Hpb In) = !{a,at}ln) = (n + ho) In). (3.6) 

Consequently, we get on the states (2.8) 

H~ss) I"'n) = (n + ho -l)l"'n), Vn>O, (3.7) 

and the energy spectrum of the (p = 2ho = 2) theory is giv
en by 

En = n, Vn = 0,1,2, .... (3.8) 

It shows a perfect supersymmetric character l7 as expected 
through Eqs. (3.3) and the classification of all the admissible 
parasupersymmetric states can be pointed out through the 
action of QI' Qt. and QT Q\. In a parallel way with the 
context of usual supersymmetric quantum mechanics, \7,22 

we notice that the parafermionic number operator Npf 
== (2.7) as well as the parabosonic one Npb == (3.4) are such 
that with the supercharges Q\ and Ql 

[Q\,Npr] =Q), [Qt.Npr] = -Qt. 

[Q),Npb ] = Q), [Qt,Npb ] = - Qt. 

and have the required conserved character: 

[H ~ss >,Npr] = [H ~ss >,Npb] = O. 

(3.9) 

(3.10) 

If we define the action of these number operators on 
parabosonic and parafermionic states Ipb) and Ipr), respec
tively, by 

Npflpb) = O=:}npf = 0, Npb Ipf) = O=:}npb = 0, 
(3.11 ) 

we learn that, among the eight possible states, the states 
Ipb), Qt Qllpb), Qllpr), and Qt Ipr) are purely parabo
sonic states (npb #0) while the states Ipr), Qt Qllpr), 
Qllpb), and Qt Ipb) are purely parafermionic states (npf 
#0). 

Within our basis (2.8), it is finally easy to show that the 
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state 1"'1) is twofold degenerate while the states I"'n), n>2 
are threefold degenerate. We thus get the spectrum quoted in 
Fig. 1 (a) for parabosons and parafermions in comparison 
with Fig. 1 (b) characterizing the current supersymmetric 
context22 between bosons and fermions. One parafermion is 
on the nondegenerate groundstate and corresponds to the 
+ I-eigenvalue of J3, etc. 

Let us notice that the spectrum in Fig. 1 (b) is also readi
ly obtained from our considerations as a particular case. In
deed, inside the realization (2.4) for band b t , we, respective
ly, distinguish the 2 X 2 submatrices u _ and u + which play 
the role of the fermionic operators in the usual context of 
supersymmetric quantum mechanics. We thus get here, 
when dealing with bosons and fermions: 

u_ =c :). u+=(: ~), Hu+,U-]=~U3=Hf' 
(3.12) 

The supersymmetric Hamiltonian becomes, as expected, 

(
ata 0) 

H~s-)=Hbf=Hb-Hf= 0 ata+l (3.13a) 

and the fermionic number operator is given by 

N}->=!(l-u3 )· (3.13b) 

These operators act on the 2-dirpensional subspace directly 
obtained from the space subtended by the basis (2.8) and 
now characterized by the states 

1"'0) = ('~»), 

I"'~) =a~Cn~ I))+P~('~))' Vn>l. 

(3.14 ) 

This immediately leads (in particular) to the spectrum 
quoted in Fig. 1 (b) showing that one boson is on the unique 
(nondegenerate) ground state while all the other states are 
twofold degenerate and contain one boson and one fermion. 

For completeness, let us also mention that our discus
sion on H ~ss) contains the immediate properties of the Ru-

E E 

n=3 ... -t- -t- -t n=3 ... -t+ 
n =2 ... -t- -t- -t n=2 ... -t + 
n = 1 .. , -t- -t- n =1 ... -t+ 
n=O ... -t- n=O ... -t 

+1 0 -1 j3 +1 -1 0 

(a) (b) 

FIG. l.(a) The parasuperspectrum of the (p = 2) and (c = - 1) theory 
where 11 (.u.) refers to parafermions (parabosons), ( + 1,0, - 1) being 
the j3 eigenvalues of the operator J,. (b) The well-known spectrum of 
(N = 2)-and (c = - 1 )-supersymmetric quantum mechanics where f (!) 
refers to fermions (bosons), ( + I, - 1) being the u eigenvalues of the 
Pauli matrix u,. 
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bakov-Spiridonov context. 12 When dealing with bosons and 
parafermions, the consistency between Eqs. (2.9) and (3.5) 
requires ho = 1/2. We thus get, from our basis (2.8) and Eq. 
(3.7), that the Rubakov-Spiridonov spectrum is 

E(RSl=n_ 1 'fin 
n 2" (3.15 ) 

leading to the already quoted properties [see Sec. II A and 
Eq. (2.10) in particular]. 

As a final comment on this quantum mechanical ap
proach, let us notice that the other choice in Eq. (3.1), i.e., 
the study of the parasupersymmetric Hamiltonian 

H~is'=~{a,at}+Hbt,b] (3.16) 

is evidently completely similar to the above developments. 
Correspondingly the parafermionic number operator has to 
be chosen as 

N(+l -1 -J _(0 
pf - 3 3-' (3.17) 

and the ad hoc basis replacing the vectors (2.8) is now speci
fied by {1'I'o),I'I'I),I'I'n), n:>2} given by 

1'1'0) = (0,0,10) )T, 

1'1'1) = (O,IO),O)T + (O,O,Il)T, 

l'I'n) =a~(O,ln _l),O)T +.o~(O,O,ln»T 
(3.18 ) 

+r~(0,0,ln-2»T, n:>2. 

The degeneracies are the same as in the (t: = - 1) context 
and the spectrum [Fig. 2(a)] has similar characteristics up 
to correspondences with the J3 eigenvalues. In Fig. 2 (b) we 
have also quoted the corresponding spectrum in the current 
supersymmetric context between bosons and fermions. 

IV. PARASUPERSYMMETRIC COHERENT STATES 

In this section we propose to construct two sets of para
supersymmetric coherent states (Secs. IV A and B), in ac
cordance with the previous two contexts of relative para
Bose and para-Fermi sets, respectively. 

As supersymmetry has to be included in our construc
tions, let us recall that the supersymmetric Hamiltonian has 

E E 

n=3 "'1- -t- -t- n=3 ... -t-t-
n =2 ... 1- -t- -t- n=2 ... -t-t-
n = 1 -t--t- n =1 ... -t-t-
n=O -t- n=O t 

+1 0 -1 j3 +1 -1 0 

(a) (b) 

FIG. 2. (a) The parasuperspectrum of the (p = 2) and (e = + I) theory 
where 11 (Jj.) refers to parafermions (parabosons). (b) The well-known 
spectrum of the (N = 2)- and (e = + 1 )-supersymmetric quantum me
chanics where t 0) refers to fermions (bosons). 
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an always obvious even (f&') character while the super
charges are odd (&). The Lie superalgebra I will then be 
characterized by the structure relations ensuring that 

[ f&' ,f&' ] -+ f&', [ &, f&'] -+ &', {&, &'} -+ f&'. ( 4.1 ) 

Moreover, it is interesting to point out, at the start of our 
discussion, that these even or odd characters are always 
guaranteed inside the above operators whatever the even or 
odd properties of the a- and b-annihiIation operators are ex
cept that the last ones have to be of opposite parities. If a is 
even (as usual), b has to be odd (as usual) and this case will 
lead to the relative para-Bose set of trilinear relations given 
by Eqs. (2.13), according to the superstructure bilinear rela
tions ( 4.1). If a is odd, b has to be even and this case will lead 
to the relative para-Fermi set given by Eqs. (2.13a)-(2.13d) 
and (2.18), once again in perfect agreement with Eqs. (4.1). 

From a general point of view, the above considerations 
illustrate, in particular, that parastatistics,2 an older propos
al with respect to supersymmetry, 6 includes as well as super
symmetry the typical ideas leading to Lie superalgebras 
through the simultaneous superposition of commutators 
and anticommutators as a generalized Lie bracket. I These 
characteristics will be more effectively exploited in Sec. V. 

As a last part of this section, we then study (Sec. IV C) 
the parasupercoherent states obtained in the relative para
Fermi context in order to determine their normalization fac
tor and measure when ho = 1, i.e., when the p = 2 parasu
persymmetric theory is undertaken. We can thus analyze 
their impact on expectation values and on the uncertainty 
principle. 

A. Para-Bose-supersymmetric coherent states 

In connection with the Rubakov-Spiridonov contribu
tion,12 we have recently constructed 14 parasupercoherent 
states inside the boson-parafermion theory associated with 
the Hamiltonian (2.1). 

Let us now consider the corresponding construction but 
in the parabosonic-parafermionic context subtended by the 
Hamiltonian Hpss == (2.14). 

Due to the nice properties of the basis (2.8) in the para
bosonic-parafermionic case, i.e., when the eigenvalues n re
fer to the para-Bose number operator Npb == (3.4 ), we can 
easily apply the following parasupersymmetric operator: 

A =a1 3 + (1/4)at{b t ,b t}. (4.2) 

It evidently has an even parity if as already mentioned inside 
the relative para-Bose set (2.13) we are considering a,at as 
even operators and b,b t as odd ones. Then, according to the 
structure relations (4.1) and (2.13), we can show that 

[A,Hpss] = A, [A t,Hpss ] = -A t, (4.3) 

which are the fundamental information for seeing this new 
operator A as an effective even parasupersymmetric annihil
ation operator. This can be corroborated by the following 
results: 

A ItPo) =0, AltPn)=ltPn-I)' 'fin:> 1, (4.4) 

with explicit coefficients an' .on' rn deduced from Eq. 
(2.8). These numbers depend on n: 
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!3n =_1_ [1- n(n -1)], 
.j1if 4 an = -;~:::;::(n=-~1 ):::;, 

1 rn = , Vn ';;> 2. 
2~(n - 2)' 

As usual in quantum mechanics, 19.4 we can then search 
for parasupercoherent states as eigenfunctions IZ) h,. of this 
operator (4.2) by asking for 

A IZ)h" =ZIZ)h", (4.5) 

where Z is any complex number. 
Let us mention that we want to maintain the ho depen

dence in our developments because, in a parallel way with 
Sharma et al.·s results 7 they are valid for arbitrary ho's and 
because our contexts will fix ho = 1 in the parabosonic-para
fermionic context or ho = ~ in the bosonic-parafermionic 
one as already mentioned in Sec. III. 

Indexing by ho, the para-Bose number eigenstates de
fined by Eq. (3.4), we can develop our new parasupercoher
ent states IZ) h" in such a basis. Explicitly. we have to take 
care of the structure of the lifo), Ilfl)' and Ilfn) given in Eq. 
(2.8) and to distinguish between even and odd para-Bose 
number states in the summations due to the relations (3.5). 
We thus write 

+ I b2l(12/0)h,,) + I b2l +1(12/:1)h,,) 
1=0 ° 1=0 ° 

+ I C2/( ~ ) + I C21 + 1 ( ~ ) • 

1= 0 121 ) h" 1= 0 121 + 1) h" 
(4.6) 

Introducing the development (4.6) in Eq. (4.5), we get the 
following recurrence relations: 

a21z = a2/+ 1 ~2(/ + ho) + C21_ 1 $, 

a21 + IZ = a21+2~2(/ + 2) + c21~2(/ + ho), 

b21z = b21 + 1 ~2(/ + ho), c21z = C2/ + 1 ~2(/ + ho), 

b21 + IZ = b21+2~21 + 2, C21+ IZ = c2/+2~21 + 2, 

so that a relatively elaborate but systematic treatment shows 
that all the coefficients appearing in Eq. (4.6) can be deter
mined in terms of the only three unknowns ao• bo, and Co' 

We effectively get for arbitrary 1 

a21 = aoPlzZl - coP/2/(/ + ho - 1 )zZl- 2, 

and 

a21 + 1 = aoQlzZl+ 1 - coQ/2/(/ + ho)zZl- I. 

b21 + 1 = boQlzZl+ I, C2/ + 1 = CoQlzZl+ I, 

where 
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(4.7a) 

(4.7b) 

and 

(4.7c) 

Finally, by introducing the parabosonic coherent states 7 

that are defined in our notations by 

'" 
IZ)h" = L PIzZI I 2l) h" 

1=0 

'" + L QlzZl+ 1121 + 1)h", (4.8) 
1=0 

we can write the parasupercoherent states on the compact 
form 

IZ)h" =ao(IZ~h")+bo(IZ~h")+CO(~~»)' (4.9) 

° ° I )h" 
the ket 1* > being given by 

1*) = -~IZ")h" - (ho-pLto2IPlzZl-212l)h" 

+ Ito 2/QlzZl - 112/ + 1)h,,}' (4.10) 

where 

a2 

Iz") =-Iz) 
h" azZ h,,' 

Let us only notice that the states (4.9) and (4.10) exactly 
reduce to the parasupercoherent states obtained 14 in the bo
sonic-parafermionic context when ho = ~. It is easy to con
vince ourselves that, in this case, the states (4.8) reduce to 
the ordinary bosonic coherent states associated with the usu
al Heisenberg-Weyl context,4 i.e., 

(4.11 ) 

The parasupercoherent states (4.9) can then be further 
exploited (normalization factor and scalar product, com
pleteness relation, etc.) but, due to the interest of the follow
ing case, we do not pursue such a study. The conclusion of 
this section is that the states (4.9) do exist and can be han
dled in the ho = 1 context for our p = 2-parasupersymmetric 
theory. 

B. Para-Fermi-supersymmetric coherent states 

We have already proposedl5 another parasupersymme
tric annihilation operator-called B-inside the boson
parafermion theory associated with the Rubakov-Spiri
donov Hamiltonian (2.1 ). We have also constructed the cor
responding parasupercoherent states. 15 In such a context, 
these states appear as the closest parasupersymmetric states 
to the classical ones. 

Here, let us extend these considerations but in the para
bosonic-parafermionic case subtended by the Hamiltonian 
Hpss == (2.14) and dealing with the basis (2.8) where the 
eigenvalues n refer to the number operator Npb == (3.4). We 
consider the parasupersymmetric operator 

B = (1/Ji) [b t + !b {a,a}], (4.12) 
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which has an even character iff we are considering a,at as 
odd operators and b,b t as even ones, a set of properties deal
ing with the relative para-Fenni structure relations (2.13a)
(2.13d) and (2.18). Notice that B is the Hennitian conju
gate of A == ( 4.2) but with the simultaneous substitution 
a+-+b. 

Once again the operator B is such that 

[B,Hpss ] = B, [Bt,Hpss] = - Bt, (4.13) 

and 

(4.14 ) 

It is thus a new effective, even, parasupersymmetric annihil
ation operator that can lead to new parasupercoherent states 
hereafter denoted I Y) h" and defined by 

BIY)h" =yIY)h", (4.15) 

where y is any complex number. 
Let us develop the states I Y) ho in tenns of the para-Bose 

number eigenstates defined by Eq. (3.4). We evidently get a 
fonnula analogous with (4.6) but in tenns of coefficients 
'21"2/+ I' s2l,s2l+ I' and 121 ,t2/ + I in correspondence with the 
respective a2/ ,a2l + I' b2l ,b2/ + I' and C2l 'C2/ + I' 

Here we get the infonnation for arbitrary I 

'21 = roPly2/, S21 = roPly2/+ I, 
t21 = (ro/2)Ply2l+2 

r2/+ I = r IR ly2l, s2l+ I = r I R ly2l+ I, 
t2/ + 1= (r/2)R lyl+2 

where PI is still given by Eq. (4. 7c) and 

RI == (1121) [ r(ho + 1) ] 112. 
r(l + 1)r(l + ho + 1) 

( 4.16a) 

(4.16b) 

(4.16c) 

Now, it can be shown that, in terms of the parabosonic 
coherent states (4.8), our parasupercoherent states have the 
final form 

( 4.17) 

after we have required that r l = roy(2ho) -1/2, a restriction 
imposed for the inclusion of the nonparastatistical context. 

These states I Y) h" have to be nonnalized and have to 
satisfy the (over-) completeness relation.5 By noticing that 7 

ho(YIY) h" = rcho)( ly12/2) 1- h" 

X [lh,,_1 (lyI2) +lh,,(lyI2)], (4.18) 

the requirement5 

ho< Y I Y) h" = 1 

does fix the nonnalization factor r o. We obtain 

r 2_ (lyI2/2)h,,-1 

I 01 - r(ho) (1 + lyI2 + !lyI4) 

X [lh,,_1 (lyI2) + 111" (lyl2)] -I. 

( 4.19) 

( 4.20) 

Here, in Eqs. (4.18) and (4.20), we are dealing with the 
modified Bessel functions of the k th order23 given by 
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(4.21) 

Moreover, the resolution of the identity operator,5 i.e., 

fl Y) ho 11" < Y liJh" (lyI2)d 2y = I, (4.22) 

requires the existence of a measure when the integration is 
realized over the whole complex y plane. A lengthy and 
elaborate calculation that is parallel to the one perfonned for 
para-Bose coherent states7 1eads to the result 
EL4 
iJh,,(lyI2) = (1I21T)(lyI2/2)I-ho 

X r(ho)[ Ih,,_1 (IYI2) + Iho (lyl2)] 

f
+ 00 

X M (x)e- iiyi'x dx 
ho ' 

- 00 

(4.23) 

where 

Mh (x) =..!.. ~ (2ix)n 
II £.i, 

17' n=O n. 

X rc [n/2] + 1)r([ (n + 1)/2] + ho) (4.24) 
r(ho) , 

the notation [k] standing for the largest integer smaller than 
or equal to k. It has to be noticed that the series contained in 
Eq. (4.24) converges only for Ixl < 1. We have thus shown 
that our parasupercoherent states (4.17) are nonnalized 
and are (over)-complete. 

An effective test of the above developments is the partic
ular context ho = ! corresponding to the case of the ordinary 
harmonic oscillator in the bosonic sector and, correspond
ingly, to the bosonic-parafermionic case in the supersymme
tric theory subtended by the Hamiltonian (2.1). If we put 
ho = ! in Eq. (4.20), we immediately get 

Irol2 = (1I[iT) (lyI2/2) - 1/2( 1 + lyl2 + !lyI4)-1 

X [1 -112 (lyI2) + 11/2 (lyl2)] -I. (4.25) 

By noticing that23 

~11/2(X) =..!..sinhx \j 2x x 
and 

If I -1/2 (x) = ! cosh x, 

we get 

1 _ 1/2 (IYI2) + 1112 (IYI2) = ~2hTIYI2 exp( lyl2) 

and finally 

Irol2 = (1 + lyl2 + !lyI4) -I exp( _ lyI2). (4.26) 

This result is identical with the normalization factor al
ready obtained 15 in the Rubakov-Spiridonov developments 
for coherent states in parasupersymmetric quantum me
chanics. Moreover, if we put ho = ~ in Eq. (4.24), we obtain, 
by considering separate even and odd powers in the sum, 
that 

MI/2(X) = (1I1T)(I-ix)-1 

and, consequently, the relation (4.23) becomes 
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elYI' f + co e - ilyl'x 
,u1/2 (lyI2) = -2 (1' ) dx. 

1r -co 1r -IX 
(4.27) 

Now, using the information,24 

(a_ix)-Ve-iYXdx=21rye , f
+ co v-I -ay 

- co r(v) 

valid when y> 0, Re a > 0, and Re v> 0, we can evidently 
choose a = v = 1, so that 

f
+ co 

_ '" (1 - ix) - Ie - ilYI'x dx = 21re- IYI '. 

Equation (4.27) finally gives 

,u1/2 (lyI2) = 1/1r, (4.28) 

the well-known4.7 measure for the harmonic oscillator lead
ing to the usual resolution of the identity operator, i.e., 

~ Jlyl)l/2 1/2 ( Yld
2
y = /. 

c. Parasupercoherent states and the uncertainty 
principle 

Having constructed two sets {I Z) h) and {I Y) h) of 
states, respectively, given by Eqs. (4.9) and (4.17), we have 
to carryon their properties in our p = 2-parasupersymme
tric theory corresponding to the specific value ho = 1. 

Let us here only consider the second set due to its nice 
properties within the ho = 1/2 context as well as due to the 
simpler form of the states (4.17). 

If, for ho = 1, the normalization factor is readily ob
tained from Eq. (4.20) as 

Irol2 = (1 + lyl2 + (1/4) lyl4) - I [lo( lyl2) 

(4.29) 

it is not an easy task to give the final form of the measure 
issued from Eqs. (4.23) and (4.24), due to the appearance of 
hypergeometric, Whittaker and Bessel functions23 as well as 
of relatively complicated integrals. 24.25 The first problem 
consists in finding the expression of MI (x) issued from Eq. 
( 4.24 ) and the second one is the integration contained in Eq. 
(4.23). Let us just summarize the main steps of these calcu
lations. 

By decomposing the summation in even and odd pow
ers, we can show that 

MI(x) = ~ [2FI(1,I;!;-x2)+2iX2FI(I,2;~;-x2)], 
(4.30) 

where the hypergeometric functions23 2Fl (a,b;c;z) converge 
for Izl < 1 or for Izl = 1 (if Re (a + b - c) <0). Now, by 
taking the following properties25 into account: 

2 r(a + /3 + 1/2)r( 1/2) F (a,/J.1-. ) 
r(a + 1/2)r(/3 + 1/2) 2 1 , 2;Z 

= 2Fl(2a,2/3;a + /3 + ~; 1 -; ~) 

( 
1 1 +~) + 2Fl 2a,2/3;a + /3 + '2;-2- (4.31a) 

and 

1520 J. Math. Phys .• Vol. 31. No.6. June 1990 

(a - 1/2)(/3 - 1/2)r(a + /3 + 1/2)r(1I2) 

(a + /3 - 1I2)r(a + 1I2)r(/3 + 112) 

X~ 2F{a,/3; ~;z) 

= 2Fl( 2a - 1,2{3 - l;a + /3 _ ~; 1 ~ ~) 

-2Fl(2a-l,2/3-1;a+/3- ~;1-;~), 
(4.31b) 

we, respectively, get with the change of variable x = ip: 

62Fl( 1,1; ~ ;p2) = 2FI( 2,2; ~; 1 ~ p) 

( 4.32a) 

and 

(4.32b) 

With these relations, the integral contained in Eq. (4.23) 
now reads 

- _1_' f + i", d ePly'1 [1- F (2 2·~·1 - p) 
31r _ ico P 2 2 I "2' 2 

+ -2FI 2,2;-;-- - 42Fl 1,3;-;--1 ( 5 1 + p) (5 1 + p) 
2 2 2 2 2 

By exploiting inverse Laplace transforms given by24 

and valid only for Re a> 0 and Re /3 > 0, we get specific 
Whittaker functions23 in the results. This property applied 
to the four above integrals lead to the final evaluation of the 
integral contained in Eq. (4.23), i.e., 

#(2IYI2) 1/2 [! Wo.o (2lyI2) + 2Wo. _ 1 (2IyI2)] 

+ #( - 21y12) 1/2[2WO. _I ( - 21y12) 

- ~Wo.o ( - 2IyI2)]. 

Finally, this last expression can be put on the following 
form when relating23 Whittaker functions and modified Bes
sel functions K,,(z): 

IYI2[Ko( IYI2) + Ko( _ lyl2) 

+ 4(KI (IYI2) - KI ( _ lyI2»]. 

The final expression of the measure (4.23) is thus, for 
ho = 1, 
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,u1(lyI2) = (lyI2/21T)[/o(lyI2) +/1(lyI2)] 

x [Ko( lyl2) + Ko( _ lyl2) 

+ 4(KI (IYI2) - KI ( _ IYI2»] (4.33) 

ensuring the (over) -completeness of the parasupercoherent 
states I Y) I' 

As a last comment on the parasupercoherent states 
I Y ) h,,' let us end this subsection by studying their impact on 
the uncertainty principle through the archetypal example of 
the Heisenberg relation on position and momentum. Re
membering the relation between the x and p operators with 
the a and atones, we evidently have for arbitrary ho 

(4.34) 

and 

pIY)h" = iro (at -a)( ;~):" ). 
.fi (r/2) Iy) h" 

(4.35 ) 

By using the parabosonic coherent states (4.8) (z++y) and 
the properties (3.5), it is relatively easy, on the one hand, to 
show that the expectation values (x) and (P) are indepen
dent of ho. We effectively obtain . 

(x) =.fi Rey and (P) =.fi Imy. (4.36) 

On the other hand, the expectation values of x 2 and p2 are, 
respectively, obtained on the forms 

(X2)h" = 2 Re2 y 

hoIhu-1 (IYI2) + (l-ho)/h.,(lyI2) 

+ I hu _I(lyI2)+lh"(lyI2) 
(4.37a) 

and 

(P2)hu = 21m2 y 

hoIhu _ I (lyI2) + (1 - ho)/h.,( lyl2) 
+ 2 2' 

Ihu - I (Iyl ) + Ih.,( Iyl ) 

We thus get as in the para-Bose contexe 

( ax)2 = (x2) _ (X)2 
hn hI) 

hoIhu _ I (IYI2) + (1 - ho)lh.,( IYI2) 

Ih" _ I (IYI2) + Ihu (lyI2) 

= (P2) hu _ (P)2 

= (ap)t· 

(4.37b) 

(4.38 ) 

We immediately deduce that, in the ho = 1/2 context, we get 

(4.39) 

so that the corresponding states are the closest states to the 
classical ones as expected. 15 In the ho = 1 context, we get 

(ax)2 _ (a )2 _ lo( IYI2) (4.40) 
1- PI - [/0(lyI2)+/I(lyI2)] 

Here, due to the fact that II >0, we always have 
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and 

O«ax)l(ap)l<l. (4.41 ) 

Let us also notice that if Iyl -( 1, / 0 -1, and 11-!lyI2, so that 

(ax)~ (ap)~ -1/(1 + !lyI2)2 -1, (4.42) 

which is a result already obtained (and discussed) on some 
supercoherent states.9 

Such results can directly be related to the discussion on 
para-Bose coherent states7 and lead to the same conclusions 
in the supersymmetric context. Let us only recall here that 
the commutator [x,p] is a c number iff ho = 1/2, while it is 
not the case when ho = 1: 

[x,p] = i[a,at ). (4.43) 

V. PARASTATISTICS, SUPERSYMMETRY, AND LIE 
SUPERALGEBRAS 

It has already been pointed oue,21,13 that the structure 
relations among parafields have to deal with (simple) Lie 
superalgebras. I 

If we remember that, for each pair of parafields, there 
exist (besides the straight commutation relations for bosons 
and the straight anticommutation relations for fermions) 
only two relative para-Bose and relative para-Fermi sets (see 
Sec. II), we have to mention that Palev21 has noticed that the 
creation and annihilation operators of parafields generate 
the simple Lie superalgebra B(nlm). Ifwe limit ourselves to 
only one pair of such parafields, this superalgebra is simply 
B( 1,1), this Kac notation I corresponding to the orthosym
plectic Lie superalgebra osp(3/2). These considerations21 

were thus associated with the relative para-Fermi set given 
here in Eqs. (2.13a)-(2.13d) and (2.18). 

More recently, Biswas and Soni 13 have claimed to pro
pose new mixed relations leading to what they called "gener
alized parastatistics." In fact, as it is easy to convince oneself, 
their proposal coincides with the above relative para-Bose 
set which reduces to our Eqs. (2.13) for a pair of parafields. 
Nevertheless, Biswas and Soni 13 have then shown the inter
esting result that to such a relative para-Bose set is associated 
the simple Lie superalgebra C(2) if we limit ourselves to 
only one pair of parafields. This superalgebra C(2) is the 
Kac notation I corresponding to the orthosymplectic Lie su
peralgebra osp ( 2/2 ) . 

Both of the above su peralgebras osp ( 3/2) and osp (2/2 ) 
have already been exploited26-31 in supersymmetric quan
tum mechanics 17 and more particularly in the study of the 
supersymmetric harmonic oscillator (in one spatial dimen
sion leading to pairs of bosonic and fermionic degrees of 
freedom). Moreover, they have recently been related one to 
the other through the one-to-one correspondence32 

osp( 3/2 ) ++osp (2/2 ) Osh( 2/2), (5.1 ) 

where the second superalgebra appearing in the semidirect 
sum is the Heisenberg-Weyl superalgebra.29 This corre
spondence (5.1) is associated with a "character reversal" 
phenomenon32 recently explained33,34 from a detailed analy
sis of the even and odd root systems of the superalgebras 
belonging to the following specific chain: 
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osp(3/4) :::>osp(3/2) :::>osp(2!2). (5.2) 

It is possible33 to show that osp(3/4) also contains the semi
direct sum (5.1), so that the correspondence can be under
stood through the interchange of the even and odd proper
ties of the nontrivial generators of the superalgebra sh (2/2) . 

If all these results refer to invariance superalgebras of 
the (I-dimensional) supersymmetric harmonic oscillator as 
well as to its constants of motion, a natural question then 
arises in the parasupersymmetric context we are dealing with 
in this article, a question strengthened by the appearance of 
the same superalgebras osp(3/2) and osp(2/2) but in con
nection with the relative para-Fermi and para-Bose sets of 
trilinear structure relations. What are the invariance super
algebras and the associated constants of motion in the p = 2-
parasupersymmetric theory developed in the preceding sec
tions? 

The answer is given in Secs. V A and V B by new explicit 
realizations of the respective superalgebras and, in the Sec. 
V C, by a discussion of the results as well as of their common 
and distinct features. 

A. Relative para-Bose supersymmetry and the 
superalgebra osp(2/2) 

For the generalized version of Jacobi's identity quoted 
by Greenberg and Messiah, 16 i.e., 

[[A,B ]£,C] + [[C,A ]1/,B] -1/£ 

+ 1/e[ [B,C ],A ] _ 1/£ = 0, (5.3 ) 

where E = ± 1 and 1/ = + 1 for the para-Bose context, we 
propose to rewrite 

E = ( - 1) 1T(l)(1T(J) + 1T(K», 1/ = ( _ 1) 1T(K)(1T(l) + 1T(J» 

(5.4 ) 

when they are expressed in terms of even [1T(/) = 0] or odd 
[1T(/) = 1] parities according to the notations 

C/=- (a,b): C/ = a (even) 
1"(1) = 0 

( 5.5a) 

and 

C/ = b (odd). 
117"(/)=1 

(5.5b) 

We can thus summarize all the structure relations (2.13) 
by: \3 

[c/,(cJ,cK)] ± = 0, 

[c/,(cJ,cK)] ± = 28/JcK, 

[c1,(cJ,cK)] ± = - 2( - 1)1T(l)1T(J)8/JcK 

x - 2( - 1 )1T(K)(1T(l) + 1T(J»8/KcJ, 

(5.6) 

where, for self-consistency, we recall that 

[c/,cJ ] ± = C/CJ - ( - 1 )'T(/)1T(J)CJC/ 

and (5.7) 

() + ( 1 ) 1T(l)1T(J) 
C/JCJ = C/CJ - cJc/' 

Let us now realize osp(2/2) in direct correspondence 
with recent developments29 on the supersymmetric harmon
ic oscillator but here in the parasupersymmetric theory. We 
get 
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Hpb = (1/2){at ,a}, C+ = (i/2)e- 2i'{at,at }, 

C _ = - (i/2)e2i'{a,a}, 

and 

H pf = (1/2)[b t,b ], 

(5.8) 

(5.9) 

as the four even generators while the four odd supercharges 
read 

Ql = (l/2){a,b}, QT = (1/2){b t ,at }, (5.10) 

Sl = (l/2)e- 2i'{at ,b}, ST = (l/2)e2i'{bt,a}, (5.11) 

according to the choices (2.15). The superstructure rela
tions issued from Eq. (4.1) with the generators (5.8)
(5.11) give immediately the superalgebra osp(2/2). 

It is easy to convince oneself that, within the p = 2 theo
ry developed in Sec. II Bland characterized by the parasu
persymmetric Hamiltonian H pss =- (2.14), the above eight 
generators are conserved and are associated with constants 
of motion as usual in the Hamiltonian formalism. 

B. Relative para-Fermi supersymmetry and the 
superalgebra osp(3/2) 

In correspondence with the generalized Jacobi identity 
(5.3), we need here E = ± 1, but 1/ = - 1 for the para-Fer
mi context. 16 The validity of the formulas (5.4) is once again 
ensured but when 

C / =- (a,b ): C / = b (even) 
1"(1) =0 

(5.12a) 

and 

C/ = a (odd). 
117"(/) = 1 

(5.12b) 

In this case, all the structure relations (2.13a)-(2.13d) and 
(2.18) are summarized by 

[c/,[cJ,cK ] ±]± = 0, 

- 2( - 1) 1T(K)(1T(/) + 1T(J»8/KcJ. 

(5.13 ) 

We thus construct the 12 following generators where the 6 
even ones are 

Hpb = ~{at,a}, C+ = (i/2)e- 2i'{at ,at }, 

C_ = - (i12)e2i'{a,a}, 

Hpf=Hbt,b], T+=ei'b t , T_=e-i'b, 

while the 6 odd ones read 

Q2 = Ha,b], Qi = Hb t,at ], 

S2=!e- 2i'[at ,b], S! =!e2it [bt,a], 

p + = i!ie- i'at, P _ = - i!iei'a, 

(5.14 ) 

(5.15 ) 

(5.16 ) 

(5.17) 

(5.18 ) 

according to the choices (2.19). Let us mention that 
Eqs. (5.14) lead to the so(2.1) content [as well as Eqs. 
(5.8)], while Eqs. (5.15) give rise to the so(3) content. 26 

The whole set of superstructure relations leads here 
to the superalgebra osp(3/2) containing osp(2/2) 
=- {Hpb ,C ± ,Hpf , Q2' Q L S2' S n as a subsuperalgebra, 
containing itself the subsuperalgebra osp( 1/2) generated by 
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and 

F+=HS2 + iQi), F_ = HsI - iQ2)' 

The superalgebra osp (3/2) appears as an invariance su
peralgebra of the p = 2 parasupertheory for a pair of para
fields in the relative para-Fermi context, the above 12 gener
ators being conserved and associated with constants of 
motion. 

c. Discussion 

Having obtained different information in the para-Bose 
and para-Fermi contexts, we thus lose the correspondence 
( 5.1 ) in this parasupersymmetric theory. The reason is clear 
when analyzed in comparison with the nonparastatistical 
point of view and the proof already mentioned. 33

-
34 The 

main point is that, in the parasupertheory, we know that the 
commutator [a, at] and the anticommutator {b, b t } are not 
the identity (as it is the case in the supercontext). Then, the 
Heisenberg superalgebra sh(2/2) which contains the identi
tyoperator (due to its central extension) has no meaning 
in the parasupercase. If we define two even (say P ± ) and 
two odd (say T ± ) generators in terms of single powers of 
a, at, b, or b t, the superalgebra corresponding to 
osp(2I2)O{P ± ,T ±} becomes infinite in the para-Bose 
case, while, in the supercontext, it closes and leads to the 
semidirect sum given in (5.1). Thus each relative paracon
text has its own properties essentially characterized by typi
cal parities as given in Eqs. (5.5) and (5.12), and different 
sets of constants of motion in particular. 

Note added in proof: We have just proposed another 
nonequivalent approach to parasupersymmetric quantum 
mechanics [see J. Beckers and N. Debergh, Nucl. Phys. B 
(to be published) ] . 
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A method for inducing nondegenerate forms on irreducible gl(mln) modules that implies 
some general results on star and grade star representations is investigated. These results are 
applied to obtain a complete classification, in terms of highest weights, of the irreducible star 
and grade star representations of gl( nil). It is demonstrated that while gl( nil) admits a large 
class of star representations the irreducible grade star representations are comparatively rare. 
Moreover, for n=/=2 all grade star irreducible representations are also star representations and, 
for n > 2, are atypical. The superalgebra gl (211) proves to be a special case and admits a two
parameter family off our-dimensional typical grade star irreducible representations that are not 
star representations. In particular, typical grade star irreducible representations of gl(nll) 
exist only for n = 1,2. 

I. INTRODUCTION 

The theory of Lie superalgebras and their representa
tions plays a fundamental role in the understanding and ex
ploitation of supersymmetry in physical systems. The con
cept of supersymmetry first arose in elementary particle 
physics I and has since been applied in a variety of other areas 
including nuclear physics2 and condensed matter physics. 3-5 
A comprehensive review of Lie superalgebra representation 
theory and its various physical applications is provided in 
Kostelecky and Campbell. 6 

The representation theory of the simple basic classical 
Lie superalgebras was first investigated in the definitive 
work of Kac, 7,8 who introduced the now familiar categoriza
tion of finite-dimensional irreducible representations (ir
reps) into typical and atypical types. Typical irreps, first 
classified by Kac, S have many properties in common with 
the finite-dimensional irreps of simple Lie algebras and in 
particular are given explicitly by an induced module con
structionS allowing for a straightforward determination of 
their dimensions and characters. By contrast, the structure 
of atypical irreps is far from well understood and has re
quired the introduction of new techniques such as supertab
leaux methods,9-13 those based on shift operators and weight 
space techniques,I4--16 and those arising from a modification 
of the Kac induced module construction 17 for atypicals. We 
also mentioned recent work 18 on the calculation of the char
acters of the atypical irreps. 

A physically important problem that has thus far re
ceived comparatively little attention is the classification of 
all * and grade * irreps for a basic classical simple Lie super
algebra. Star and grade star representations were first intro
duced by Scheunert et al. 19 who demonstrated that all simple 
basic classical Lie superalgebras admit at most two types of 
* irreps and two types of grade * irreps: These representa
tions are natural generalizations of Hermitian representa
tions for simple Lie algebras and as such are most likely to be 
of direct physical interest. However, it should be noted that 
the classification of an irrep according to whether it is of * or 
grade * type (or possibly both or neither of these) is appar
ently unrelated to its typicality: Indeed, both typical and 
atypical * (and grade *) irreps exist, as well as both typical 

and atypical irreps which are neither * nor grade *. There
fore, it is evident that the determination of * and grade * 
irreps for a basic classical Lie superalgebra is going to yield 
an entirely new classification scheme for the irreps. 

The * and grade * irreps were explicitly constructed for 
the Lie superalgebras osp(211) and s1(211) by Scheunert et 
al.20 We also mentioned previous work on certain infinite
dimensional * and grade * representations arising from non
compact real forms of the Lie superalgebras osp(21 1), 14,21 
osp(114),22 osp(312),21,23,24 and osp( 412),21,25 of relevance 
to supergravity theories. However, despite these case stud
ies, the classification of * and grade * irreps for a basic classi
cal Lie superalgebra has not received a systematic treatment. 
Therefore, it is our aim in this series of papers to classify the 
two types of * and two types of grade * irreps [herein re
ferred to as type (1) and type (2) * and grade * irreps, 
respectively] for the Lie superalgebras gl(nll) and C(n). 

In this paper it is shown that the dual of a type (1) 
* irrep of gl (m In) is a type (2) * irrep (and conversely), as 
distinct from the grade * case, where the dual of a type (1) 
[resp. (2)] grade * irrep is again grade * of type (1) [resp. 
(2) ] : However, it turns out that the type ( 1) and (2) grade 
* cases are effectively interchanged by a reversal of Z2 grad
ing. We use these results to give a complete classification of 
all irreducible type (1) and (2) * and grade * irreps of 
gl(nll). It is shown that while there exists a relatively large 
class of * irreps the grade * irreps are comparatively rare. 
Indeed, all grade * irreps of gl (n 11) have at most two Z
graded levels and are also * irreps except for the special case 
of gl (211), which possesses a two-parameter family of four
dimensional typical grade * irreps which are not * irreps. In 
particular, the only cases when typical grade * irreps for 
gl(nl1) exist is when n = 1,2. The classification of * and 
grade * irreps of the Lie superalgebra C(n) will be given in 
the second paper of this series. 

From the point of view offuture research it would clear
ly be of interest to extend the results of this paper to the Lie 
superalgebras gl(mln) and osp(mln) for general m, n. Our 
work demonstrates that for the Lie superalgebras gl( nil) 
and C(n + 1) = osp(212n), grade * irreps are comparative
ly rare, being equivalent, also, to * irreps except for the spe
cial cases of gl(211) and C( 1), which admit an additional 
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class off our-dimensional typical grade * irreps. On the basis 
of these results we anticipate that grade * irreps of gl(mln) 
and osp(mln) in general are likely to be rare and thus of 
limited utility in physical applications. By contrast, we ex
pect a relatively large class of * irreps for gl(mln), which 
remain to be classified. For such irreps of gl (m In) it would 
be of interest to determine the gl(mln) 19l(mln - 1) 
branching rules and obtain the matrix elements of the 
gl(mln) generators in the resulting Gel'fand-Tsetlin basis. 
Finally, it would also be of interest to consider extensions to 
noncompact real forms of the Lie superalgebras gl (m In) 
and osp(mln). 

II. PRELIMINARIES AND INDUCED FORMS 

In ungraded index notation, the gl (m In) basic elements 
E a b (1 <a, b<m + n) satisfy the graded commutation rela
tions 

[Eab,E c
d ] = O~Ead - ( - l)[(a) + (b)][(c) + (d)lO~E~, (1) 

where for a<m (referred to herein as even indices) we define 
(a) = 0 and for a > m (referred to herein as odd indices) we 
define (a) = 1. It is also sometimes useful to write these 
generators in graded index notation, where we introduce 
even indices i, j,... (= I, ... ,m) and odd indices p" 

v, ... ( = I, ... ,n), in terms of which our even gl(m) EDgI(n) 
generators are given by the operators E~(1<i,j<m), 
E~(1<p"v<n), respectively, and our odd generators are 
given by the operators E;", E";(1<i<m,I<p,<n). We re
mark that the bracket on the lhs ofEq. (I) refers to the usual 
commutator except in the case where both generators E a b' 

E C

d are odd, in which case it refers to the anticommutator. 
As a basis for a Cartan subalgebra of gl (m In) we choose 

the commuting operators E;; (1<i<m), ElL" (1<p,<n) 
whose eigenvalues serve to label the weights of the represen
tations. We denote the weights of gl (m In), in the notation of 
Kac,8 by 

m n 

A = (A Ix) = L A;E; + L X"o,,' 
;= I ,,= I 

so that with this convention, the root system of gl( min) is 
given by the set of even roots 

± (€j -€j)' I <i<j<m, ± (0" -Oy), I<p,<v<n, 

together with the set of odd roots 

± (€j - 0,,), l<i<m, I <p,<n. 

Following Kac,8 we choose as a system of simple roots the 
distinguished set 

€j-€j+I(1<i<m), as=€m-Ol' 

0" -o,,+I(1<p,<n), 

so that the sets of even and odd positive roots are given, 
respectively, by 

CPo + = {€j - €jll<i <j<m}U{o" - oyll<p, <v<n}, 

CPI + = {€j - 0" 11<i<m,I<p,<n}. 

We denote the half-sum of the even and odd positive 
roots, respectively, by 
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I 1m. 
Po =- L a=- L (m+ 1-21)€; 

2 ae<l>o + 2 i= I 

I n 

+ - L (n + 1 - 2p,)o" , (2a) 
2 ,,= 1 

1 n m m n 

PI =- L a=- L €;-- L 0" 
2 ae<l>,+ 2 ;=1 2,,=1_ 

=.l (nl - m), (2b) 
2 

and set 

P=Po -PI' (2c) 

Throughout this work we let (,) denote the nondegenerate 
bilinear form define on the weights by8 

m n 

(A,A') = L A;A; - L X"X~, 
;= I ,,= I 

where A = (A Ix), A' = (A'lx')· 
Every finite-dimensional gl (m In) module Vadmits a Z2 

gradation (compatible with the superalgebra grading) 

V= Vii ED VI' 

where Vii (resp., VI) is referred to as the even (resp., odd) 
component of V. We then define, for homogeneous VE V, the 
parity factor (v) by (v) = 0 (resp. I) according to whether 
VE Vii (resp., VI)' Following Kac,8 the finite-dimensional ir
reducible gl(mln) modules are uniquely characterized by 
their highest weights A, where A is a dominant weight for 
gl( m) ED gl( n): We denote the set of dominant weights for 
gl(m) ED gl(n) [and hence gl(mln)] by D+. For AED+ we 
let V(A) denote the finite-dimensional irreducible gl(mln) 
module with highest weight A and we denote the finite-di
mensional irreducible gl( m) ED gl (n) module with highest 
weight A by Vo(A). Throughout, we denote the set of dis
tinct weights in V(A) [resp. Vo(A)] by Il(A) [resp. 
Ilo(A)]. Following Kac,8 we say that AED+ and the corre
sponding irreducible module V(A) are typical if 

(A + p,a) #0, VaECPI +; 

otherwise, V(A) and A are called atypical. 
We note that every finite-dimensional irreducible 

gl (m In) module admits a natural Z gradation 7,8 
d 

V(A) = ED Vk (A) (3) 
k=O 

[Vd (A) # (0) assumed], in which case we say that V(A) 
admits d + 1 levels. The Z gradation in (3) induces the fol
lowing partitioning of the weights in V( A) : 

d 

Il(A) = U Ilk (A) 
k=O 

where Ilk (A) is the set of distinct weights in the subspace 
Vk(A). We note that the spaces VdA) ofEq, (3) are to 
constitute modules for the even subalgebra 
gl(m) ED gl(n),7,8 from which it follows26 that Ilk (A) is sta
ble under the Weyl group of gl (m) ED gl (n) [also referred to 
as the Weyl group ofgl(mln)]. 

In order to study the * and grade * irreps of gl (m In) it is 
convenient to consider a natural method for inducing (non
degenerate) sesquilinear forms on V(A) from a given Her-
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mitian irreducible gl(m) E9 glen) module VoCAl: Note that 
this automatically imposes the restriction that AED + must 
be real. Let us therefore assume that Vo (A) is a Hermitian 
irreducible gl(m)E9gl(n) module, so that VoCAl is 
equipped with a (positive definite) inner product ( I) satisfy
ing 

(Ejvlw) = (vIEjiW), (EI\vlw) = (vIEVfLW ), 

(vlw)* = (wlv), Vv, weVo (A). 

It is then possible to extend the form ( I ) to all of V( A) in 
four different ways. In order to account for these possibilities 
we introduce two grading parameters 0, E which can take the 
values 0 or 1. For a given pair of values 0, E we extend (I) to 
all of VeAl by defining 

(Vo(A)!Vk(A» =0, O<k<d, 

(EfLiVl w) = ( - 1)9(v) +e(vjEifLW), (4) 

With this definition the above form is sesquilinear and the 
decomposition (3) is orthogonal under the form (I). We 
now have to demonstrate that this form is well defined, so 
that given v, weV(A), the value (vjw) is unique (Le., inde
pendent of the ways in which it is evaluated). This result and 
some other properties of the form are proved in the following 
lemma. 

Lemma 1: (i) (I) is 
= (vjEjjw), (EfLvvjw) 

well defined; (ii) (Ejvlw) 
= (vjEVfLW); (iii) (vjw) 

(EifLvjW) = ( _1)(w)'9H = (wlv)*; and (iv) 
X (vIEfLiW ), Vv, weV(A). 

Proof; For simplicity we prove the result only for the 
case ° = E = 0, the remaining cases follow by a similar argu
ment. We proceed to prove (i)-(iii) together by induction 
on the Z-grading index k, where the results are guaranteed 
for k = 0 by construction. We therefore assume that (i)
(iii) hold for Vk _ 1 (A) and note that every vector v in 
Vk (A) may be written in the form 

i,ll 

To prove (i) it suffices to demonstrate that for v = 0, 

(vlw) = 0, VweVk (A) 
is always true. Now v = 0 implies 

0= Ej v = " Ej EfL·V· v £.. v I I,ll 

l,fL 

i,fl 

Thus for any weVk _ 1 (A), 

(vIEJw) = L (Efvi,fL jEJw) 
i,fL 

= L (Vi,fL I (8;EJ + 8jE; - Ej'E~ )w). 
i,J.l. 

However, Vi,fL' WEVk _ 1 (A), and the induction hypothesis 
allows us to rewrite the above equation as 

(vIEJw) = L «~E~ + 8{E~ - EfE~ )Vi,fL Iw), 
i,j.l 
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which vanishes by virtue ofEq. (5). Since Vk (A) is spanned 
by vectors of the form EJw, weVk_ 1 (A), this shows that 

(vlw) = 0, VweVk (A), 

from which we conclude that (i) is true. 
In reference to (ii) we have, for all v, weVk _ 1 (A), 

(EjE~vIElw) = - 8~(E)vjElw) + (E~EjvjElw) 
= (vj(E{E~EI- 8~E~Enw) 

= (vIE~E1Elw) = (E~vIE{Elw). 

Again, because the vectors E ~v, ve Vk _ 1 (A) span Vk (A), 

we have 

(Ejvjw) = (vIE{w), Vv, weVk (A). 

A similar argument applies to the generators E ~ and estab
lishes (ii), as required. 

For (iii) we have, for all v, weVk _ 1 (A), 

(EfvIEj'w) = (vIE~Ej'w) 

= (vj(8jE; + 8;Ej)w) - (E~vjE~w). 
(6) 

On the other hand, 

(Ej'wIEfv)* = (wjE~Efv)*, 

from which, in view of the inductive hypothesis, we obtain 

(Ej'wjEfv) * = (EjvEfvlw) 

= «~E1 + 8{E~ -EfE~)vjw) 
= (vl(8JE; +8;Ej)w) - (E~vjE~w) 

= (EfvjEj'w), 

where in the second to last step we employed the inductive 
hypothesis and the last equality follows from Eq. (6). Since 
the vectors Efv, VEVk _ 1 (A) span Vk (A) we thus deduce 

(vlw)* = (w!v), Vv,weVk (A), 

which proves parts (iii). Hence, by induction, we conclude 
that parts (i)-(iii) of Lemma 1 are true. 

Finally, in reference to (iv) we have, for all v, weV(A), 

(E~vjw) = (w!E~v)* = (Efw!v)* = (vjEfw), 

where (iii) has been repeatedly used. This proves Lemma 1, 
as required. 

Let us agree to call any sesquilinear form on V( A) satis
fying the conditions of Lemma 1 invariant of type (0, E). 

Another important property of the induced form (!) is given 
by the following lemma. 

Lemma 2: The form (!) induced on V( A) is the unique 
(up to scalar multiples) invariant nondegenerate sesquilin
earform of type (O,E) on V(A). 

Proof; To prove nondegeneracy we note that the kernel 
of the form (j) is given by 

K={veV(A)!(v!w) =0, VweV(A)}. 

Following Lemma 1, K constitutes a Z-graded gl (m! n) sub
module of VeAl which cannot equal V(A) since by con
struction the restriction of (I) to Vo (A) is nondegenerate, 
i.e., Kn Vo(A) = (0). Thus since V(A) is irreducible, we 
conclude K = (0), as required. 

To prove uniqueness let (I) 1 be another nondegenerate 
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invariant sesquilinear form of type (O,E), oJ). V(A). We then 
define a vector space mapping s: V(A) ..... V(A), s(v) = v', 
where v' is given by 

(V'IW)1 = (vlw), 'ltWEV(A). 

We note that S is well defined and 1-1 since the forms are 
nondegenerate; it also gives rise to a homomorphism (and 
hence isomorphism) of gl (m In) modules. In view of Schur's 
lemma27 it follows that S reduces to a scalar multiple a of the 
identity on V(A), so that 

(VIW)1 = a(vlw)! 'ltv, WEV(A), 

which proves the result. 
The above shows that on each finite-dimensional irredu

cible gl (m In) module V( A), A real, we may induce a nonde
generate invariant sesquilinear form of type (0, E) which is 
uniquely determined by its restriction to the maximal 1..
graded component Vo (A). Such a form has all the properties 
of an inner product except that it is not generally positive 
definite. As shall be discussed in Sec. III, if the induced form 
( I) is positive definite we say that V( A) is a star module of 
type (I) [resp. (2)] if 0 = 0 and E = 0 (resp. I), while we 
say that V(A) is a grade star module of type (1) [resp. (2)] 
if 0 = I and E = 0 (resp. I). 

It is worth noting that even when the form (I) is not 
positive definite it may still be applied to obtain matrix ele
ments, etc. even for irreps which are neither * or grade *. To 
this end we note that the Gel'fand invariants ofgl(mln) and 
its canonical subalgebras are all self-adjoint under the above 
form, from which we deduce that Gel'fand states corre
sponding to different eigenvalues are necessarily orthogonal 
under the induced form. 

We conclude this section by noting that the above-men
tioned induced inner product construction applies to any 
finite-dimensional indecomposable gl (m In) module V( A) 

admitting a 1.. gradation 
d 

V(A) = EI1 V k (A), 
k~O 

where Vo(A) = Vo(A) is an irreducible gl(m) EI1gl(n) sub
module of (real) highest weight AElJ + . Such a form then 
satisfies the properties of Lemma I (i.e., is invariant), but 
will be degenerate unless V( A) = V( A) is irreducible. 
Therefore, the quotient module defined by 

V(A) = V(A)IK, K= {VEV(A) I (vlw) = 0, 'ltWEV(A)} 

is necessarily irreducible. In particular, such a form can be 
defined on the corresponding Kac-induced moduleS and 
suggests a convenient way of extracting an irreducible mod
ule from an indecomposable one. 

III. STAR AND GRADE STAR gl(mln) MODULES 

Following Scheunert et al. 19 gl(mln) admits two types 
of irreducible * representations. We say that V( A) is an irre
ducible * module of type (1) [resp. (2)] if YeA) can be 
equipped with an inner product (necessarily positive defi
nite) (I) on which the generators E a b satisfy the hermiticity 
requirements 

7TA t(E\) = 7TA (Eb
a

) [resp.( _l)l(a)+(b»)7T
A

(E b
a»), 
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where 7T A is the representation afforded by V( A). Equiv
alently, YeA) is * of type (1) if 

(EabVlw) = (vIEbaw) 

and * of type 2 if 

(EQbVl w) = ( - 1) [(Q)+ (b»)(vIEbQw). 

To define grade * modules we first recall that the grade 
adjoint A t of a homogeneous operator A on a Z2-graded Hil
bert space V with the inner product (I) is defined by19.27 

(Avlw) = ( - 1)(A)(V)(vIA tw), 

where, as usual, (A) denotes the parity of A. Equivalently, 

At = (A T)*, 

where T denotes the graded transpose. 27 We note that the 
grade adjoint coincides with the normal Hermitian conju
gate for even operators and 

(A t)t = (A T)T = ( - 1)(A)A. 

We then say that V( A) is an irreducible grade * module 
oftype (I) [resp. (2)] if YeA) can be equipped with a (posi
tive definite) inner product ( I ) on which the generators E a b 

satisfy the graded-hermiticity conditions 

~(Eab) = (_1)I(a)+(b»)"7T
A

(E b
a), 

E = (a) [resp.(b)]. 

Equivalently, YeA) is grade * of type (1) if 

(E'i,v(w) = ( - 1)1(a)+ (b)](a)+ (V»)(vIE:w) 

and grade * of type (2) if 

(E'i,vlw) = ( - 1)1(a)+ (b»)[(b)+ (V»)(vIE:w). 

In graded index notation, on * or grade * irreps yeA), 
the even gl (m) EI1 gl (n) generators always satisfy 

(E;vlw) = (vIE{w), (E~vlw) = (vIE;w), 

which is just the condition that YeA) give rise to a Hermi
tian representation of gl( m) EI1 gl (n): This implies immedi
ately that the components of the highest weight A must be 
real. On the other hand, our odd generators must satisfy 

(Efvlw) = (vIE~w), (7a) 

(Efvlw) = - (vIE~w) (7b) 

in the type (1) and (2) * cases, respectively, while for the 
type (I) and (2) grade * cases we have, respectively, 

(Efvlw) = ( - 1)(V)(vIE~w), 

(Efvlw) = - ( - l)(V)(vIE~w). 

(8a) 

(8b) 

We note, in the notation of Sec. iI, that the inner prod
uct (I) is a nondegenerate invariant sesquilinear form of type 
0=0, E = 0, 1 in cases (7a) and (7b), respectively, and of 
type 0 = 1, E = 0, 1 in the respective cases (8a) and (8b). In 
view of the uniqueness of the induced form, it follows that 
the above inner product necessarily coincides the form in
duced on V( A) by the restriction of ( I ) to Vo (A). Therefore, 
we see that YeA) is a * or grade * module if and only if 
Vo(A) is a Hermitian irrep of gl(m) EI1 glen) and the corre
sponding form induced on YeA) is positive definite (Le., 
gives rise to an inner product). 

The study ofgl(mln) * modules YeA) is facilitated by 
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noting that the type (1) and (2) cases are related by duality. 
We recall that the dual representations 11' A and 1f A is defined 
by27 

'if A (E a
b ) = -1fI(E a

b ), 

where T denotes the super transpose. Introducing a homoge
neous basis {va} for VeAl, let us write (a) = 0,1 according 
to whether Va is odd or even, respectively. Then in this basis 
we have27 

1fI(Ea
b )a/3 = - (_l)[(aJ+(bJ](PJ1fA(Eab){Ja' 

If VeAl is a type (1) * module, so that 

1f~(Eab) =1fA (E b
a ), 

then the dual representation 'if A must satisfy 

'ifAt(Eab)aP= -1fI(Eab)*{Ja 

_ (_l)[(aJ+(bJ](aJ1fA(Eab)~ 

_ (_l)[(aJ+(bJ](aJ1fA (E b
a

){Ja 

= (_1)[(aJ+(bJI!(aJ+(PJ1 11'A (E b
a )aP' 

Using (a) + ({3) = (a) + (b) we thereby obtain 

so that 11' A is a type (2) * representation; that is, the dual of a 
type (1) * representation is a type (2) * representation and 
conversely. Denoting the irreducible module dual to VeAl 

by V*(A), we thus obtain the following proposition. 
Proposition 1: For AElJ + , VeAl is an irreducible type 

(1) * moduleofgl(mln) if and only if V*(A) is an irreduci
ble * module of type (2). 0 

As distinct from the above situation for * modules, we 
have the following result concerning grade * modules. 

Proposition 2: For AElJ + ' VeAl is an irreducible type 
(1) [resp (2)] grade * module if and only if V*(A) is an 
irreducible grade * module of type (1) [resp. (2)]. 

Proof: Suppose 1f A affords a type (1) grade * irrep of 
gl(mln), so that 

or 

Using the definition of the dual representation 11' A' the above 
equations yield 

11'A (Eab ) = - (_l)[(aJ+(bJ](aJ1fA(E-ba)* 

_ (_l)[(aJ+(bJ](bJ(1fI)t(E b
a ). 

where we have used the result 

(1fI)t(E a
b ) = (1fI)T(Eab )* 

= (_l)[(aJ+(bJ]1fA (Eab )*· 

Hence, 

171 (E a
b ) = - (_1)[(aJ+(bJ](aJ1fI(E b

a ) 

= (_1)[(aJ+(bJ](uJ11'A (E b
a

), 
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so that 11' A is also grade * of type (1). A similar argument 
holds for the type (2) case. 0 

It is important to note that unlike the * case, the type of 
grade * module depends on the Z2 grading (even or odd) 
chosen for the maximal Z graded gl (m) ED gl (n) component 
Vo ( A): This follows because the actual definition of grade 
adjoint depends on the choice ofZ2 grading. We note, how
ever, in view ofEqs. (8a) and (8b), that the type ( 1 ) and (2) 
grade * cases are interchanged by a reversal ofZ2 grading. In 
other words, a type (1) grade * module VeAl in which 
VoCAl is chosen to have odd Z2 grading is equivalent to re
garding VeAl as a type (2) grade * module in which VoCAl 

is regarded as even. Therefore, it suffices to classify all type 
( 1) and (2) grade * irreps with the standard choice of Z2 
grading for VeAl, where the maximall-graded component 
VoCAl is chosen to be even: Throughout the paper we adopt 
this standard choice of Z2 grading. 

However, it should be noted that in Proposition 2 the Z2 
grading of the maximal component of V * (A) is assumed to 
be given by the grading of the minimal component of V( A). 
Therefore, with the standard l2 grading for V* (A), Proposi
tion 2 states that if VeAl is a type (1) [resp. (2)] grade * 
module, then V*(A) is also a type (1) [resp. (2)] grade * 
module if VeAl has an odd number oflevels, while if VeAl 

has an even number of levels, then V*(A) is necessarily 
grade * of type (2) [resp. (1)]. 

As noted in Sec. I, the * and grade * irreps of gl(mln) 
are those most likely to be of interest in physical applica
tions. The remainder of this paper is devoted to a classifica
tion of the finite-dimensional irreducible * and grade * 
gl (n 11) modules. It is hoped that this work will provide in
sight into the difficult problem of determining all * and 
grade * irreps for gl (m In) in general. 

IV. STAR MODULES FOR gl(nl1} 

In this section we present a detailed study of the * irreps 
for gl(nl1). In particular, we will prove Theorems 1 and 2 
which specify the necessary and sufficient conditions on the 
highest weight of an irreducible module in order that it be 
star of type (1 ) or (2). This gives a complete classification of 
the star representations in terms of their highest weights. 

For simplicity, we alter our notation and denote the 
even gl(n) ED gl(1) generators by Ej (1 <i,j<n), n, respec
tively, and the odd generators of gl(nll) by E;, E; (1<i<n). 
In this case the set of even positive roots CPo+ consists simply 
of the positive rootu; - €j (1 <i<j<n) ofgl(n) and our odd 
positive roots are given by 

CPo+ = {€; - D) 11<i<n}. 

We recallS that (p, as) = 0, where as = €n - D) is the odd 
simple root and (p, a) = (Po, a)El + for aECPo+' Through
out, we denote our gl(nl1) weights by A = (A Iw)' where 
WEe and A is a glen) weight, and we let W denote the Weyl 
group of glen) [and hence, gl(nll)]. 

We now note that if VeAl is an irreducible type 1 * 
module of gl (n 11) with the inner product (I>, then for VA, 

the highest weight vector of VeAl, we must have 
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o«E;vAIE;vA) = (vAIE;E;vA) 

= (vAI(E;; + O)VA) 

= (A,E; - 81 ) (vAlvA), 

where in the above we exploited the fact that E iVA = ° 
(1<i<n). Thus in order for V(A) to be a type 1 * module A 
must be real and satisfy 

(A,a);;;'O, VE<I>t. 

We have the following result concerning such weights. 
Proposition 3: For AED + , the following conditions are 

equivalent: (i) (A, as) ;;;.0, (ii) (v,a) ;;;.0, VaE<I> 1+ ,veIl (A). 
Proof: Clearly (i) is a special case (ii), so that it suffices 

to show that (i) implies (ii). For a; = E; - E;+ I (1<i< n) 
we have 

(aoas ) = (E; - E;+ I ,En - 81 ) = - 8n.;+ 1 <0, 

(as,as) = 0. 

Now for veIl (A) we may write 

v = A - L n;a; - nsas, n;,nsEZ + , 
; 

so that 

(v,as) = (A,as) - L n;(a;,as);;;.(A,as)' 
; 

Thus (A, as);;;'O implies 

(v,as );;;.0, VveIl(A). 

Now for aE<I>I+ arbitrary, there exists oeW such that 
a = O"(as)' so that for (A,as) ;;;.0, 

(v,a) = (v,O"(as» = (O"-I(v),as);;;'O, VVEIl(A), 

where we have used the invariance of (,) under Wand the 
fact that Wacts transitively on <I> t . This proves the result. 

Let us agree to call a weight AED + * permissible if A is 
real and satisfies (A,a s ) ;;;'0: We denote the set of * -permissi
ble dominant weights by D"'.- . Clearly, as noted above, in 
order for V( A) to be a type ( 1) * module it is necessary that 
AED "'.- . We now investigate the converse. 

We first note that VeAl is a direct sum of irreducible 
glen) E9 gl(1) submodules Vo( v), where v is dominant, and 
each such module occurs with unit multiplicity. 17 It follows 
that the glen) E9 gl( 1) invariant 

(summation on i from 1 to n) must reduce to scalar multiple 
of the identity on each such irreducible gl (n) E9 gl (1) sub
module Vo(v). For AED"'.- , we have the following result 
concerning the eigenvalues of "I. 

Proposition 4: Suppose AED "'.-. Then (i) For all 
VEIl(A), (A-v,A+v);;;'O, (A-v,A+v+2p);;;'0. 
(ii) The eigenvalues of "I on V( A) are all non-negative. 

Proof Using the partitioning 
d 

Il(A) = U Ilk (A) 
k=O 

we proceed to prove (i) by induction on the Z-grading index 
k. For k = ° we have, from a well-known classical Lie alge
bra result, 26 
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(A - v,A + v);;;.O, VveIlo (A). 

Also, since A - v, VEIlo( A) is a sum of even positive roots 
we have 

(A - v,A + v+ 2p);;;.(A - v,2p);;;.O, VveIlo(A), 

so that (i) holds for all veIlo(A). We now assume that (i) 
holds for all veIlk _ I (A) and note that for every j'EIIk (A), 
there exists aE<I>I+ such that 

v=j'-a EIlk_I(A). 

Then 

(A-j',A+j') = (A-v+a,A+v-a) 

= (A - v,A + v) + 2(p.,a) 

;;;.(A - v,A + v);;;.O, 

where the second to last inequality follows from proposition 
(3) and the last inequality follows from the inductive hy
pothesis. Hence, 

(A - p.,A + P. + 2p) 

= (A - p.,A + p.) + (A - p.,2p);;;.(A - p.,2p). 

However, in terms of the even simple roots 
a; = E; - E;+ I (1<i <n), we have 

so that 

(A - p.,p) = L n; (a;,p) + ns (as,p) = L n; (a;,p) ;;;.0. 
i i 

This is enough to prove (i) for allj'EIlk (A) and hence, part 
(i) follows by induction. 

As to (ii) we note that the second-order invariant 12 of 
gl (n 11) may be written as (summation on i from 1 to n is 
assumed) 

where 0"2 is the second-order invariant of glen). To deter
mine the eigenvalue r of the gl (n) E9 gl (1 ) invariant 
"I = E;E; on an irreducible glen) E9 gl(1) submodule Vo( v) 

of V(A), let vVbethe maximal state of Vo(v). We then have 

E;E;vv = yvv, E;E;vv = rvv, 

so that 

(r+ y)VV = (E;E; + E;E;)vV 

n 

= L (E; + O)v v = (V,2p1 )vv. (9) 
;=1 

On the other hand, 

(r - y)VV = (E;E; - E;E;)vV = (/2 - 0"2 + 02)vv. 

By recalling that 12 and 0"2 - 0 2 are the quadratic Casimir 
elements of gl (n 11) and its even subalgebra gl (n) E9 gl (1 ), 
respectively, we obtain 

(r-y)vv = [(A,A+2p) - (v,v+2po)]vv. 

The above equation, together with Eq. (9), then yields, for 
the eigenvalues r of the gl ( n) E9 gl ( 1) invariant "I = E; E i, 
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2r= (A,A+2p) - (v,v+2p) 

= (A - v,A + v+ 2p»0, 

where the last inequality follows from part (i). This proves 
the result. 0 

Our aim now is to demonstrate that for AeD ~ , V( A) is 
a type ( 1) • module. To this end we assume that Vo( A) gives 
rise to a Hermitian representation of gl( n) ~ gl (1) and we 
let (I) be the corresponding unique nondegenerate invariant 
sesquilinear form of type (8,E) = (0,0) induced on V(A).1t 
then suffices to demonstrate that (I) is positive definite (i.e., 
gives rise to an inner product). We first note the following 
property of the form (I). 

Lemma 3: With the form (I) defined on YeA) above, 
the gl(n) Gel'fand invariants are Hermitian. so that 
gl (n) ~ gl ( 1) submodules with different highest weights are 
orthogonal. 

Proof As noted previously. the definition of the form 
(I) guarantees that the gl (n) Gel'fand invariants are Hermi
tian and hence, eigenstates corresponding to different eigen
values are orthogonal under the form. The result then fol
lows from the fact that the glen) Gel'fand invariants 
uniquely label the finite-dimensional irreducible gl (n) mod
ules. together with the result 17 that all irreducible 
gl(n) ~ gl( 1) submodules of VeAl occur with unit multi
plicity. 0 

By utilizing Lemma 3 and Proposition 4 we obtain the 
following result for the above induced form. 

Proposition 5: For AeD~, the form (I) on YeA) isposi
tive definite. 

Proof We employ the Z gradation of Eq. (3) and pro
ceed by induction on the Z-grading index k. where the result 
holds for k = 0 by construction. We now assume that the 
form is positive definite on Vk _) (A) and note that for 
VEVk (A). EiVEVk _) (A). from which we obtain. in view of 
the inductive hypothesis. 

We now proceed in two steps. (i) Vk (A) is a direct sum of 
irreducible gl(n) ~ gl( 1) submodules Vo( v). Let us assume 
initially that v#O belongs to such an irreducible submodule 
Vo(v). Then from Proposition (4), we have. for the invar
iant 1] = EiEi• 

1]v = ru. r>O, 

so that 

r(vlv) = (vl1]v) = L (vIEiEiv»O. (11) 
i 

where the last inequality follows from Eq. (10). Now if 
r(vlv) #Owemusthaver> o and hence. (vlv) >0. If. on the 
other hand, r(vlv) = O. Eq. (11) implies 

0= L (vIEi Eiv) = L (EivIEiv). 
i ; 

Then by the inductive hypothesis we deduce 
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Eiv = O. l<i<n 

and hence, VEVo(A), in which case (vlv) >0 by construc
tion. Thus we necessarily have. for v#O in an irreducible 
glen) ~ gl(l) submodule of Vk (A), (vi v) > o. 

(ii) We now consider the general case and suppose that 
O#VEVk (A) is arbitrary. Then v may be expanded as 

where each va#O belongs to an irreducible gl(n) ~gl(l) 
submodule of Vk (A). From Lemma 3 the Va are orthogonal, 
so that 

(vlv) = L (va IVa) > O. 
a 

where the last inequality follows from step (i). This shows 
that (vlv) > o for all nonzero VEVk (A), so that (I) is positive 
definite on Vk (A). Hence. the result is proved by induc
tion. 0 

We thus arrive at the following classification scheme for 
the type 1 • irreps of gl (n 11) . 

Theorem 1: For AeD + • YeA) is equivalent to a type 
( 1) irreducible • module if and only if A is real and 
(A.as»O. 0 

Recalling Proposition 1. we see that Theorem 1 essen
tially characterizes both types of· representations. To char
acterizetype (2) • modules more explicitly, we note that the 
weights in V·(A) are the negative of the weights in VeAl 
and if A - is the lowest weight of YeA). then - A - is the 
highest weight of v· (A). We thus obtain. in view of 
Theorem 1 and Proposition 1. the following proposition. 

Proposition 6: For AeD + , YeA) is equivalent to a type 
(2) irreducible • module of gl(nll) if and only if A is real 
and (A -.as)<O. 0 

Now let I A be the index set introduced in Ref. 17, viz. I A 

= {1, ...• n} if A is typical. while if (A + p. Ei - 8) ) = 0 we 
have 

We note that the integer d A = II A 1 is the maximal Z-graded 
level index of VeAl; i.e., VeAl admits dA + 1 levels. We 
define 8 by 8 = 1 if A is typical; for A atypical. 

{
I, 

8= 
O. 

lElA. 

otherwise. 

Then for A - , the lowest weight of YeA), we have17 

(A-,a.)=A)+m+dA -8. A=(Alm), 

= (A,E) - 8) ) + dA - 8. 

In view of Proposition 6 we obtain the following theorem. 
Theorem 2: For AeD + • YeA) is equivalent to an irre

ducible type (2) • module of gl (n 11) if and only if A is real 
and (A.E) - 8) + dA - 8<0. 

Corollary: If AeD + is typical, then VeAl is equivalent 
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toa type (2) * moduleifandonlyif(A + p, EI - 8 1) <Oand 
A is real. 

Proof For A typical we have dA = n, (J = 1 and the con
dition of Theorem 2 reduces to (A + p,EI - 81 ) <0. Obvi
ously, for A typical we cannot have (A + p,EI - 81 ) = 0.0 

v. GRADE STAR MODULES FOR gl(nI1) 

This section is devoted to the study of grade * irreps of 
gl (n 11). The main results obtained are Theorems 3 and 4 
which, respectively, classify all type (1) and (2) grade * 
modules. As will be demonstrated, when n > 2, only two very 
special classes of two-level irreps are grade *. However, 
gl (211) proves to be a special case for which four-dimension
al typical grade * irreps exist. 

Suppose now that V( A) is a type 1 grade * gl(n 11) mod
ule, so that A is real and VeAl is equipped with a (positive 
definite) inner product (I) which is invariant of type (J = 1, 
E = 0, viz. for all v, WEV(A), 

(Ejvlw) = ( - l)(V)(vIE
j
w), 

(Ejvlw) = - ( - l)(V)(vIEjw). 

Then ifueVo(A) has weight VEno(A) we have 

0< (EjvIEjv) = (vIEjEjv) 

It follows that 

= (vl(E: + O)v) 

= (V,Ej -81 )(vlv). 

(v,a) >0, VVEno (A), aE<Pt 

(12) 

and in particular, (A,as»O. Thus from Theorem 1, VeAl is 
also a type (1) * module, so that we do not obtain any new 
type (1) grade * modules which are already * modules. 

Proceeding further, we recall that Proposition 3 implies 

(v,a) >0, VVEn(A), aE<P I+. 

Given a vector WE VI (A) of weight fLEn I (A), we now wish 
to demonstrate that for each i, E j w = O. There are two cases 
to consider. 

(i) (fL,E j - 81 ) = O. In such a case we set 
v = EjWEVo (A), so that v has weight v = fL + Ej - 81 satis
fying (V,Ej - 8\ ) = O. Equation (12) then implies 

(EjvIEjv) = 0, 

so that Ejv = 0, i.e., 

EiEjw= -EiEjw=O. 

Hence, we have 

0= (wIEjEiw) = - (wIEiEiw) 

or 

0= (EiwIEjw) = (EjwIEjw), 

which implies E jw = E j w = O. 
(ii) (fL,E j - 8\) > O. In this case we set v = EiEjw and 

note that 
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which can only occur if Ejv = O. Thus 

0= Eiv = E;EiEiW = (fL,E; - 81 )Eiw, 

which implies Eiw = O. 
Thus in either case (i) or (ii), we deduce E; w = 0, from 

which we obtain 

Eiw = 0, VWEVtCA), l<i<n. 

It therefore follows that VeAl = VoCAl $ VI (A) can have 
at most two Z-graded levels, i.e., the level index dA satisfies 
d A = 0 or 1. This latter requirement, together with the re
striction (A,a s ) > 0, A real, imposes stringent conditions on 
the allowed highest weights A. In fact (see Appendix A), 
A must have the special form 

A = (1', - w, - w, ... , - w Iw), w real, l' + wEZ + . 

Conversely, such a two-level module VeAl is easily seen to 
be both type ( 1) star and type ( 1) grade star since, with the 
above inner product, we have 

We thus arrive at the following theorem. 
Theorem 3: For AED +, VeAl is an irreducible type (1) 

grade * gl (n 11) module if and only if A has the form 

A = (1', - w, ... , - wlw), w real, l' + wEZ + . 

In such a case V( A) admits at most two Z-graded levels and 
is also a type ( 1) * module. 0 

We remark that the only one-level type 1 grade * module 
VeAl is given by the case l' = - w (i.e., l' + w = 0) above. 
For this case VeAl, A = ( - w, ... , - wlw), WER, is a trivial 
one-dimensional module and is both a type ( 1 ) and type (2) 

* and grade * module. 
For the remaining cases l' + WEN (natural numbers), 

VeAl gives rise to a two-level type (1) * and grade * module. 
In view of Proposition 1 and 2 and Theorem 3, V*(A) then 
gives rise to a two-level type (2) * module which is also a 
grade * module of type (1) but whose maximal Z-graded 
component is regarded as odd: i.e., V * (A) gives rise to a type 
(2) grade * module with the standard choice of Z2 grading. 
The minimal weight of VeAl is easily seen to bel7 

( - w, - W, •.. ,1' - llw + 1), l' + wEN, 

from which it follows that V*(A) has the highest weight 

(w,w, ... ,l - 1'1 - w - 1), l' + wEN. 

Thus if A is of the above form or equivalently, 

A = ( - (w + 1 ), ... , - (w + 1 ),1' - llw), l' + wEZ-, 
( 13) 

then VeAl is a type (2) * and grade * module with two 
levels. 

Conversely, if VeAl is a two-level type 2 grade module, 
then V * (A) gives rise to a two-level type ( 1 ) grade * module 
whose highest weight must satisfy the conditions of 
Theorem 3; it is easily seen that this occurs if and only if A is 
of the form given in Eq. (13). We thus arrive at the following 
proposition. 

Proposition 7: For AED + , the following conditions are 
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equivalent: (i) V(A) is a type (2) grade * gl(nll) module 
having at most two levels, (ii) A is of the form 
A = ( -w, ... , -wlw) or A = (- (w + 1), ... , - (w + 1), 
r - llw), wER, T + weZ - . 

Corollary: All irreducible type 2 grade * modules with at 
most two levels are also type (2) * modules. 0 

The above result characterizes all irreducible type (2) 
grade * modules having at most two Z-graded levels. To 
complete the classification we now assume that V(A) is a 
type (2) grade * module with at least three levels, so that A is 
real and V(A) is equipped with a (positive definite) inner 
product (I) which is invariant of type () = E = 1, viz. for all 
v, weV(A), 

(Eivlw) = - ( - l)(V)(vIE iw), 

(Eivlw) = ( - l)(V)(vIEiw). 

Furthermore, for VA, the highest weight vector of V( A), we 
must have 

otherwise, we would have Ei~VA = O( l"i,j"n), contra
dicting the assumption that V( A) has at least three Z-graded 
levels. Equivalently, we have 

(EI vAIEI VA) >0, (EIE2VAIEIE2VA) >0. (14) 

Now from Eqs. (14) we obtain 

0< (EI vAIEI VA) = _ (vAlE lEI VA) 

- (A,EI - 81 ) (vAlvA), 

from which we deduce (A,E I - 81 ) < 0 and hence, 

(A,E; - 81 ) <0, l"i"n. 

Note that since 

(E;vAIE;vA) = _ (vAIE;E;vA) 

= - (A,E; - 8 1 ) (vAlvA), 

Eq. (15) implies that 

ElVA #0, 1 "i"n. 

Also, we have 

O,,(En_IEnvAIEn_IEnvA) 

= (EnvAIEn-IEn_IEnvA) 

= [(A,En -I - 81 ) + 1] (EnvA(En vA ). 

(15) 

(16) 

However, Eq. (16) implies that (EnvAIEnvA) >0, from 
which we deduce (A,En _ I - 81 ) > - I and hence, 

(A,EI - 81 » - I, l"kn. (17) 

We are now in a position to show that inequality (17) 
implies the V(A) must have exactly three levels. For this it 
suffices to demonstrate that E I E2 E 3 VA = 0: Note that for 
n,,2 there is nothing to prove since all irreps have no more 
than three levels. Now for n > 2, EIE2E3VA#0 implies 

0< (EIE2E3VAIEIE2E3VA) 

= - [(A,EI - 8 1 ) + 2] (E2E3VAIE2E3VA), 

from which we deduce (A,E I - 8 1 ) < - 2, in contradiction 
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toEq. (17). Thus we must haveE\E2 E 3 VA = 0, from which 
it follows that V(A) can have no more than three levels and 
hence, under our assumptions, exactly three levels. 

We have thus shown that an irreducible type (2) grade * 
module V( A) with greater than two levels must have exactly 
three levels, with highest weight A satisfying 

- I,,(A,E; - 81 ) <0, l"kn, (A,En - 81 ) <0. 

Note that since the components of A differ by integers, the 
last inequality implies 

AI =..1.2 = ... =An_ l , A = (Alw). 

Moreover, from Eq. (14) we have 

0< (EIE2VAIEIE2v") 

= [(A,EI - 8\) + 1] (E2VAIE2VA), 

from which it follows that (A,E I - 81 ) > - 1. We thereby 
deduce that A must satisfy 

-1«A,E;-81 )<0, l"kn, (A,En -81 )<0. 

The above equation demonstrates that A must be typical and 
since three level typical irreducible gl (n 11) modules exist 
only for n = 2, it follows that V(A) must be a three-level 
typical type (2) grade * gl( 211) module with the highest 
weight A = (A]>A2 Iw) satisfying 

(18) 

On the other hand, the above implies that V * (A) must 
also give rise to a three-level typical type (2) grade * module 
whose highest weight A * = (1 - ..1.2 ,1 - All - w - 2) must 
have components which also satisfy Eq. (18): This then 
yields the additional constraints 

-1<A2 +w<O, AI +w<O, 

from which we deduce that A = (A I ,A2 Iw) must satisfy 

-1 <A; +w<O, i= 1,2. 

Since the components A; differ by integers we must have 
AI = A2 = T and A has the special form 

A = (T,Tlw), weR, -1 <T+W<O. 

Conversely, it can be shown (see Appendix B) that with A as 
above, V(A) indeed gives rise to a (four-dimensional) typi
cal type (2) grade *g1(21l) module: We note that such a 
module V(A) is not a * module. We have thus proved the 
following. 

Proposition 8: Type (2) grade * irreps with greater than 
two levels exist only for gl (211). Such irreps have highest 
weights of the form 

and are four-dimensional and typical. These are the only 
grade * irreps that are not * representations. 0 

Propositions 7 and 8 thus yield the following classifica
tion scheme. 

Theorem 4: V(A) is an irreducible type (2) grade * 
gl(nll) module if and only if A has one of the following 
special forms: (i) A = ( -w, ... , -wlw),weR; (ii) 
A = ( - (w + 1), ... , - (w + 1),T - llw), weR, T + weZ-; 
(iii) for n = 2, A = (T,Tlw), wER, - I < T + w < o. 
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Corollary 1: For n=f.2. VeAl is a type (2) grade * mod
ule if and only if V * (A) is grade * of type ( 1 ) . 

Corollary 2: Typical grade * irreps exist only for gl ( 111 ) 
and gl(211). 

VI. CONCLUSIONS 

We have obtained a complete classification of the * and 
grade * irreps of gl ( n 11 ). The main results are summarized 
in Theorems 1-4. which give a classification. in terms of 
highest weights. of the type ( 1 ) and (2) * and grade * irreps. 
respectively. In particular. it was shown that an irrep of 
gl (n 11 ) with the highest weight A is a type ( 1) * if and only if 
A is real and (A.as ):>0 and that type (2) * irreps are duals 
to type 1 * irreps. It follows that for gl( n 11 ). there exists a 
large class of * irreps. The situation with grade * irreps is 
quite different and for n =f. 2. only a small class of grade 
* irreps exist: Such irreps have at most two Z-graded levels 
and are also * irreps. The only exception is gl(21l). which 
admits an additional two-parameter family of four-dimen
sional typical grade * irreps which are not * irreps. It is 
interesting that the example of a gl(211) grade * irrep con
sidered in the work of Scheunert et al.20 belongs to this class. 

The results of this paper indicate that grade * irreps are 
relatively rare and as such are unlikely to be of importance in 
physical applications. It would be of great interest to deter
mine if this situation prevails for all the simple basic classical 
Lie superalgebras. It would also be of interest to extend the 
approach of this paper to investigate * and grade * irreps 
arising from noncom pact real forms of gl (n 11) . We expect 
that such irreps will be infinite-dimensional. in which case 
the infinitesimal character of an irrep may be used in place of 
a highest weight label. 

It can be shown 19 that unlike the grade * case. the tensor 
product of two * modules is again a * module. which opens 
up the interesting possibility of determining tensor product 
branching rules and the corresponding Wigner coefficients 
for gl(nl1). However. it is important to note that while the 
tensor product of two irreducible type (1) [or (2)] * mod
ules is again a * module of type (I) [resp. (2)]. the tensor 
product of a type (1) * module with a type (2) * module 
does not yield a * module. This restriction may therefore 
limit the use of Young diagram methods for * modules. 

Finally. it would be of interest to extend the results of 
this paper to the Lie superalgebras gl(mln) and osp(mln) 
and investigate character formulas. branching rules. matrix 
elements. etc. for star and grade star modules. In the second 
paper of this series a start in this direction is made with the 
classification of the star and grade star irreps of the Lie su
peralgebra C( n) = osp ( 212n ) . 
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APPENDIX A: CLASSIFICATION OF TWO-LEVEL 
MODULES 

Here we classify all irreducible gl (n 11) modules V( A) 
having at most two levels. The Z gradation of VeAl may be 
written as 17 

d" 

VeAl = Ell Vk (A). 
k=O 

where d I\. = n for A typical; when (A + p.E; - 8] ) = O. we 
have dl\. = 111\.1. where 

II\. = {j>i}U{jdl(A.Ej - E j ) >O}. 

Now VeAl has exactly one level when dl\. = O. which can 
only occur when (A + p.En - 8] ) = 0 and (A.Ej - En) = 0 
for all i < n: For A = (A Iw) this implies 

AI = A2 = '" = An = - w. 

so that the one-level irrepsofgl(nll) have highest weights of 
the special form 

A = ( - w •...• - wlw). 

For two-level irreps we have dl\. = 1 and there are only 
two possibilities: 

0) (A + p.En - 81 ) = O. (A.Ej - En) = O. 

1 < i< n. (A.E 1 - En ) > 0; 

Oi) (A + p.En _ I - 8]) = O. (A.Ej - En _ I) = O. 

1<i<n-l. 

In case (i) A = (A I w) has the specialform 

A = (T. - w •...• - wlw). T + wEN 

and in case (ii) A has the special form 

A = (- (w + 1 ) •...• - (w + 1 ).Tlw). - (T + w)EN. 

It follows that VeAl is an irreducible gl(nll) module 
having at most two levels if and only if A has one of the 
following forms: (i) A = (T. - w •...• - wlw). T + wE'!. + ; 
(ii) A = (- (w + 1) •...• - (w + 1).T- llw). T+ wEZ-. 
We note from Theorem 3 that the first gives rise to type ( 1) * 
and grade * modules. while Proposition 7 implies that the 
second class gives rise to type (2) * and grade * modules. 

APPENDIX B: TYPICAL GRADE * IRREPS OF gl(211) 

Here we investigate the irreducible typical type (2) 
grade * gl(211) modules V( T.Tlw). 0> T + w < - 1 expli
citly: We set a = - (T + w). so that 1 > a > O. We have a 
gl(2) Ell gl( 1) module decomposition 

V(T.Tlw) = Vo(T.Tlw) Ell Vo(T.T- llw + 1) 

EllVoCr-l.T-llw+2). 

The top level is a one-dimensional gl (2) Ell gl (1) module. 
with the basis vector eo satisfying 

E Jeo = T8Jeo• Oeo = weo. 

The next level gives a two-dimensional module. with the 
( normalized) basis vectors 
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ei =a- 1I2E ieO' i= 1,2. 

The bottom level Vo( l' - 1,1' - IlltJ + 2) is again one
dimensional, with the (normalized) basis vector 

eo = [a( 1 - a)] -II2EIE2eO' 

Thus we have a four-dimensional module with the basis vec
tor eo, el , e2, eo, where eo, eo are even vectors and el , e2 are odd 
vectors. The action of our gl ( 211) generators on these basis 
states are given by 

nek = (ltJ + l)ek' 
neo = (ltJ + 2)eo; 

EieO = a ll2e;. EI e2 = (1 - a) 1I2eo ' 

E2e l = - (1 - a) 1I2eo; 

E1el =E2e2 =E1eo =E2eO =0; 

k= 1,2; 

Eieo =E 1e2 =E~I =0, E1e l = -aIl2eo, 

E 2e2 = - a l12eo; 

E 2eo = - (1-a)I/2el, E1eo = (1-a)I/2e2· 

Thus in the basis eo, el , e2, eo we have the following 4 X 4 
matrix representations for the odd generators: 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 

o 
o 
o 

The matrices of the even generators may be similarly deter
mined; it is easily verified that the above matrices indeed give 
rise to an (irreducible) representation. 

Since the above matrices are real we note that their 
grade adjoint corresponds with their super transpose. There
fore, in order to check that we have a type (2) grade * irrep it 
remains to show that 

rr(Ei ) T = rr(E i), rr(E i) T = - rr(Ei ), 1 <i<2, 
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where 

rr(E)~{3 = ( - 1) ({3)rr(E)f3a' 1 <a,p<4, 

where we define (/1) = 0 for p = 1,4 and (P) = 1 for 
p = 2,3, in accordance with our prescription that eo, eo are 
even and el , e2 are odd vectors. By direct calculation we have 

r 
_a l12 0 

o ) T 0 0 0 o -rrE I 
rr(E1) = ~ 0 0 (1 _;)112 - ( ), 

0 0 

r 
0 _ a l12 

- (1 ~ a)"} ,,(E'); 
T 0 0 0 

rr(E2) = ~ 0 0 

0 0 

similarly, rr(Ei) T = - rr(Ei ), i = 1,2. Thus the above in
deed gives rise to a type (2) grade • irrep of gl(211), as 
required. Note, however, that rr is not a * irrep. 
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Representations of the diffeomorphism group describing an infinite Bose 
gas in the presence of ideal vortex filaments 
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A number of representations of the group of volume preserving diffeomorphisms of M = S3 in 
the finite-volume case and M = R 3 in the infinite-volume case that describe a Bose gas in the 
presence of a vortex filament are examined. The core of the vortex is taken to lie along a curve 
r. Let Dif f~ (M) be the group of volume preserving diffeomorphisms that map r onto itself, 
My the manifold M with r removed, and Map (My, n the space of smooth maps of My into 
the complex numbers of modulus unity. It is shown, using the formalism of Klauder [J. Math. 
Phys. 11,233 (1970)], that an infinite number of inequivalent representations ofDif f~ (M) 
exist in the infinite-volume limit using cyclic vectors, which are coherent states based on 
elements in Map(My,n.1t is found, however, that these states have questionable physical 
significance since they appear to violate the continuity equation for quantum probability flow. 
This leads to the postulation that Dif f~ (M) acts as gauge group. The representations of 
Dif f~ (M) are then used to construct induced representations of the full group volume 
preserving diffeomorphisms of M, which are realized in the Hilbert space over the space of 
unparametrized loops in M in a natural way. These latter representations are found to be 
essentially the ones under current study in quantum hydrodynamics [G. A. Goldin, R. 
Menikoff, and D. H. Sharp, Phys. Rev. Lett. 58, 2162 (1987)]. 

I. INTRODUCTION 

The nonrelativistic current algebra associated with glo
bal gauge symmetry has for some time been used to describe 
a number of physical systems. 1-6 Since the algebra is a homo
morphism on the algebra of smooth vector fields over the 
manifold of interest, one may instead examine representa
tions of the group of diffeomorphisms of the manifold in 
order to describe nonrelativistic quantum mechanics. The 
derivative of an irreducible representation of the group of 
diffeomorphisms yields a representation of the algebra of 
smooth vector fields, the operators of which form a complete 
set of observables for the system. Hence, one has the identifi
cation of distinct irreducible representations of the group of 
diffeomorphisms and distinguishable nonrelativistic quan
tum systems. 

In this paper we restrict attention to the subgroup of 
volume preserving diffeomorphisms and a simple set of rep
resentations of this group that describe the flow surrounding 
an ideal vortex filament in a Bose gas at zero temperature. 
The Bose gas shall be considered to be in M = R 3 or M = S 3 

depending on whether a finite or infinite volume is being 
considered. Let r denote the curve representing the core of 
the vortex and let My be the manifold M with the curve r 
removed. We take the space of smooth maps from My to the 
complex numbers of modulus unity, denoted Map(My, T), 
as a space of possible order parameters describing the con
densate. Let Dif f; (M) denote the subgroup of volume pre
serving diffeomorphisms that. leave the position of the r 
curve unchanged. We first examine regular representations 
ofDif f~ (M) that utilize elements ofMap(My, n as cyclic 
vectors in L 2(M), where the volume of M is finite: These 
representations are found to be equivalent. However, in the 
infinite-volume limit we examine exponential representa-

tions of Dif f; (M) utilizing coherent states based on ele
ments of Map(My, n as cyclic vectors and find, using the 
formalism of Klauder, 7 an infinite number of inequivalent 
representations. We derive a simple criterion that distin
guishes these representations. 

We then examine the generating functional for these 
representations, which is essentially the expectation value of 
the operators of the representation in the cyclic vector, and 
derive a functional differential equation for the generating 
functional. The generating functional may be used to calcu
late current--current correlation functions for the Bose gas in 
the presence of a vortex filament, and we illustrate the rela
tion of this functional to the path integral. 

Next, we examine the elements ei(J(X) of Map(My, n 
and note the interesting result that if they are used as single
particle wavefunctions, one finds that they do not conserve 
probability flow unless the mUltiply valued function e has a 
gradient that is divergence-free. This restricts the possible 
elements ofMap(My, T) that may be used as physical order 
parameters, and leads to the conclusion that the action of 
Dif f~ (M) should be similar to that of a gauge group. One 
is then led to examine operators for describing the vortex 
that depend only on the position of the core and not on the 
flow surrounding it; these are the vortex operators ofRasetti 
and ReggeK and we give a coordinate-free derivation of these 
operators. 

Finally, noting that the action of Dif f; (M) is similar 
to that of a gauge group, we are led to examine induced 
representations of the full group Diffp (M) induced from 
Dif f~ (M), whose carrier space becomes the space of 
square integrable functions over the space of unparame
trized loops. These representations are found to closely re
semble those recently treated in Ref. 4. 

The paper is organized as follows. In Sec. II, we intro-
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duce the current algebra and representations ofDif f~ (M) 
in finite volume. We then take the infinite-volume limit in 
Sec. III and discuss the generating functionals in Sec. IV. 
The quantum vortex operators are derived in Sec. V and the 
induced representations of DifJ;. (M) induced from repre
sentations of Dif f~ (M) are obtained in Sec VI. 

II. EXPONENTIATION OF THE ALGEBRA AND THE 
DIFFEOMORPHISM GROUP 

We shall restrict attention in this section to a Bose gas 
initially in M = S 3 and endowed with a positive metric such 
that its volume is finite. We shall further treat the current 
operators as one-forms given by 

J(x) = ..!.[(pt ~ tP - ~ (pttP] dXi. 
2i ax' ax' 

(2.1 ) 

Here, the fields tP (x) are either boson or fermion fields satis
fying canonical commutation or anticommutation relations, 
respectively. We shall restrict attention to representations 
that describe the Bose gas. The J(x) are to be considered as 
operator valued one-forms acting in some Hilbert space. We 
let E denote the algebra of smooth vector fields on S 3 and let 
Eli denote the subalgebra of smooth divergence-free vector 
fields. We consider the smeared current operators, which 
may be viewed as operators obtained when pairing J(x) with 
an element g in E and integrating with regard to the volume 
form df-l. We shall denote the resulting oeprator by J(g). 
Hence, more precisely, J is an element of the space of linear 
functionals on E taking values in the space of operators of 
some Hilbert space, and thus is a generalized one-form in the 
dual to the Lie algebra. In local coordinates we may think of 
J(x) as a one-form whose components are distributions. 
With this definition, J(x) may also be regarded as an opera
tor valued current in the De Rham sense. 

Note that since there is a metric on M, there is a natural 
way to assign to every vector field gE::: a one-form via the 
metric. We shall denote this one-form by the same letter g. 
Then we may write the operator J(g) as 

J(g) = JM J 1\ *g = JM J 1\ ig df-l , (2.2) 

where g is considered a one-form in the first expression; * 
denotes the Hodge dual; and g denotes a vector field in the 
second expression, where ig is interior product by the vector 
field g. 

The operators J(g) satisfy the commutation relations 

[J(g),J(f)] =iJ([g,j]) , (2.3) 

where [g,J] denotes the bracket on vector fields. The ex
ponentiated operators eitJ(g) = U( t/J, ) then form representa
tions of one-parameter groups of diffeomorphisms generated 
by g. The set of all such operators as g ranges over Eli form a 
representation of the group of volume preserving diffeomor
phisms DifJ;. (M). 

We have the regular representation U( t/J) of 
DifJ;. (M) in L 2(M) given by 

[U(t/J)f](x) =f(t/J-1x). (2.4) 
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If t/Jt is a one-parameter group of volume preserving diffeo
morphisms generated by g, we have immediately that the 
action of J(g) in L 2(M) is just by Lie differentiation with 
respect to the vector field - g. This corresponds to the ac
tion of the quantum current operator J(x) in the single-par
ticle Hilbert space. 

Recall that an ideal Bose gas at zero temperature has all 
its particles in a single quantum statef (x), which is taken as 
the order parameter for the system when the number of par
ticles becomes sufficiently large. Suppose an ideal vortex ex
ists in this system, whose core lies along a smooth curve y. 
Then the order parameter may be written as eilJ(X) if the den
sity is taken as unity and the flow of the condensate is given 
by the gradient of O(x). The curl ofthis flow field then has 
support of y and vanishes elsewhere. 

Before proceeding to the case where the number of par
ticles becomes large, it is simpler first to discuss the single
particle case and consider eilJ as a state in the single-particle 
space. We fix the volume of M = S3 to be unity, so that the 
density is unity. For simplicity, we shall consider the case 
where y is a closed unknotted curve in M. Denote by My the 
manifold M with the curve y removed. The quantum state 
f(x) = eilJ(X) should be considered as a function on My since 
o is multiply valued on My and ill defined on y itself. Hence, 
f (x) may be considered as an element of the set 
Map(My,T). To each element eilJ(x) in Map(My,T) we may 
associate a global one-form a lJ , given in local coordinates by 
alJ = [(a laxi ) 0 ]dXi. Then, for any curve r' that links y 
exactly once, we have f yalJ = 21m and dalJ = 0, so that alJ is 
in the nth De Rham cohomology class in H I (M,R). Notice 
thatthe expectation value of the operator J(x) in the state eilJ 

is just the one-form alJ. The space Map(My,T) forms a 
group under pointwise multiplication and is disconnected, 
its various components Mapn (My,T) being labeled by the 
above winding number. Since each De Rham cohomology 
class has a unique harmonic representative, there exists a 

unique element eiIJ
" in Mapn (My,T) such that an is harmon

ic. These states may be considered the most "vortexlike" 
single-particle states since they yield a probability flow 
[which is the expectation value of J(x)] that is divergence
free and whose curl has support on y. Of course, it should be 
remembered that at this stage we are only considering a sin
gle particle. 

Having isolated a closed curve y in M, there are several 
possible subgroups of Diff(M) that are of interest. First 
there is the subgroup of diffeomorphisms DifjY(M) that 
map yonto itself. Second, there is the subgroup Dif frO (M) 
that leaves every point of y unchanged. Finally, there is the 
subgroup Diff(My), which are the diffeomorphisms of My. 
Of course, corresponding to each of these groups is the corre
sponding subgroup of volume preserving diffeomorphisms, 
which we shall augment with the subscript f-l. We note that 
Dif f~ (M) is a subgroup of Diffl' (M), but it is not a nor
mal subgroup. We note further that Dif It (M) is a normal 
subgroup of Dif f~ (M). In fact, since an arbitrary diffeo
morphism in Dif f~ (M) can yield an arbitrary smooth in
vertible mapping of y onto itself when we restrict it to y, we 
see that the quotient group Dif f~ (M)/Dif fri(M) is iso-
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morphic to Dif I (S 1), the diffeomorphisms of the circle. We 
also make the following remark. Consider the one-forms an 
that are harmonic on My and the vector fields g n associated 
to the an via the metric. Then, the one-parameter groups of 
diffeomorphisms generated by the vector fields gn lie in 
DifIJL(My). However, they do not lie in Dif IY(M) for 
n =1= 0 since the vector fields g n are no longer regular on the 
curve r. To see this, it is easiest to consider M = R 3 momen
tarily endowed with the Euclidean metric and consider the 
case of the rectilinear vortex. We choose polar coordinates 
(r,x,z) and let the vortex lie along the z axis. Then 
an = (nlr)dxandgn = (nlr)(alax),whichissingularfor 
r = O. An arbitrary element of DiflJL (My) may be approxi
mated arbitrarily closely by elements in Dif It (M). For 
example, the one-parameter groups generated by the gn may 
be approximated by one-parameter groups generated by 
b(x)gn' where b(x) is a smooth function that vanishes on r 
and rises quickly to unity within a small tubular neighbor
hood ofr. 

We shall make use of the following theorem due to Ver
shik et al.9 Let Y be an open connected submanifold of M 
with compact closure. Suppose there exists a smooth positive 
measure on M that is ergodic under the action ofDif J:. (M). 

-2 JL 
Let L (Y) be the space of complex square integrable func-
tions with support in Yorthogonal to constants. Then Z 2 [ Y] 
is irreducible under the representation [ U( ¢) I](x) 
= I( ¢ - I x) of volume preserving diffeomorphisms. 

Since the Riemannian measure on My is ergodic with 
respect to DiflJL (My), we have in particular that the regular 
representation of DiflJL (My) isirreducibleonL 2(My) and, 
hence, on L 2(M) since M and My differ by a set of zero 
measure. One might try to find an invariant subspace of 
functions with nonzero support on r itself, but since ele
ments of an L 2 space are really equivalence classes of func
tions that agree up to sets of zero measure, these functions 
are all in the zero equivalence class. Further, since any ele
ment of DiflJL (My) may be approximated arbitrarily close
ly by elements in Dif It (M), we conclude that the regular 
representation of Dif It (M) on L 2(M) is irreducible as 
well. 

Suppose we now consider the Hilbert space H n given by 
choosing eiIJ" as a cyclic vector for a representation 
Un of Dif It (M), i.e., set Hn = completion of 
span [ Un (t/!)/IJ,,] in the L 2 norm, where 
Un (t/!)exp[iOn (X)] =exp[i0n(t/!-Ix)]. Here, On are the 
elements of Mapn (My,n whose associated one-forms are 
harmonic. Since the cyclic vector eiIJ" is in L 2(M), however, 
and from the above result we know that the corresponding 
representations are irreducible, we have the interesting re
sult thatthe Hilbert spaces H n coincide with L 2 (M) and the 
representations Un are unitarily equivalent to the represen
tation U given in Eq. (2.4). 

These results are easily generalized to the N-particle 
Hilbert space by taking tensor products of the above repre
sentations. The cyclic vector is taken as 

n = IIexp(iOn(xi » (2.5) 
i 

and the representation acts as 
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[U( t/!) f] (x1,···,xn ) = I (t/!-IX1,···,t/!-lxn) . (2.6) 

Once again the various representations coincide. 
Hence, we see that if we use the states /IJ·e 

Mapn (My,n as cyclic vectors for representations of 
Dif I~ (M), all the representations are unitarily equivalent 
as long as we are considering a finite number of particles in a 
finite volume. However, we should remark that this does not 
mean that the states eiIJ

• that describe a vortexlike state are 
indistinguishable. In fact, they have quite different energies 
because the expectation value of the current operator in 
these states is just the one-form an and the energy is 
thus essentially the hydrodynamic energy 
En = (!)f Man 1\ *an . This occurs because the unitary op
erator that relates the various representations does not com
mute with the Hamiltonian. Note that as long as M has 
finite volume, the energy En is finite since the space of one
forms is a Hilber space, where the norm is precisely given by 
the expression lIall2 = SMa 1\ *a. 

This situation changes in the infinite-volume limit, 
where the energies diverge. In this case, one finds representa
tions of the diffeomorphism group that are inequivalent for 
differing vortex strengths, as we illustrate in Sec. III. 

III. REPRESENTATIONS IN THE INFINITE-VOLUME 
LIMIT AND COHERENT STATES 

We now tum to the study of representations of volume 
preserving diffeomorphisms describing a vortex filament in 
M in the infinite-volume limit. These representations are of 
the exponential type and may be conveniently obtained us
ing the exponential Hilbert space formalism of Klauder,7 

which we briefly review. 
Let h be a Hilbert space. We shall denote the vectors in h 

by lower-case letters. We define the exponential Hilbert 
space H = EXP(h) as the completion of the span of vectors 
of the form 

It is known that H corresponds to the Fock space based on h. 
The above states are nothing but the coherent states, i.e., 
eigenstates of the annihilation operator. Elements of H will 
be labeled by upper-case letters. The inner product in H is 
given by 

('11,'11') =exp[ - q)IIt/!1I2- Q)IIt/!'11 2 + (t/!',t/!)] (3.2) 

= NN'exp[t/!',t/!)] , (3.3) 

with 

N' = exp[ - q) 1It/!'11 2], N = exp[ - q) II t/!II 2] . 
(3.4) 

The annihilation operators are defined as follows. For every 
t/! in h, we have an operator ¢(t/!) on H defined by 
¢(...1.)'I1' = (...1.,t/!')'I1': These satisfy the commutation rela
tions 

(3.5) 

For any bounded operator b on h, one can associate an opera
torBonHby 
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('I1',B'I1) = NN' exp(t/J',bt/J) . (3.6) 

Hence, B may be identified with 

(3.7) 

If B = exp( - iWt) and b = exp( - iwt), where w is self
adjoint, so that Band b are unitary, we then have 

('I1',Wt/J) = (t/J',wt/J)('I1','I1) . (3.8) 

Let An be an orthonormal basis of the Hilbert space h. Then, 
from Eq. (3.8), we find that W is bilinear in the annihilation 
operators as 

(3.9) 
nm 

We use Klauder's shorthand notation of setting 
W= (</J,w</J). 

Let I be an element of an index set such that t/J[I] Eh and 
let the set of such t/J [I] form a total set. Consider two such 
sets oflabeled vectors t/J' [I] and t/J[I] such that 

'11'[/] = exp[ - i 1m (s,t/J) ]'11[/] , (3.10) 

where S is in h. Computing the inner product of '11' [II] with 
'11' [/2], one finds 

('11' [ld,'I1' [12]) = exp[( - !)IIt/J[/I] - s 112] 

Xexp[( - ~)IIt/J[/2] - 511 2] 

xexp[(t/J[/d -S,t/J[/2] -s)]· (3.11) 

Identifying the inner product with the expression in Eq. 
(3.3), we have the following identity that identifies t/J' [I] as a 
translated set: 

t/J'[I] = t/J[/] - s· (3.12 ) 

Note that 1m (s,t/J[/] ) = 1m (s,t/J' [/]), so that either t/J[I] or 
t/J' [I] can be used in defining the phase in Eq. (3.12). We see 
that translated sets in h correspond to phase shifted sets in H. 
From the action of the annihilation operator <P' (A) on '11' [1], 
we have the result 

</J'(A) = </J(A) - (A,s) , (3.13 ) 

which demonstrates the shift on the annihilation operator. 
Since S is in h, we have the unitary equivalence between </J' 
and </J, which is accomplished using the unitary operator 

V=exp[</J(s)t -</J(s)]. 

Inequivalent representations of the annihilation and 
creation operators are obtained when S is not in h. This 
usually occurs when the norm of S becomes infinite as, for 
example, if S is the limit of a sequence of vectors in h whose 
norm goes to infinity. The translation in this case is termed 
improper. Note that even though t/J and S are no longer in h, 
their difference still is by assumption. Thus, given a Fock 
representation </J(A) ofthe annihilation and creation opera
tors and two translated representations 

</JI (A) = </J' (A) + (A,SI)' </J2 (A) = </J' (A) + (A,s2) 

defined for a set A dense in h, then </JI and </J2 are unitarily 
equivalent if and only if (Sl - s 2) is in h. 

Let G be a Lie group. Let u (g) be a unitarily irreducible 
representation of G in h and let '110 be the vector in H based 
on the vector t/Jo. Then we have a continuous family of states 
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in H given by '11 (g) = U(g) '110 • Here, U(g) is related to u(g) 
by Eq. (3.6). If Wi is the set of self-adjoint operators that 
generate the representation u, then we have the accompany
ing generators W; = (</J,wi</J) that generate U with 
</J(A)<I>(g) = (A,</J(g»<I>(g), as shown previously. 

Suppose we now define a translated set of vectors as 

'I1'(g) = exp[ - i Im(5,t/J'(g»] '11 (g) , (3.14 ) 

where we take '11' (g) = exp [ t/J' (g) ]. Then we have a new set 
of generators W; = (</J' ,wi<P') for a new representation U' of 
G, where </J'(A)'I1'(g) = (A,t/J'(g»'I1'(g). The annihilation 
operators </J and </J' are related by a translation, as in Eq. 
(3.13). 

As shown previously, we arrive at consistency condi
tions for S that have two solutions. The first occurs for S = 0 
and t/J' (g) = u (g) t/Jo. Then we have that the representations 
U and U' coincide and U is reducible. In particular, if u is 
irreducible, the representation U is the direct sum of irredu
cible representations on each n-particle subspace. This may 
be seen because the generators of the representation com
mute with the number operator. Hence, subspaces corre
sponding to a particular number are invariant and the repre
sentation is reducible. We note that the generating 
functional for the representation U may be written as 

(3.15 ) 

indicating the exponential nature of the representation. 
The second solution occurs when S = t/Jo and 

t/J'(g) = (u(g) - l)t/Jo. This corresponds to a translated rep
resentation U of G. As long as t/Jo lies in h, the representations 
U and U' will be equivalent since the annihilation operators 
that comprise the generators are equivalent. However, if t/Jo 
lies outside of h, the two representations U and U' will be 
inequivalent. These will be called representations obtained 
by improper translation. 

Suppose that we are given two such representations UI 

and U2 corresponding to different choices of t/Jo labeled Sl 
and S2' respectively. Then these two representations are uni
tarily equivalent to one another if and only if SI - eiCs2 is in 
h, i.e., if </JI is unitarily equivalent to eiC</J2 for some constant c. 
The extra phase occurs here because the generators of the 
representations are bilinear in the annihilation and creation 
operators. 

If the representation u is irreducible and the representa
tion U is obtained by an improper translation, u is irreduci
ble in general. This is because, on the carrier space for these 
representations, the number operator no longer exists. All 
the vectors in these spaces involve infinite superpositions of 
states with all possible particle numbers. What would be re
quired for reducibility would be an operator Y = (</J,y</J) that 
commutes with W(X) = (</J,w(X)</J); instead, one finds that 
[W(X),Y] = (</J,[w(X),Y]</J) and thus this operator does 
not exist as a result of the irreducibility of u (g). 

This concludes a brief summary of the Klauder treat
ment. We now construct representations of Dif f~ (M) in 
the infinite-volume limit using the above formalism. We 
shall set M = R 3 with the Euclidean metric, so that M has 
infinite volume. We set h = L 2(M) and use the cyclic vector 
'110 = exp(t/Jo), t/JoEMap(My,n. Let g be an element of 
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Dif !~ (M). The representation acts on '1'0 as in Eq. (3.14), 
yielding 

U(g) '1'0 = exp( + i(.po,.p'(g))'I"(g)) (3.16) 

and .p'(g) = (u(g) - 1).po. The representation U of 
Dif !~ (M) is obtained by an improper translation using .po 
since elements in Map(My,n are no 10ngerinL 2(M): It is 
irreducible since Dif !~ (M) acts irreducibly inL 2(M). Re
call that two such representations corresponding to .po and 
.p~ are equivalent if and only if.po - eiC.p~ is in L 2(M). We 
write this condition as 

(3.17 ) 

We are considering the case where .po and .p~ are in 
Map(My,n; thus we write .po = eifJ(X), .p~ = eifJ'(X) and set 
!(x) = 8(x) - 8'(x) - c. Then the requirement for equiv
alence of the representations becomes 

(3.18 ) 

This gives a general condition for two exponential represen
tations of Dif !~ (M) to be equivalent. 

Let us return to the case of a rectilinear vortex and sup
pose that! (x) depends only upon the polar angle X. Then 
the requirement is that the integral 

(21T 
Jo dX sin

2
(f(x)) (3.19) 

is nonvanishing. This is true for any smooth! (X) that is 
non vanishing. Hence, we have an infinite number of inequi
valent representations, each of which is labeled by various 
functions! (X). In particular, the representations based on 
the canonical choices einx in Mapn (My,n are all inequiva
lent and these are based upon cyclic vectors that are coherent 
states describing the quantized vortex flow. Note that the 
expectation value of the current operator in the coherent 
state exp (eifJ ) is again the one-form an' as it was in the single
particle case. We remark that the statement of in equivalence 
of these representations is equivalent to the statement of 
symmetry breaking since the representations obtained by 
improper translation the annihilation operator has obtained 
a non vanishing expectation value in the ground state, as seen 
in Eq. (3.13). We also remark that the representations found 
here are very similar to those discussed in Ref. 10. 

IV. GENERATING FUNCTIONALS AND BROKEN 
SYMMETRY 

Many representations of the diffeomorphism group are 
best characterized in terms of their generating functionals. 
In the case of the group of volume preserving diffeomor
phisms, the generating functional is essentially the generator 
of correlation functions for the current operators in the cy
clic vector. Let L ( .p) be a complex valued functional on a Lie 
group G. Then there exists a Hilbert space: a continuous 
unitary representation U(.p) of G, with the cyclic vector .0 
such that L(.p) = (.o,U(.p).o) if and only if L satisfies the 
conditions (i) L is continuous with respect to the topology of 
the group; (ii) L( 1) = 1; and (iii) L is positive, i.e., the ma
trix given by ilL (.pi- t.pj) II, i,j = 1, ... , V, is positive definite. 
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For the regular representation ofDif !~ (M) onL 2(M) 

with cyclic vector eifJ, the generating functional is of the form 

(4.1 ) 

where tPe Dif !~ (M). Note that the integrand may be con
sidered as a cocyle X'" (x) satisfying the cocycle condition 

X",(x)XtII (.p-IX ) = X"'tII (x) . (4.2) 

However, we remark that since the integrand is expressed as 
a product, these cocycles are trivial in the sense of cocycles 
that appear in the theory of induced representations. t t In 
fact, the trivial nature of these cocycles is an alternative 
proof that the representations Un introduced in Sec. III are 
equivalent when M has finite volume. It is readily verified 
that the functional Lt(.p) satisfies conditions (i)-(iii). In 
general, two representations of G will be unitarily equivalent 
if their generating functionals are equal, but the converse is 
not necessarily true, as the representations Un illustrate. 

For the N-particle Hilbert space we have the generating 
functional given by 

LN(.p) = (1IV)N(L 1(.p))N , (4.3) 

where we have explicitly restored the volume factor. Taking 
the infinite-volume limit, we find the generating functional 

L(t/J) = exp[f dp.{e-ifJ(X)eifJW'X) - I}] . (4.4) 

Here, we have set the average density in the thermodynamic 
limit to be unity. It is readily verified that the generating 
functional (4.4) is the expectation value (.o,U(t/J)O) in the 
cyclic vector exp(eifJ ) and thus corresponds to the generat
ing functional for an exponential representation, as may be 
seen from Eq. (3.15). We remark that L satisfies the func
tional differential equation 

DL(.p) =afJ(x)e-ifJ("'X)eifJ(X)L(t/J) , (4.5) 
Dg(X) 

where afJ (x) is the one-form corresponding to eifJ. We con
sider the functional derivative in this case as a one-form im
plicity defined by 

fM iD~X) L(.p)/\*g= ~tL(.pI.p)II=o, (4.6) 

where g(x) generates the one-parameter group of diffeomor
phisms .pI when considered as a vector field. The derivatives 
of the functional L ( t/J) yield correlation functions for the 
current operators, as in Ref. 5. The functional differential 
equation (4.5) demonstrates the exponential nature of the 
generating functional. We further remark that as shown pre
viously, the representations described by the functional L 
break topological symmetry in the following sense. By tak
ing a functional derivative, we have immediately the initial 
condition (J) = a fJ , so that the line integral of (J(x» over 
r' yields 21Tn, as required for a quantized vortex. 

Parallel to this development, we may also write a path 
integral representation for the current correlation functions 
as follows. We let t/J ( 'T ,x) be the thermal fields defined on 
M xs I. Then we may write the generating function as 
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Here,gis in E andJ(g) is as before, but withJ(x) written in 
terms of the thermal fields ¢ ( r,x). We evaluate 
this by setting ¢( r,x) = ¢o(x) + 1I( r,x), where 
¢o = eilieMap(My, nand 11 represent fluctuations. The ze
roth-order contribution in the zero-temperature limit is just 

L~(g)=exp[JMalit\*g]. (4.8) 

Comparing with Eq. (4.4), we see that L( t/J,) reduces to 
L~ (g) when t is sufficiently small. Further, we know that 
L~ (g) generates normal ordered current-current correla
tion functions at zero temperature, neglecting quantum fluc
tuations. Taking two functional derivatives, one verifies im
mediately that in local coordinates 

_l> __ l>_L(t/J)I,p=1 
dg'(x) l>gl(y) 

= a;f}(x)a/}(y) + (a;l}(x»(a/;1(x»l>3(x - y) , (4.9) 

whereas 

l> l> 
-"--"-L~(g) =a;f}(x)ajO(y). (4.10) 
¢g'(x) l>gl(y) 

The difference between (4.9) and (4.10) is precisely the con
tribution due to normal ordering. Hence, we have a direct 
connection between the generating functional for a represen
tation of Dif f~ (M) and the path integral. Since only the 
zeroth-order term is taken into account, we conclude that 
the generating functionals (4.4) and (4.7) neglect fluctu
ations entirely, which is not surprising since they are based 
on coherent states. 

V. THE HODGE DECOMPOSITION AND QUANTUM 
VORTEX OPERATORS 

Having constructed some representations of the group 
Dif f~ (M) in Sec. IV, we still have the possibility of con
structing representations of the full group Dif f I' (M) . We 
shall tum to this in Sec. VI, but for now we shall briefly 
discuss the role of various fluctuations in the system and the 
action of the various diffeomorphism groups. 

From a physical viewpoint, one may postulate two types 
of fluctuations of the condensate when considering a quan
tum vortex. First, there are fluctuations that do not move the 
position of the core, but change the flow surrounding the 
vortex so that it is no longer harmonic. Such a fluctuation 
may be viewed as changing the coherent state from one based 
on the element ili,,(x) in Mapn (My,n, where an is harmon
ic, to one based on some other element eili(x), where a is no 
longer harmonic and an and a are both one-forms on My. It 
is interesting to note that this is precisely the action of 
Dif f~ (M) on these states, even if the diffeomorphism is 
volume preserving. To illustrate this, we examine the action 
of Dif f~ (M) on the vortexlike state eili(x)". An arbitrary 
element ofDif f~ (M) takes this state to the state eili,,(,p- 'x) 
The one-form a associated with the latter state does not sat-
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isfy l>a = 0 and thus does not give a flow that is divergence
free. This occurs because d commutes with pullback, but l> 
does not, even when t/J is a volume preserving diffeomor
phism. We then have the following interesting observation. 
It then appears that the state eili,,(,p- 'x) violates the continuity 
equation since it has a time-independent probability density 
equal to unity everywhere except possibly at the core, but has 
a probability current that is not divergence-free. We then 
have two options. We could treat the continuity equation 
like an equation of motion and treat such fluctuations as 
going "off shell," as is done in field theory, or we can treat 
the action of Dif f~ (M) as something that does not really 
alter the physics. The former possibility has its drawbacks 
since the continuity equation arises as a conservation law for 
an internal symmetry and we expect it to hold as long as the 
symmetry is good. The second possibility requires that we 
treat the action ofDif f~ (M) as the action of a gauge group. 
This is in accord with the treatment of superfiuid dynamics 
as a gauge theory, where the superfluid velocity is not an 
observable; only the vorticity is an observable. The analogy 
is that a would no longer be an observable; only da would be 
an observable. Since da = 0 on My, everything depends only 
upon the choice of y. The action ofDif f~ (M) becomes like 
that of a gauge group if we note the following. The action of 
Dif f~ (M) is such that when it acts on iii" it never takes an 
out of its cohomology class. The resulting state 
U(t/J)eili" = eili,,(,p 'x) has an associated one-form a with a 
unique Hodge decomposition a = an + df for some func
tionfsince it still satisfies da = 0 on My. Here,f has com
pact support since t/J has compact support. Hence, we con
clude that U( t/J)eili" = eiJ"(x)eili,,(X) , so that the group 
Dif f~ (M) acts like a gauge group and the one-form a 
transforms like a connection under this action. We are thus 
led to look for representations of the full group Dif f I' (M) 
that somehow isolate this action of the subgroup 
Dif f~ (M). We shall do this in Sec. VI. 

Second, there are fluctuations that are fluctuations in 
the core position, but that do not change the harmonic na
ture of the flow. It is clear that any operators describing such 
fluctuations would depend only upon the position of the core 
of the vortex and not on the condition of the flow surround
ing it. A natural candidate for these operators are the vortex 
operators of Rasetti and Regge,8 and we now tum to their 
construction in coordinate-free language, making use of a 
Hodge decomposition for the operator J(x). 

Recall that Hodge theory gives a decomposition for a 
differential form as 

a = dl>Ga + l>dGa + a H , (5.1) 

where G is the Green's operator for the manifold. As above, 
we shall work on S 3 or R 3. In the case of R 3, we shall restrict 
attention to differential forms with compact support. Again, 
since the manifolds we are working on have metrics, we shall 
interchange freely between vector fields and one-forms and 
denote them by the same letter. We wish to consider a possi
ble decomposition for the current operator J analogous to 
the Hodge decomposition. This may not be possible for a 
generalized one-form because of a lack of a suitable Green's 
operator G on generalized one-forms. Indeed, the space of 
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generalized forms is not a Hilbert space and thus the usual 
treatments do not apply. Nevertheless, we may still obtain a 
decomposition of J from the decomposition of g as follows. 
We define differentiation of generalized one-forms in the dis
tribution sense, so that 

8J(g) = J(dg) , dJ(g) = J(~g) , (5.2) 

where ~ is the coderivative. Suppose there now exists a gen
eralized one-form K such that 

K(g) = J( Gg) . (5.3 ) 

Then a decomposition for J follows directly. Define 
J H (g) = J(Hg) , where His the projection onto the harmon
ic part for a one-form g. The generalized form J H exists since 
we may take it to be (1 - tl )J, where tl is the Laplacian. The 
Laplacian acts on J by virtue of the definitions of differenti
ation in Eq. (5.2). Then we have 

J(g) = J(d~Gg) + J(~dGg) + J(Hg) 

= d~K(g) + OdK(g) + J H (g) , (5.4) 

since G commutes with both d and ~. Define Jd = d~K and 
Jt) = ~dK. Then we have immediately dJd = 0, ~Jfj = 0, and 
tlJ H = ° in the sense of distributions, so that we have indeed 
achieved a decomposition of a generalized one-form. The 
construction depends entirely on the existence of K, which 
we shall assume for the particular operators of interest. 

Then we have the following proposition due to Kiril
lov. 12 Let E{j() denote the subalgebra of volume preserving 
vector fields g such that igdf-L is exact. This subalgebra is an 
ideal in Efj and contains the derived subalgebra [Efj,Efj] . 

The proof of the above follows by noting that 

(5.5) 

which yields the result. 
We may now construct the operators of Rasetti and 

Regge8 in the following way. If the vortex were classical and 
ideal and its flow were given by J(x), then we could write, 
for a vortex with unit circulation, 

*dJ=w, 

where 

I dXi(S) 3 . 
w = ds--~ (x -x(s»dx', 

r ds 
(5.6) 

i.e., w is a De Rham current describing the vorticity of the 
flow J. We shall now restore the operator nature of J using 
expression (5.6) and restrict ourselves to smearing vector 
fields in the ideal E{j()' Then we have 

J(g) = f Jl\igdf-L= f JI\*(*da) 

= f ~*J 1\ *a = f *dJ 1\ *a , 

where igdf-L = da. Using the definition for w, this becomes 

J(f) = w(a) = La, (5.7) 

so that these operators are expressible as line integrals and 
correspond to the operators given by Rasetti and Regge,8 but 
put in a slightly different formalism. We require that the 
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operators J( f) still satisfy the same current algebra: Note 
that these operators depend only upon a line integral over 
the vortex core and hence, as desired, will not describe fluc
tuations that may be occurring outside the core. Further, 
these operators are independent of the parametrization of 
the curve r. From our discussion above, we would expect 
that these operators should form a set of observables that 
shift the position of the core of the vortex, whereas the J(g) 
in the representations of Dif f~ (M) described above pro
duce changes in the flow surrounding the vortex. It is inter
esting that the appropriate smearing vector fields come from 
the ideal E{j(). 

We may write an expression for the linking invariant as 
an operator of the above type. We let 1" be a curve that links 
r. Define /3 as 

I dXi(S) 3 . 
/3= ds--~(x-x(s»dx'. 

y ds 

Then the linking invariant may be expressed as 

c(r,r') = 41TW(*dG/3) , 

(5.8) 

(5.9) 

where G is the Green's operator on M. Of course, we have 
neglected the exact operator nature of c( r,r'). As pointed 
out in Ref. 8, this operator should play the role of a Casimir 
operator for particular representations of the diffeomor
phism group. We shall attempt to write some possible repre
sentations with this property in Sec. VI. 

VI. INDUCED REPRESENTATIONS OF Dlf ' .. (M) FOR 
THE VORTEX 

Recall from the discussion in Sec. V that we needed to 
look for representations of the full group Dif f /J. (M) that 
isolated the action of the group Dif f~ (M). This is conve
niently done using the theory of induced representations and 
the method of orbits, which we now briefly review. II 

Given a Lie group G and a subgroup H of G, we may 
form the left coset space X = G / H. Let Ube a representation 
of H in a Hilbert space V. If G may be given a measure that is 
invariant under the action of G, then we always have the left 
regular representation of G in L 2( G, V) given by 
[U(g) f] (go) = f (g-lgO)' Now consider G as a principal 
bundle over X and choose a global section s of G that is 
smooth up to a set of measure zero (recall that smooth global 
sections of a principal bundle do not exist unless the bundle is 
trivial). Restrict the left regular representation to the space 
L 2 ( G,H, U) off unctions in L 2 ( G, V) that are equivalent with 
respect to the representation of U of H, i.e., that satisfy 

f(gh) = U(h -I)f(g). (6.1) 

The induced representation of G induced from the subgroup 
U is then defined to be the left regular representation of G on 
L 2 ( G,H, U): It may also be realized in the space of square 
integrable functions L 2 (X, V), with values in Vas 

[U(g)f](x) =A(x,g)f(g-IX) , (6.2) 

where A (x,g) is a cocycle taking values in the space of opera
tors on V defined as follows. Define an element h(x,g)eHby 
g-IS(X) = s(g-Ix)h(x,g). Then A (x,g) is taken as 
U(h(x,g) -1). Here, A (x,g) satisfies the cocycle condition 
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A(x,g)A(g-lx,g') = A (x,gg') . (6.3 ) 

The measure used to define L 2 (X, V) may be obtained by 
projecting down the measure from G, which may be roughly 
thought oflocally as a product measure over X, with X over 
the fiber that is isomorphic to H. We shall assume that such a 
measure exists and that it is invariant under the action of G. 
Alternatively, the representation may be thought of as acting 
in the space of sections of some appropriate vector bundle 
over X with fiber given by V, constructed as follows. Form 
the cross product G X Vand then mod out by the equivalence 
relation (g,u) -(gh,U(h -I )u). The resulting vector bundle 
is denoted G X u V. This bundle is a vector bundle over X 
with fiber V and it is known that the space of sections of 
G X u V is isomorphic to the space of equivariant functions 
on G given in Eq. (6.1). The induced representation U then 
acts as a left regular representation on this space of sections. 

The induced representation is often not irreducible. 
This is most easily seen from a brief discussion of the method 
of orbits. In this theory one chooses an element F in the dual 
to the Lie algebra and examines the orbit under the coadjoint 
action of the group that passes through this element. The 
orbit is isomorphic toX = G IGF , where GF is the stabilizer 
of F, and has a symplectic structure, so that it plays the role 
of a phase space. The symplectic two-form is then used to 
obtain a character representation ofthe stabilizer GF ; this is 
then used to induce a representation of G on the space of 
equivariant functions over the orbit, i.e., over phase space, as 
was described above. One then finds a situation similar to 
what happens when one looks at the regular representation 
of the Heisenberg-Weyl group on the space of square inte
grable functions over phase space. This representation is re
ducible, but becomes irreducible when restricted to the space 
of square integrable functions over the position coordinates 
alone. What is then required is to pick an appropriate polar
ization of X, i.e., the coordinates that will play the roles of 
momenta and position. Irreducible representations are then 
obtained by taking the representation to act on equivariant 
functions over just the position coordinates. A case of partic
ular interest is when X has a complex structure, in which 
case it is Kahler. Then the irreducible representations are 
obtained by taking the representation space as the space of 
holomorphic sections of a holomorphic vector bundle over 
X. When G is compact, for example, and H is the maximal 
torus, then the irreducible representations occur when U is a 
highest weight character representation of H. Then X is 
Kahler and the bundle G X u V is holomorphic. The repre
sentation acts irreducibly in the space of holomorphic sec
tions of G X uV, which is a statement of the Borel-Weil 
theorem. More details of this may be found in Ref. 13. 

We now wish to see how far we can apply the above 
theory to the representations we have been discussing. Let 
us work in S3 and choose G = Dif .t;. (M) and 
H = Dif I~ (M). Choose as the representation U the regu
larrepresentationofDif I~ (M) onL 2(M) discussed above, 
so that V = L 2(M). Then we have that 
X = Dif II' (M)/Dif I~ (M). Let Map(S I,M) be the loop 
space on M. Here, Dif I I' (M) has a natural action on this 
space by a push forward. Consider two loops in M that lie in 
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different knot classes. In order to get from one knot to an
other, it is necessary to pass two strands of the knot through 
one another some number of times. Now imagine that we try 
to accomplish this using a diffeomorphism of M. At the 
point where the two strands are crossing, however, the dif
feomorprhism would be mapping two separate points in M 
to the crossing point and, hence, would no longer be invert
ible. Hence, we conclude that the action of the diffeomor
phism group cannot change the knot class of the loop. Using 
this we see that the action of Dif I I' (M) on Map(S I,M) 
yiel~s a foliation of Map(S I,M), with each orbit being la
beled by the knot class. Let 0 y be one of these orbits based on 
the loop y. The action of the subgroup Dif I~ (M) on y 
yields an arbitrary mapping of y onto itself. This may also be 
accomplished by a reparametrization of y. Then we see that 
the quotient Dif I I' (M)/Dif I~ (M) is actually isomorphic 
to the orbit 0 modulo reparametrizations and thus may be 
thought of as the space of unparametrized loop configura
tions of a particular knot class or as Oy = OyiDif/(S I), 
where Dif I(S I) acts by reparametrization. The induced rep
resentation may then be realized in the space of square inte
grable functions over the space of unparametrized loops on 
M that take values in L 2(M). 

To construct the representation, all that remains is a 
choice of cocycle A (x, tP), which takes values in the operators 
in L 2(M). This follows from a choice of section in 
Dif .t;. (M). A possible choict;., of section may be as follows. 
Choose a reference loop Yo in Oy and assign to it the identity 
in Dif I I' (M). Let t/JeDif II' (M). Then we obtain a new ele
ment tP-lyo in Oy by a push forward. We also have the 
unique harmonic forms a",-,yo and ayo on M",-,yo and Myo' 
respectively, for a fixed De Rham cohomology class. Then, 
under pullback, a = tP*ayo is a form on M",-,yo' which is no 
longer harmonic. We remark that we should be somewhat 
reserved in these manipulations because the diffeomorphism 
tP changes the mainfold on which the one-forms are defined. 
Then we have the Hodge decomposition a = a",-' Yo + dl 
for some function! We conjecture that there exists a diffeo
morphism tPo such that rMa = a",-' Yo' Then the resulting 
diffeomorphism ip = tPotP takes a yo to a",-,yo under pullback 
and thus preserves the harmonic nature of the flow. Hence, it 
is a harmonic map in the sense of Ref. 14. We conjecture that 
this diffeomorphism as well as tPo exist and are unique. The 
existence of ip is not obvious and gives rise to the following 
problem: For two arbitrary loop configurations y and 1" in 
M, there exists a diffeomorphism ip of M such that ip is a 
harmonic map from My to Mr" We remark in this context 
that in the case of two-dimensional Riemannian manifolds, 
harmonic maps are known to correspond to conformal 
transformations,14 but we do not know the corresponding 
results for arbitrary manifolds. Once the existence of ip is 
established, we may assign to tP-lyo the diffeomorphism 
(tPotP) -I to give a section ofDif II' (M). The cocycleA (x,tP) 
then corresponds essentially to the action of U( tPo) in 
L 2(M). Note that we may also think of the induced repre
sentation as acting in the space of sections of an L 2 (M) bun
dIe over X - 0 y' It is interesting to note that if we restrict 
ourselves to one state in the fiber V = L 2(M), in particular 
to the state that corresponds to the canonical element in 
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Mapn (My,n, the bundle over Oy becomes a line bundle and 
the resulting representations look very similar to those stud
ied recently in the context of quantum hydrodynamics. 4 

We remark that the above procedure may be generalized 
to the R 3 case by using the exponential representations of 
Dif I; (M) to induce representations of the full group 
Dif 1p.(M). 

We further remark that the above orbits are also the 
coadjoint orbits. This may be seen as follows. Choose Fy = W 

in the dual to the Lie algebra given by the De Rham current 
in Eq. (5.6). It is clear that the support of the De Rham 
current W is just y itself. Further, the coadjoint action is such 
that it leaves the form of the functional w the same, but shifts 
its support. Hence, the mapping from these currents to their 
support (modulo reparametrizations) is always one-to-one 
under the coadjoint action; hence, the coadjoint orbits corre
spond to the orbits in the space of unparametrized loops. If 
we were to follow the method of orbits, we would choose a 
character representation of Dif I; (M) given by ei(F. Y), 

where Y generates a one-parameter group in Dif I; (M), 
and use this to induce a representation of Dif I p. (M) in
stead of the representation U used above. Note that since 
different knot classes correspond to different orbits, we ex
pect to obtain inequivalent representations for different knot 
classes, which would be labeled by operators such as c( y, y'). 
Different knot classes will lead to different choices of the 
functional F y and, hence, inequivalent character representa
tions of Dif I; (M). The process of induction should then 
yield inequivalent representations ofDif Ip. (M). 

We make one final comment concerning the irreducibi
lity of the representations introduced above. Since the orbit 
is symplectic, the representations above are representations 
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over the phase space and, hence, we anticipate that they will 
be reducible. For irreducibility, we need a choice of polariza
tion. This would be greatly facilitated if the orbit Oy were· 
known to possess a complex structure, although we do not 
know of any structure. The problem of choosing a polariza
tion is under current study. 
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Hidden local gauge invariance in the one-dimensional (I-D) Hubbard model and its 
equivalent coupled spin model is studied. It is found that Abelian U ( 1) ® U ( 1) gauge 
transformations appear in both cases. Furthermore, it is shown that the energy spectrum is 
gauge invariant whereas the eigenvectors are explicitly gauge dependent. However, this result 
relies heavily on Shastry'S conjecture about the eigenvalue ofthe transfer matrix for the I-D 
Hubbard model. Lastly, there is also a discrete symmetry associated to Z2 ®Z2. Once this 
symmetry is broken, one immediately obtains another nontrivial solution to the Yang-Baxter 
relations. 

I. INTRODUCTION 

Recently much attention has been paid to the study of 
completely integrable quantum systems. At present, quite a 
number of quantum systems in (1 + 1 )-dimensional field 
theories and in two-dimensional (2-D) statistical mechanics 
are shown to be integrable by various techniques developed 
in different branches of one-dimensional mathematical 
physics, such as the coordinate Bethe ansatz method, 1-3 

Baxter's commuting transfer matrix technique,4 the con
struction of an infinite number of conserved currents,S and 
the quantum inverse scattering method (QISM).CHI Never
theless, QISM appears to offer a framework for a unified 
setting of many of these different techniques. Indeed, the 
development of this method has led to the important notion 
of the R matrix and established its crucial role in the theory 
of quantum completely integrable systems. From these ma
trices, one may extract the commutation relations betwen 
the elements of the quantum global monodromy matrix. In 
some sense, QISM opens the way for a systematic construc
tion of the families of integrable systems connected with giv
en R matrices. 

Along this line, de Vega and Lopes 9 studied an interest
ing feature of completely integrable quantum systems, i.e., 
what they referred to as hidden local gauge invariance. They 
showed that the combination of the quantum integrability, 
i.e., the existence of the R matrix, with a global gauge trans
formation group leads to an Abelian local gauge invariance 
in the Heisenberg XXZ magnetic chain. As a consequence, 
one may construct a more general family of completely inte
grable quantum systems. Further, they also showed that in 
this model the exact energy spectrum turns out to be gauge 
invariant whereas the eigenvectors are explicitly gauge de
pendent. In a recent work,1O we have presented a general 
formalism for hidden local gauge invariance in completely 
integrable lattice models of fermions. As an example, we 
studied a I-D small polaron model, which can be mapped 
onto the I-D Heisenberg XXZ model via the Jordan-Wigner 

transformation, and reexamined de Vega and Lopes' conclu
sion. There we also pointed out that Abelian U ( 1) ® U ( I ) 
gauge transformations appear in the I-D Hubbard model. 

The purpose of this paper is to give a detailed study of 
hidden local gauge invariance in the I-D Hubbard model 
and its equivalent coupled spin model. We show that in both 
cases the exact energy spectrum is also gauge invariant 
whereas the eigenvectors are explicitly gauge dependent as 
in the cases of the I-D Heisenberg XXZ model and its equiv
alent fermion model. However, our result relies heavily on 
Shastry's conjecture about the eigenvalue of the transfer ma
trix for the I-D Hubbard model, and thus is not complete. 

The outline of this paper is in the following. In Sec. II, 
we give a brief review about some basic results for the I-D 
Hubbard model and its equivalent coupled spin model. In 
Sec. III, we construct several lower-order conserved cur
rents from the gauge-transformed transfer matrix for both 
cases. In Sec. IV, we present an incomplete derivation of the 
Bethe ansatz equations for the gauge-transformed systems, 
based on Shastry's conjecture about the eigenvalue of the 
transfer matrix for the I-D Hubbard model. Finally, Sec. V 
is devoted to the conclusions. 

II. BASIC NOTATIONS 

Let us start from the I-D Hubbard model described by 
the Hamiltonian 

ffI"= - L(aJ;aJ- 1s +aj~lsajS) 
J.s 

(1) 

Here U is the coupling constant describing the Coulomb in
teraction, and s represents the two components of the fer
mions (s = tor 0. As usual, a· and a.+ satisfy JS JS 

{ajr,aj .} = {aj~ ,aJ;} = 0, {ajr,aj;} = liijli,... (2) 
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As was first noted by Shastry, 11 this Hamiltonian may be 
brought into the form 

N 

H = L (u/ U/=-I + uj - u/_ I 
J= I 

Here the sum over j is from 1 to N, and the periodic boundary 
condition is imposed. In Ref. 11, Shastry showed that the 
Hamiltonian (3), which we shall refer to as a coupled spin 
model, generates a solution to the Yang-Baxter relations 

U N 
+-r/-rJ'=-1 +-rj--rJ~.I) +4j~1 oj-rj, (3) 

where 
using the Jordan-Wigner transformation 

(6) 

with 

( 

j-I ) + . - + + 
0jl = exp 111" L U/ U/ uj , 

/=1 

njl = !(l + oj), C' 
0 0 0) 1= 0 

e- h / 2 0 0 

0 0 e- h/2 o ' 
0 0 0 eh / 2 

sinh 2h = U sin U, 
4 

(7) 

njl = !(1 + -rj). (4) and 

( A+-+·A-+ Uj - ) cos Uj Uj sm Uj uj 
(8) L ("')(A) = . + - - + . j u.+ sm A uj uj + cos A uj uj J 

Note that LY)(A) has the same form as L J"')(A) with -r's replacing us. Here, A is the spectral parameter. In this case, the 
corresponding R matrix is 

R(A,P.) = 
0+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 c+ 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 c+ 0 0 0 0 0 0 0 
0 0 0 b+ 0 0 d 0 0 d 0 0 b+ -0+ 0 0 0 
0 c_ O 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0_ 0 0 0 0 0 0 0 0 0 0 
0 0 0 d 0 0 b_ 0 0 b_ -0_ 0 0 d 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 c_ O 0 
0 0 c_ O 0 0 0 0 1 0 0 0 0 0 0 0 (9) 

0 0 0 d 0 0 b_ -0_ 0 0 b 0 0 d 0 0 0 
0 0 0 0 0 0 0 0 0 0 0_ 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 c_ O 
0 0 0 b+ -0+ 0 0 d 0 0 d 0 0 b+ 0 0 0 
0 0 0 0 0 0 0 c+ 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 c+ 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ 

with 
o± (A,P.) =cosh[h(A) -h(p.)]COS(A-P.) ±sinh[h(A) -h(p.)]COS(A +p.), 

b (A,P.) = cosh[h(A) - h(p.) ] cos (A + p.) ± sinh[h(A) - h(p.) ]COS(A - p.) , 
± cos2 A - sin2 p. (10) 

c± (A,P.) = -cosh[h(A) -h(p.)]sin(A-p.) ±sinh[h(A) -h(p.)]sin(A +p.), 

e - 211(1') sin U - e - 2h(..t) sin 2p. 
d(A,P.) = 2( 2 A . 2) • 

cos - SIn P. 
Thus the system under study possesses an infinite number of conserved currents that are in involution to each other. As is well 
known, the generating functional for those conserved currents is the so-called transfer matrix -r(A), which is the trace of a 
global monodromy matrix T(A), 
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(11 ) 

Indeed; an expansion of the transfer matrix r(A) in powers of A leads to the Hamiltonian (3) as well as higher conserved 
currents. 1 1-13 

As for the Hamiltonian (1), the corresponding results have been obtained by Wadati and his co-workers. 13 They showed 
that this system also generates a solution to the Yang-Baxter relations: 

~(A'P.)..?j(A) ® "?j(p.) = "?j(p.) ® ..?j(A)~(A,P.)' (12) 
s s 

where 

"?j = I..?j' ® ..?jJ, ( 13) 
s 

with 

(14) 

~(A,P.) = 

0+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 ic+ 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 ic+ 0 0 0 0 0 0 0 
0 0 0 b+ 0 0 -id 0 0 id 0 0 0+ -b+ 0 0 0 
0 - ic 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 ° 0 0 0 0 0 0 0 0 0 0 
0 0 0 id 0 0 b 0 0 0_ -b_ 0 0 -id 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 - ic 0 0 
0 0 - ic 0 0 0 0 0 1 0 0 0 0 0 0 0 (15) 

0 0 0 -id 0 0 0_ -b_ 0 0 b_ 0 0 id 0 0 0 
0 0 0 0 0 0 0 0 0 0 ° 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 -ic_ 0 
0 0 0 0+ -b+ 0 0 id 0 0 -id 0 0 b+ 0 0 0 
0 0 0 0 0 0 0 ic+ 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 ic+ 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ 

I 
Here we have used the Grassmann tensor product relations (5) are invariant under the transformation 

(J2ff ® f!lj). . = ( - 1) [P(i) + p(j) ]p(k) J2ff .. f!lj (16) L j -L?) = g(kj,k ;)Ljg-l(lj,I;), (19) Ik,JI IJ kl' 
s 

with P(1) = P( 4) = 0, and P( 2) = P( 3) = 1. provided the following condition holds: 
In exactly the same way as before, one may construct an 

infinite number of conserved currents for the system (1). [g®g,R] = o. (20) 
The generating functional for those conserved currents is the 
transfer matrix r(A), which is the supertrace of a,. mono- In this case, there are three gauge symmetries: A continuous 
dromy matrix Y(A), one 

r(A) =strY(A), (17) 

with g(k,k') 

Y(A) =..? N(A)"? N- 1 (A) .. ·..? 1 (A). (18) 

~CT' 
0 0 

o ) Several lower-order conserved currents may be found in Ref. 
el(k- k') 0 0 

12. 0 e-I(k-k') o ' 
0 0 e-I(k+k') 

III. HIDDEN LOCAL GAUGE INVARIANCE k,k'eR, (21) 

Let us first study hidden local gauge invariance in a cou-
pled spin model (3). Now we notice that the Yang-Baxter and two discrete ones 
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g=(~1 ~O r ~) and g=( ~ ~ : ~I). 
o 0 -1 0 0 0 

(22) 

As emphasized in our previous work,1O these two discrete 
symmetries impose additional constraints on the R matrix as 
well as the Lj matrix. Once these symmetries are broken, one 
may obtain another solution to the Yang-Baxter relations. 12 

So we shall analyze here the continuous symmetry (21). It 
can be verified that an expansion of the logarithm of the 
gauge-transformed transfer matrix 7"~~) (A) through third or
der in A is given by 

In 7"(g) (A) = In 7"(g) (0) + H (g) A - ~ (J (g) + 2N)A 2 
cs cs 2! 

+ ;! [K (g) _ ( 2 + 5 ~2) H (g) ]A 3 + ... , 

(23) 
I 

N 

where 

N 

H (g) = L ([ 0/ O"J=- 1 exp(2i( kj _ 1 - Ij » + h.c. ] 
j= 1 

+ (o"~7",k~k',/~/'}} + U i:. ojrj, (24) 
4 j= 1 

N 

J{g) = L {[ O"J~ 1 ojO"j-=-1 exp(2i(kj -Ij+ 1 + kj _ 1 -Ij » 
j=1 

- h.c.] + (o"~7",k~k',/~/'}} 

x (1 + 1-1) + (o"+-+7",k~k',/~/'}}, (25) 

and 

K (g) = 2 L ([ O"J~ 1 ojoj_1 O"j-=- 2 exp(2i(kj -Ij+ 1 + kj _ 1 -Ij + kj _ 2 -Ij _ d) + h.c.] + (o"~7",k~k',/~/')} 
j=1 

N 

+ U L {[20"j~ 100j- exp(2i(kj -Ij+ I» + 0"/ O"j-=-I exp(2i(kj _ 1 -Ij » - h.c.] 
j=1 

x [ 7"/ 7"j-=- 1 exp(2i(k j _ 1 - I j» - h.c.] 

- [O"j~ lojO"j-=- 1 exp(2i(kj -Ij+ 1 + kj _ 1 -Ij }) + h.c.] (rj+ 1 + rj + rj_ d 

- !(2oj+ 1 + oj}rj + (O"+-+7",k+-+k ',/+-+1 ')} 

u 2 N u3 N 

+- L {[O"/O"j-=-I exp(2i(kj _ 1-lj })+h.c·]rjrj_1 +(o"+-+7",k~k',/~/')}-~ L ojrj. (26) 
2 j= 1 8 j= 1 

Here and hereafter, the subscript "cs" denotes that the cor
responding quantity is assigned to a coupled spin model (3), 
while the superscript "g" denotes that the corresponding 
quantity has been gauge-transformed. From the above re
sults one can see how the Hamiltonian as well as higher con
served currents transform under the gauge transformations 
given by Eqs. (19) and (21). 

A similar analysis can also be carried out for the 1-D 
Hubbard model ( 1 ). In fact, the Yang-Baxter relations ( 12) 
are invariant under the gauge transformation 

'?j -.?Jg) = g(kj,k j)'?jg-l(/j>1 j}, (27) 

provided the following condition holds: 

(28) 

In this case, there are also three gauge symmetries: A contin
uousone 

g(k,k'} 

~cr' 
0 0 

o ) ei(k- k') 0 0 
0 e-i(k-k') o ' 
0 0 e-i(k+k') 

k,k'eR, (29) 
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and two discrete ones 

g~( ~ 
0 0 

~) 0 -1 

1 0 
-1 0 0 

and (30) 

g~~ 
0 0 

-~) 0 -1 

1 0 o . 
0 0 0 

As in the case of a coupled spin model, these discrete symme
tries impose additional constraints on the fYI matrix as well 
as '?j matrix. When these constraints are removed, one may 
get another solution to the Yang-Baxter relations (12). 
Here we restrict ourselves to the continuous symmetry (29). 
Similarly, one may construct the first few conserved currents 
from an expansion of the logarithm of the transformed trans
fer matrix i}f) (A) through third order in A, 
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where 

2(gl = - f ([ ajiaj_lt exp(2i(kj _ 1 -Ij» + h.c.] + (j -l,k-k ',I-I')} + U f (njl - J...)(njl - J...), (32) 
j= I j= I 2 2 

N 

/(gl= - L {[aj~.ltaj_ltexp(2i(kj-Ij+1 +kj_I-Ij»-h.c.] + (j-l,k-k',I-I')} 
j= 1 

and 

N 

+ U L ([a/aj_11 exp(2i(kj _ 1 -Ij»-h.c.](njl +nj _ lI ) - [ajiaj_lt exp(2i(kj _ 1 -Ij»-h.c.] 
j=1 

+ (j~l,k-k',I-I')}, 

N 

,Y(gl = - 2 L ([ a;~. Ilaj-21 exp(2i(kj -Ij+ I + kj _ 1 -Ij + kj _ 2 -Ij _ I» + h.c.] + (j - !,k-k ',I-I')} 
j= I 

N 

+ U L ([2a/j.lt ajl exp(2i(kj -lj+d)+ajiaj_11 exp(2i(kj _ 1 -Ij»-h.c.] 
j=1 

x [ajtaj-II exp(2i(k;_1 -I;» - h.c.] 

+ 2[ a;"'+.ltaj_11 exp(2i(kj -Ij+ I + kj _ 1 -Ij » + h.c.] (nj+ 11 + njl + nj _ lI ) - (2nj+ 1! + njl )njl + 3njl 

-3[a;"'+.ltaj_11 exp(2i(kj-Ij+1 +kj _ 1 -Ij»+h.c.] + (j~l,k~k',/~/')} 

N 

- U 2 L {2[ aji aj _11 exp(2i(kj _ 1 -lj »+h.c.]nj1 nj _1I - [ajiaj_11 exp(2i(kj_ 1 -Ij»+h.c.] 
j=1 

Here the subscript "H" denotes that the corresponding 
quantity is assigned to the 1-D Hubbard model (1). 

IV. BETHE ANSATZ EQUATIONS 

Tal(A-) 10) = ei(Q+ Q'leNh cos 2N A- 10), 

TW(A-) 10) = ~(Q- Q'le- Nh sinN A- COSN A- 10), 

TW(A-)IO) = e-i(Q-Q'le-NhsinN A- COSN A- 10), 

T.W(A-) 10) = e-i(Q+ Q'leNh sin 2N A- 10), 

N N 

Q= L (kj-Ij ), Q'= L (k;-Ij). 
j=1 j=1 

(33) 

(34) 

(35) In order to study the effect of the local gauge transfor
mation on the eigenvalues and eigenvectors for the systems 
under study, we have to derive the so-called Bethe ansatz 
equations. This problem, however, is nontrivial from either 
the coordinate Bethe ansatz or the algebraic Bethe ansatz 
point of view. Here we only give an incomplete derivation of 
these equations based on Shastry's conjecture l4 about the 
eigenvalue of the transfer matrix for a coupled spin model 
(3 ). 

Denoting the matrix elements of T (gl (A-) by T ijgl (A-) 
(ij = 1,2,3,4) and defining the pseudovacuum 10) as the 
state with all spins up, we have 

Now let us consider a general state with M particles with M
K particles having spin up and K particles having spin down. 
Taking into account Shastry's conjecture on the eigenvalue 
of the transfer matrix for (3) and having in mind the fact 
that the Yang-Baxter relations (5) are invariant under the 
local gauge transformations, we may write out the eigenval
ue of the transformed transfer matrix T~l (A-): 

M ta A- + a. - 2h M tan A- + i"·' + 2h 
Aa!K(A-,Un},{ILm})=ei(Q+Q'leNhcos2NA- rr n a -~h + (_l)Me-i(Q+Q'leNhsin2NA- rr ---:-:---:-:---

n = I 1 - e' tan A- n = I 1 - ea. + 2h tan A-

M tan A- + ei).. - 2h + (_l)M-Kei(Q-Q'le-NhsinNA-cosNA- rr ----.:.--:---
n = I 1 _ ea. - 2h tan A-

rrK e2hltanA--e-2htanA--2ILm + UI2 K _·(Q-Q'l -Nh . N N 1 
X h + (- 1) e I e sm A- cos A 

m= I ~ ItanA- - e- 2h tanA- - 2ILm - U 12 

X M tan A-. + ea. + 2h K e - 2h ltan A- - ~h tan A- - 2ILm - U 12 

JI l_ea.+ 2h tanA- JJI e-2hltanA--e2htanA--2ILm+UI2 
(36) 
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Repeating Shastry's argument, 14 we immediately obtain the 
Bethe ansatz equations 

e'2iQ'eiN).n = ( _ 1)M - K - 1 fi ~ s~n An - f.Lm + U /4 , 
m=IISlnAn -f.Lm - U/4 

e2i(Q- Q') rr f.Lm - f.Ln + U /2 
n,fm f.Lm - f.Ln - U /2 

M rrM i sin An - f.Lm - U /4 
=(-1) . 

n=1 i sin An -f.Lm + U/4 

(37) 

(38) 

Since the transformed transfer matrices for different values 
of the spectral parameter A commute, the eigenvectors areA
independent and then the eigenvalues of the Hamiltonian as 
well as higher conserved currents can be determined from 
the logarithmic derivative of A~,)K (A). From Eqs. (23) and 
(36) we have 

M 

P~)=Q+Q'+ LAn, 
n=1 

E ~~) = (N - ~ U + 2 f cos An' 
2 4) n=1 

M 

J~) = -2i L sin Un' 
n=1 (39) 

K~) = (M _ ~) U ( 1 _ 3 ~2) 

+ n~1 [ 4 cos 3An - 6U cos Un 

+ (8 + 11:2) COS An ] . 

Here we have introduced the momentum operator P (g) de
fined by 

P (g) = - iln 1'~~) (0), (40) 

while the values of An and f.Lm are obtained by solving Eqs. 
(37) and (38). From this we see that the eigenvalues of the 
gauge-transformed transfer matrix 1'~) (A) and hence those 
of the Hamiltonian as well as higher conserved currents de
pend on kj' Ij and k;, I; only through the sums 

N N 

Q= L (kj -Ij) and Q' = L (k; - I;). (41) 
j=1 j=1 

where 

5 = sec a COS(A + a)sec A, 

and L Y) (A) has the same form as L j") (A) with r's replac
ing u's. We have shown 12 that this Lj matrix provides a natu
ral description of the 1-0 Hubbard model with the chemical 
potential term. 
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In particular, for a one-particle excitation over the pseudo
vacuum 10), the exact dispersion relation turns out to be 
gauge-invariant, 

E(g)=(N _Y'\ U+2cosP(g). 
~ 2 ~ ~ (42) 

Here the momentum P ~~) has been shifted by Q + Q'; 

However, the eigenvectors of 1'~~) (A) will depend in a de
tailed form on kj' Ij' and k;, I; as in the case of the Heisen
berg XXZ model. 9 

Analogously, we may write out the eigenvalue of the 
transformed transfer matrix and the Bethe ansatz equations 
for the equivalent fermion model (I), from which the same 
conclusion is recovered. 10 

v. CONCLUSION 

In this paper we have studied hidden local gauge invar
iance in the 1-0 Hubbard model and its equivalent coupled 
spin model. We have shown that Abelian U (1 ) ® U (1 ) 
gauge transformations appear in these two equivalent sys
tems. This allows us to construct a new family of completely 
integrable quantum systems, each of which corresponds to a 
conserved current obtained from an expansion of the gauge
transformed transfer matrix 1'(g) (A) with respect to the pow
ers of the spectral parameter A. Further, we have presented 
an incomplete discussion of the Bethe ansatz equations for a 
coupled spin model (3), based on Shastry'S conjecture about 
the eigenvalue of the transfer matrix for this system. From 
this we have concluded that the exact energy spectrum is 
gauge-invariant as in the case of the Heisenberg XXZ model. 

In conclusion let us add some comments on the discrete 
symmetry associated to Z2 ® Z2' As mentioned above, this 
symmetry imposes an additional constraint on the R matrix 
as well as L j matrix. Once this constraint is removed, one 
may get another solution to the Yang-Baxter relations. For 
a coupled spin model (3), the corresponding L j matrix have 
the form 

L. = IL (U),o,L (7")/ 
j j ~ J ' (43) 

where 

(44) 
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